Academic literature on the topic 'DESIGN FOR STRENGTH'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DESIGN FOR STRENGTH.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DESIGN FOR STRENGTH"
Kress, G., P. Naeff, M. Niedermeier, and P. Ermanni. "Onsert strength design." International Journal of Adhesion and Adhesives 24, no. 3 (June 2004): 201–9. http://dx.doi.org/10.1016/j.ijadhadh.2003.09.007.
Full textHARAGA, Kosuke. "A Concept of Specified Design Strength and Allowable Design Strength in the Strength Design of Adhesively Bonded Joints." Journal of The Adhesion Society of Japan 50, no. 2 (2014): 53–58. http://dx.doi.org/10.11618/adhesion.50.53.
Full textSinha, Dr Deepa A. "Compressive Strength of Concrete using Different Mix Design Methods." Indian Journal of Applied Research 4, no. 7 (October 1, 2011): 216–17. http://dx.doi.org/10.15373/2249555x/july2014/66.
Full textBhat, Rayees Ahmad, and Mr Misba Danish. "Design of High Strength Concrete Using Superplastisizer and Stone Dust." International Journal of Trend in Scientific Research and Development Volume-2, Issue-5 (August 31, 2018): 529–47. http://dx.doi.org/10.31142/ijtsrd15867.
Full textRusso, G. "Design shear strength formula for high strength concrete beams." Materials and Structures 37, no. 274 (October 17, 2004): 680–88. http://dx.doi.org/10.1617/14016.
Full textRusso, G., G. Somma, and P. Angeli. "Design shear strength formula for high strength concrete beams." Materials and Structures 37, no. 10 (December 2004): 680–88. http://dx.doi.org/10.1007/bf02480513.
Full textKim, Dae Geon. "Development of High-Strength Concrete Mixed Design System Using Artificial Intelligence." Webology 19, no. 1 (January 20, 2022): 4268–85. http://dx.doi.org/10.14704/web/v19i1/web19281.
Full textMurakami, Yukitaka. "Product Liability and Strength Design." Journal of the Society of Mechanical Engineers 98, no. 925 (1995): 986–90. http://dx.doi.org/10.1299/jsmemag.98.925_986.
Full textYoshida, Takashi, and Masaru Ishikawa. "Design of strength for plastic." Proceedings of The Computational Mechanics Conference 2004.17 (2004): 127–28. http://dx.doi.org/10.1299/jsmecmd.2004.17.127.
Full textHsu, Wei Ting, Dung Myau Lue, and Chen Y. Chang. "An Investigation into the Strength of Concrete-Filled Tubes." Applied Mechanics and Materials 284-287 (January 2013): 1208–14. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1208.
Full textDissertations / Theses on the topic "DESIGN FOR STRENGTH"
Eizadjou, Mehdi. "Design of Advanced High Strength Steels." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17315.
Full textSoutsos, Marios Nicou. "Mix design, workability heat evolution and strength development of high strength concrete." Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308062.
Full textCladera, Bohigas Antoni. "Shear design of reinforced high-strength concrete beams." Doctoral thesis, Universitat Politècnica de Catalunya, 2003. http://hdl.handle.net/10803/6155.
Full textEl objetivo principal de este trabajo es contribuir al avance del conocimiento del comportamiento frente a la rotura por cortante de vigas de hormigón de alta resistencia. Para ello, y en primer lugar, se ha llevado a cabo una extensa revisión del estado actual del conocimiento de la resistencia a cortante, tanto para hormigón convencional como para hormigón de alta resistencia, así como una profunda investigación de campañas experimentales anteriores.
Se ha realizado una campaña experimental sobre vigas de hormigón de alta resistencia sometidas a flexión y cortante. La resistencia a compresión del hormigón de las vigas variaba entre 50 y 87 MPa. Las principales variables de diseño eran la cuantía de armadura longitudinal y transversal. Los resultados obtenidos experimentalmente han sido analizados para estudiar la influencia de las distintas variables en función de la resistencia a compresión del hormigón.
Con el objetivo de tener en cuenta, no sólo los resultados de nuestros ensayos, sino también la gran cantidad de información disponible en la bibliografía técnica, se ha preparado una base de datos con vigas de hormigón convencional y de alta resistencia a partir del banco de datos de la Universidad de Illinois. Los resultados empíricos han sido comparados con los cortantes últimos calculados según la Instrucción EHE, las especificaciones AASHTO LRFD, el Código ACI 318-99 y el programa Response-2000, basado en la teoría modificada del campo de compresiones.
Se han construido dos Redes Neuronales Artificiales (RNA) para predecir la resistencia a cortante en base a la gran cantidad de resultados experimentales. La principal característica de las RNA es su habilidad para aprender, mediante el ajuste de pesos internos, incluso cuando los datos de entrada y salida presentan un cierto nivel de ruido. Con los resultados de la RNA se ha realizado un análisis paramétrico de cada variable que afecta la resistencia última a cortante.
Se han propuesto nuevas expresiones que tienen el cuenta el comportamiento observado para el diseño frente al esfuerzo cortante de vigas tanto de hormigón convencional como de alta resistencia con y sin armadura a cortante, así como una nueva ecuación para la determinación de la armadura mínima a cortante. Las nuevas expresiones presentan resultados que se ajustan mejor a los resultados experimentales que los obtenidos mediante la utilización de las normativas vigentes.
Finalmente se han planteado varias sugerencias de futuras líneas de trabajo, que son resultado de la propia evolución del conocimiento sobre el tema de estudio durante el desarrollo de esta tesis.
Although High-Strength Concrete has been increasingly used in the construction industry during the last few years, current Spanish Structural Concrete code of practice (EHE) only covers concrete of strengths up to 50 MPa. An increase in the strength of concrete is directly associated with an improvement in most of its properties, in special the durability, but this also produces an increase in its brittleness and smoother crack surfaces which affects significantly the shear strength.
The aim of this research is to enhance the understanding of the behaviour of high-strength concrete beams with and without web reinforcement failing in shear. In order to achieve this objective, an extensive review of the state-of-the-art in shear strength for both normal-strength and high-strength concrete beams was made, as well as in-depth research into previous experimental campaigns.
An experimental programme involving the testing of eighteen high-strength beam specimens under a central point load was performed. The concrete compressive strength of the beams at the age of the tests ranged from 50 to 87 MPa. Primary design variables were the amount of shear and longitudinal reinforcement. The results obtained experimentally were analysed to study the influence of those parameters related to the concrete compressive strength.
With the aim of taking into account, in addition to the results of our tests, the large amount of information available, a large database was assembled based on the University of Illinois Sheardatabank for normal-strength and high-strength concrete beams. These test results were compared with failure shear strengths predicted by the EHE Code, the 2002 Final Draft of EuroCode 2, the AASHTO LRFD Specifications, the ACI Code 318-99, and Response-2000 program, a computer program based on the modified compression field theory.
Furthermore, two Artificial Neural Networks (ANN) were developed to predict the shear strength of reinforced beams based on the database beam specimens. An ANN is a computational tool made up of a number of simple, highly-interconnected processing elements that constitute a network. The main feature of an ANN is its ability to learn, by means of adjusting internal weights, even when the input and output data present a degree of noise. Based on the ANN results, a parametric study was carried out to study the influence of each parameter affecting the failure shear strength.
New expressions are proposed, taking into account the observed behaviour for the design of high-strength and normal-strength reinforced concrete beams with and without web reinforcement. A new equation is given for the amount of minimum reinforcement as well. The new expressions correlate with the empirical tests better than any current code of practice.
Finally, as a natural corollary to the evolution of our understanding of this field, some recommendations for future studies are made.
Wilson, R. C. "Welded airframes : static strength, structural design and analysis." Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546430.
Full textVennapusa, Siva Koti Reddy. "Design of bi-adhesive joint for optimal strength." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-16675.
Full textWang, Jie. "Behaviour and design of high strength steel structures." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43758.
Full textReis, Jonathan M. "Structural Concrete Design with High-Strength Steel Reinforcement." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1277124990.
Full textKhurshid, Mansoor. "Static and fatigue analyses of welded steel structures : some aspects towards lightweight design." Doctoral thesis, KTH, Lättkonstruktioner, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200829.
Full textQC 20170206
Domingo, Eric Ray. "An introduction to Autoclaved Aerated Concrete including design requirements using strength design." Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/543.
Full textPeng, Jun, and 彭军. "Strain gradient effects on flexural strength and ductility design of normal-strength RC beams and columns." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48329630.
Full textpublished_or_final_version
Civil Engineering
Doctoral
Doctor of Philosophy
Books on the topic "DESIGN FOR STRENGTH"
McIntosh, G. Design stressing: Basic strength calculations for structural design. [Great Britain?]: [G. McIntosh?], 1988.
Find full textCook, Ronald A. Strength design of anchorage to concrete. Skokie, Ill: Portland Cement Association, 1999.
Find full textDeterminate structures: Statics, strength, analysis, design. Albany: Delmar Publishers, 1996.
Find full textP, Walker K., and United States. National Aeronautics and Space Administration., eds. Steady-state and transient zener parameters in viscoplasticity: Drag strength versus yield strength. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textFreed, Alan David. Steady-state and transient zener parameters in viscoplasticity: Drag strength versus yield strength. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textGreat Britain. Department of Trade and Industry. Strength data for design safety: Phase 1. London: DTI, 2000.
Find full textGreat Britain. Department of Trade and Industry. Strength data for design safety: Phase 2. London: DTI, 2002.
Find full textAmerican Society of Civil Engineers. and United States. Army. Corps of Engineers., eds. Strength design for reinforced-concrete hydraulic structures. New York, N.Y: ASCE Press, 1993.
Find full textGeorge C. Marshall Space Flight Center., ed. Root-sum-square structural strength verification approach. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1994.
Find full textGeorge C. Marshall Space Flight Center., ed. Root-sum-square structural strength verification approach. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1994.
Find full textBook chapters on the topic "DESIGN FOR STRENGTH"
Walser, Martin G. "Empirical design." In Brand Strength, 155–79. Wiesbaden: Deutscher Universitätsverlag, 2004. http://dx.doi.org/10.1007/978-3-322-81629-0_7.
Full textCissik, John. "Program Design." In Strength and Conditioning, 149–75. Second edition. | Abingdon, Oxon ; New York : Routledge, [2020]: Routledge, 2019. http://dx.doi.org/10.4324/9780429026546-8.
Full textOkumoto, Yasuhisa, Yu Takeda, Masaki Mano, and Tetsuo Okada. "Torsional Strength." In Design of Ship Hull Structures, 417–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88445-3_22.
Full textOkumoto, Yasuhisa, Yu Takeda, Masaki Mano, and Tetsuo Okada. "Strength Evaluation." In Design of Ship Hull Structures, 33–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88445-3_3.
Full textBallio, Giulio. "Design for Strength (Stability)." In Second Century of the Skyscraper, 837–46. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-6581-5_72.
Full textXiao, Yan. "Design Strength of Glubam." In Engineered Bamboo Structures, 121–38. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003204497-4.
Full textSerrano, Nathan, and Andrew J. Galpin. "Program design." In Conditioning for Strength and Human Performance, 356–69. Third edition. | New York, NY : Routledge, 2018.: Routledge, 2018. http://dx.doi.org/10.4324/9781315438450-16.
Full textOkumoto, Yasuhisa, Yu Takeda, Masaki Mano, and Tetsuo Okada. "Transverse Strength of Ship." In Design of Ship Hull Structures, 387–415. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88445-3_21.
Full textSmardzewski, Jerzy. "Stiffness and Strength Analysis of Skeletal Furniture." In Furniture Design, 319–455. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19533-9_6.
Full textSmardzewski, Jerzy. "Stiffness and Strength Analysis of Case Furniture." In Furniture Design, 457–571. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19533-9_7.
Full textConference papers on the topic "DESIGN FOR STRENGTH"
"Design of High-Strength Concrete Columns for Strength and Ductility." In SP-213: The Art and Science of Structural Concrete Design. American Concrete Institute, 2003. http://dx.doi.org/10.14359/12747.
Full textBingham, Jesse, John Erickson, Gaurav Singh, and Flemming Andersen. "Industrial strength refinement checking." In 2009 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2009. http://dx.doi.org/10.1109/fmcad.2009.5351123.
Full textDoyle, Keith B., and Mark A. Kahan. "Design strength of optical glass." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Alson E. Hatheway. SPIE, 2003. http://dx.doi.org/10.1117/12.506610.
Full text"Behavior and Design of High-Strength RC Walls." In SP-176: High-Strength Concrete in Seismic Regions. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5903.
Full textObeidat, H. A., R. A. Abd-Alhameed, J. M. Noras, S. Zhu, T. Ghazaany, N. T. Ali, and E. Elkhazmi. "Indoor localization using received signal strength." In 2013 Design and Test Symposium (IDT). IEEE, 2013. http://dx.doi.org/10.1109/idt.2013.6727138.
Full textSchaefer, Peter, Helmut Rudolph, and Wolfgang Schwarz. "Digital Man Models and Physical Strength – A New Approach in Strength Simulation." In Digital Human Modeling For Design And Engineering Conference And Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-2168.
Full text"Design Applications of High-Strength Concrete in Seismic Regions." In SP-176: High-Strength Concrete in Seismic Regions. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5912.
Full textDu, Quhu, Jia Li, Yi Wang, Liyang Xie, and Fei Zhao. "Strength reliability analysis of axial-symmetric vectoring exhaust nozzle mechanism considering strength degradation." In Third International Conference on Mechanical Design and Simulation (MDS 2023), edited by Mohamed Arezki Mellal and Yunqing Rao. SPIE, 2023. http://dx.doi.org/10.1117/12.2682087.
Full textAnderson, M., and M. Anderson. "Design of panels having postbuckling strength." In 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1240.
Full text"Design of High-Strength Concrete Columns." In SP-128: Evaluation and Rehabilitation of Concrete Structures and Innovations in Design. American Concrete Institute, 1991. http://dx.doi.org/10.14359/3206.
Full textReports on the topic "DESIGN FOR STRENGTH"
H. KUNG and ET AL. OPTIMUM DESIGN OF ULTRAHIGH STRENGTH NANOLAYERED COMPOSITES. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/766220.
Full textDuthinh, Dat, and Nicholas J. Carino. Shear design of high-strength concrete beams:. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5870.
Full textKoglin, Johnathon D. Strength-Stabilized Rayleigh-Taylor Growth Experiment Design Calculations. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1459140.
Full textWilkowski and Eiber. L51704 Design Guideline for High-Strength Pipe Fittings. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1994. http://dx.doi.org/10.55274/r0010320.
Full textUkhande, Manoj, Vijaykumar Khasnis, Santosh Kumar, Raveendra Parvatrao, and Girish Tilekar. Crankshaft Design Re-Engineering for Better Bending Fatigue Strength. Warrendale, PA: SAE International, September 2013. http://dx.doi.org/10.4271/2013-01-2436.
Full textWoodson, Stanley C., and William A. Price. Improved Strength Design of Reinforced Concrete Hydraulic Structures - Research Support. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada251470.
Full textFuglem. L52034 Software for Estimating the Lifetime Cost of High Strength High Design Factor Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2003. http://dx.doi.org/10.55274/r0011176.
Full textLynch, C., and J. Charest. Design of a gun system for in-situ compressive strength measurements. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/6922835.
Full textTyson. L52337 Weld Design Testing and Assessment Procedures for High Strength Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2011. http://dx.doi.org/10.55274/r0010448.
Full textRuggles, M. B., G. T. Yahr, and R. L. Battiste. Static properties and multiaxial strength criterion for design of composite automotive structures. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/290934.
Full text