Journal articles on the topic 'Desiccation'

To see the other types of publications on this topic, follow the link: Desiccation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Desiccation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Englert, John M., Keith Warren, Leslie H. Fuchigami, and Tony H. H. Chen. "Antidesiccant Compounds Improve the Survival of Bare-root Deciduous Nursery Trees." Journal of the American Society for Horticultural Science 118, no. 2 (March 1993): 228–35. http://dx.doi.org/10.21273/jashs.118.2.228.

Full text
Abstract:
Desiccation stress during the postharvest handling of bare-root deciduous trees can account for dieback and poor regrowth after transplanting. Desiccation tolerance of three bare-root deciduous hardwood species was determined at monthly harvest intervals from Sept. 1990 through Apr. 1991. Among the three species tested red oak (Quercus rubra L.) was most tolerant to desiccation, followed by Norway maple (Acer platanoides L.) and Washington hawthorn (Crataegus phaenopyrum Medic.). Maximum desiccation tolerance of all three species occurred during the January and February harvests. Of 20 film-forming compounds tested, the antidesiccant Moisturin was the most effective in reducing water loss from bare-root trees during desiccation stress and in improving survival and plant performance during re-establishment in the laboratory, greenhouse, and field. Moisturin-treated plants lost up to 80% less water than untreated plants. Washington hawthorn seedlings treated with Moisturin before severe desiccating conditions had the highest survival, lowest dieback/plant, and highest root growth ratings. The results indicate that Moisturin is an effective means of overcoming postharvest desiccation stress in desiccation sensitive plants, such as Washington hawthorn.
APA, Harvard, Vancouver, ISO, and other styles
2

Meichssner, Rafael, Nadja Stegmann, Anna-Sarah Cosin, Dagobert Sachs, Matthias Bressan, Henriette Marx, Peter Krost, and Rüdiger Schulz. "Control of fouling in the aquaculture of Fucus vesiculosus and Fucus serratus by regular desiccation." Journal of Applied Phycology 32, no. 6 (October 7, 2020): 4145–58. http://dx.doi.org/10.1007/s10811-020-02274-2.

Full text
Abstract:
AbstractFouling is a major problem in seaweed aquaculture and one of the main obstacles during the domestication process for new culture species. During first attempts to cultivate Fucus vesiculosus and Fucus serratus in the Kiel fjord (Western Baltic Sea), fouling by the epizoans Electra pilosa, Mytilus sp., and Amphibalanus improvisus rendered the production of marketable biomass impossible. This study tested (1) if regular desiccation by air exposure is effective in decreasing the abundance and size of foulers and (2) if and how regular desiccation affects the growth performance of the cultivated Fucus thalli. For this purpose, thalli of F. vesiculosus and F. serratus were cultivated freely floating in baskets directly deployed in the fjord and desiccated to defined percentages of the wet weight (ww) by air exposure. The treatments comprised controls and desiccations of different intensities (from 90 to 40% of ww) and at different frequencies (1× week−1, 3× week−1). Growth rates of both Fucus species were not or only slightly reduced by the desiccation treatments. The final harvested biomass of F. vesiculosus under frequent mild desiccations (3× week−1 to 80% of ww) was even higher than the biomass of undesiccated controls. The size of the epizoans E. pilosa and A. improvisus was significantly reduced by the desiccation treatments and the abundance of all epizoan species was drastically reduced by the desiccation regimes. Frequent mild desiccations (F. vesiculosus: 3× week−1 to 80% of ww, F. serratus: 3× week−1 to 90% of ww) proved to be most effective and decreased the epizoan ww share of the total harvest from 13.0 ± 4.8% in the control to 1.8 ± 0.2% for F. vesiculosus and from 19.1 ± 2.7 to 1.0 ± 0.1% for F. serratus. Thus, desiccation seems to be an effective measure for the production of clean Fucus biomass in culture which is necessary for further valorization. A technical solution for the implementation of this procedure in large-scale cultures remains to be developed.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Yujing, Deguang Liu, Xiaoming Liu, Biyao Wang, and Xiaoqin Shi. "Divergence of Desiccation-Related Traits in Sitobion avenae from Northwestern China." Insects 11, no. 9 (September 11, 2020): 626. http://dx.doi.org/10.3390/insects11090626.

Full text
Abstract:
The impact of drought on insects has become increasingly evident in the context of global climate change, but the physiological mechanisms of aphids’ responses to desiccating environments are still not well understood. We sampled the wheat aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) from arid areas of northwestern China. Both desiccation-resistant and -nonresistant genotypes were identified, providing direct evidence of genetic divergence in desiccation resistance of S. avenae. Resistant genotypes of wingless S. avenae showed longer survival time and LT50 under the desiccation stress (i.e., 10% relative humidity) than nonresistant genotypes, and wingless individuals tended to have higher desiccation resistance than winged ones. Both absolute and relative water contents did not differ between the two kinds of genotypes. Resistant genotypes had lower water loss rates than nonresistant genotypes for both winged and wingless individuals, suggesting that modulation of water loss rates could be the primary strategy in resistance of this aphid against desiccation stress. Contents of cuticular hydrocarbons (CHC) (especially methyl-branched alkanes) showed significant increase for both resistant and nonresistant genotypes after exposure to the desiccation stress for 24 h. Under desiccation stress, survival time was positively correlated with contents of methyl-branched alkanes for resistant genotypes. Thus, the content of methyl-branched alkanes and their high plasticity could be closely linked to water loss rate and desiccation resistance in S. avenae. Our results provide insights into fundamental aspects and underlying mechanisms of desiccation resistance in aphids, and have significant implications for the evolution of aphid populations in the context of global warming.
APA, Harvard, Vancouver, ISO, and other styles
4

Ivanchina, Ludmila A., and Sergei V. Zalesov. "The effect of spruce plantation density on resilience of mixed forests in the Perm Krai." Journal of Forest Science 65, No. 7 (July 31, 2019): 263–71. http://dx.doi.org/10.17221/14/2019-jfs.

Full text
Abstract:
Over the course of the last few decades, many countries across the globe have experienced mass desiccation of spruce plantations. The subject of our research was the spruce forests of the Russian Perm Krai’s mixed forest zone. Spruce is a shade–tolerant tree species and low plantation density may adversely affect the spruce health. The aim of this research is to establish how influential the spruce stand density is on causing desiccation in mixed zones in the Perm Krai. The results of an on-site survey which had recorded spruce desiccation in 2017 were analysed. Within the boundaries of the aforementioned forest areas, 2017 saw the desiccation of spruce trees in 301 forest allotments covering an area of 5,343.7 ha. The value of the weighted average category of spruce forest health in Prikamye varies from 2.7 (severely weakened) to 4.2 (desiccating), and the percentage of the volume of spruce deadwood varies from 17% to 59.5%. When the spruce stand density rises from 0.4 to 0.8, spruce stand resilience to desiccation increases.
APA, Harvard, Vancouver, ISO, and other styles
5

Keosentse, Onalethata, Reyard Mutamiswa, and Casper Nyamukondiwa. "Interaction effects of desiccation and temperature stress resistance across Spodoptera frugiperda (Lepidoptera, Noctuidae) developmental stages." NeoBiota 73 (May 16, 2022): 87–108. http://dx.doi.org/10.3897/neobiota.73.76011.

Full text
Abstract:
Insects encounter multiple overlapping physiologically challenging environmental stressors in their habitats. As such, the ability of insects to withstand these stressors singly or interactively is fundamental in population persistence. Following its invasion in Africa, Spodoptera frugiperda (Lepidoptera: Noctuidae) has successfully established and spread in most parts of the continent. However, the mechanisms behind its successful survival across arid and semi-arid African environments are relatively unknown. Here, we investigated the water balance of S. frugiperda across its developmental stages. Given the relationships between desiccation stress, temperature stress and other life history traits in arid ecosystems, we also measured interaction effects across metrics of these traits. Specifically, we measured basal body water content (BWC), water loss rates (WLRs) and the effects of desiccation pre-treatment on critical thermal minimum (CTmin), critical thermal maximum (CTmax) and fecundity. Body water content and WLR increased with age across larval instars. However, the effects of desiccation environments on WLRs were more dramatic for 5th and 6th larval instars. The 5th and 6th instars exhibited highest BWC and magnitude of WLRs plastic responses following desiccation treatment. The effects of desiccation pre-treatment on temperature tolerance were less apparent, only significantly improving CTmin in 2nd and 3rd larval instars and reducing CTmax in 5th instars. In addition, desiccation pre-treatment showed no significant effects on fecundity. These results show that water balance traits differ with developmental stage, while the effects of desiccation pre-treatment were more dramatic and inconclusive. The differential desiccation resistance, high proportional BWC and no desiccation pre-treatment effects on fecundity may help the species survive in arid and semi-arid environments. This information provides insights into understanding S. frugiperda survival under desiccating arid and semi-arid tropical environments and is significant in predicting pest outbreaks.
APA, Harvard, Vancouver, ISO, and other styles
6

Bauce, É., and E. Han. "Desiccation resistance in pre-diapause, diapause and post-diapause larvae of Choristoneura fumiferana (Lepidoptera: Tortricidae)." Bulletin of Entomological Research 91, no. 5 (October 2001): 321–26. http://dx.doi.org/10.1079/ber2001119.

Full text
Abstract:
AbstractDesiccation resistance was examined in pre-diapause, diapause and post-diapause larvae of the spruce budworm, Choristoneura fumiferana (Clemens), in terms of passive water evaporation under three desiccation conditions: freeze-drying, desiccant-drying at 2°C and desiccant-drying 18°C. Diapausing second instar larvae and post-diapause non-feeding second instar larvae showed strongest desiccation resistance: a significant amount of water was retained after repeated drying under desiccating conditions, while pre-diapause first instar larvae and post-diapause feeding instar larvae lost almost all their water content after one or two drying cycles. A hibernaculum covering had no effect on water evaporation. While dead larvae tended to lose significantly more water than their living counterparts, particularly among first instar larvae, such an impact much weaker among diapausing second instar larvae. Desiccation resistance was lost when post-diapause second instar larvae were allowed access to water while the level of desiccation resistance was maintained or enhanced when the larvae did not have access to water. These results are discussed the context of overwintering ecology of the species and possible mechanisms for the desiccation resistance are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, Kimberly L., Ethel E. Apolinario, and Kevin R. Sowers. "Desiccation as a Long-Term Survival Mechanism for the Archaeon Methanosarcina barkeri." Applied and Environmental Microbiology 78, no. 5 (December 22, 2011): 1473–79. http://dx.doi.org/10.1128/aem.06964-11.

Full text
Abstract:
ABSTRACTViable methanogens have been detected in dry, aerobic environments such as dry reservoir sediment, dry rice paddies and aerobic desert soils, which suggests that methanogens have mechanisms for long-term survival in a desiccated state. In this study, we quantified the survival rates of the methanogenic archaeonMethanosarcina barkeriafter desiccation under conditions equivalent to the driest environments on Earth and subsequent exposure to different stress factors. There was no significant loss of viability after desiccation for 28 days for cells grown with either hydrogen or the methylotrophic substrates, but recovery was affected by growth phase, with cells desiccated during the stationary phase of growth having a higher rate of recovery after desiccation. Synthesis of methanosarcinal extracellular polysaccharide (EPS) significantly increased the viability of desiccated cells under both anaerobic and aerobic conditions compared with that of non-EPS-synthesizing cells. DesiccatedM. barkeriexposed to air at room temperature did not lose significant viability after 28 days, and exposure ofM. barkerito air after desiccation appeared to improve the recovery of viable cells compared with that of desiccated cells that were never exposed to air. DesiccatedM. barkeriwas more resistant to higher temperatures, and although resistance to oxidative conditions such as ozone and ionizing radiation was not as robust as in other desiccation-resistant microorganisms, the protection mechanisms are likely adequate to maintain cell viability during periodic exposure events. The results of this study demonstrate that after desiccationM. barkerihas the innate capability to survive extended periods of exposure to air and lethal temperatures.
APA, Harvard, Vancouver, ISO, and other styles
8

Gibbs, A. G., A. K. Chippindale, and M. R. Rose. "Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster." Journal of Experimental Biology 200, no. 12 (June 1, 1997): 1821–32. http://dx.doi.org/10.1242/jeb.200.12.1821.

Full text
Abstract:
We investigated physiological characters associated with water balance in laboratory populations of Drosophila melanogaster selected for resistance to desiccating conditions for over 100 generations. Five replicate, outbred, desiccation-selected (D) populations were compared with their control (C) populations. Water loss rates of female D flies were approximately 40% lower than those of C females. Although excretory water loss was reduced in desiccation-selected flies, it comprised less than 10% of total water loss, indicating that the D populations have evolved reduced cuticular and/or respiratory water loss rates. Total surface lipid amounts did not differ between the C and D flies. Cuticular hydrocarbons from D flies were longer than those from C flies and melted at slightly higher temperatures, possibly contributing to reduced water loss rates. Desiccation-selected flies contained approximately 30% more bulk water than controls, as well as more glycogen. However, total metabolic water stores did not differ between the stocks owing to higher lipid levels in the C populations. The ability to tolerate water loss, as measured by water content at the time of death, did not differ between D and C flies. Thus, evolution of increased desiccation resistance has occurred by multiple physiological mechanisms, but some potential adaptive differences have not evolved.
APA, Harvard, Vancouver, ISO, and other styles
9

Ferebee, J. Harrison, Charles W. Cahoon, Michael L. Flessner, David B. Langston, Ramon Arancibia, Thomas E. Hines, Hunter B. Blake, and M. Carter Askew. "Comparison of Diquat, Glufosinate, and Saflufenacil for Desiccation of ‘Dark Red Norland’ Potato." HortTechnology 29, no. 5 (October 2019): 643–48. http://dx.doi.org/10.21273/horttech04327-19.

Full text
Abstract:
Chemical desiccants are commonly used to regulate tuber size, strengthen skin, and facilitate harvest for potato (Solanum tuberosum) production. Glufosinate is labeled for potato vine desiccation; however, limited data are available. Saflufenacil, a protoporphyrinogen oxidase–inhibiting herbicide, is an effective desiccant in other crops. Field research was conducted to evaluate glufosinate and saflufenacil as desiccants applied to ‘Dark Red Norland’ potato. Desiccants consisted of diquat, glufosinate, saflufenacil, glufosinate plus carfentrazone, and glufosinate plus saflufenacil applied at three timings, DESIC-1, DESIC-2, and DESIC-3, when size B potatoes averaged 43%, 31%, and 17% of total potato weight. Potato vine desiccation was more difficult at DESIC-1 and DESIC-2 because of immature vines. Diquat was the most effective desiccant 7 days after treatment (DAT), desiccating potato vines 88% at DESIC-1 7 DAT. Glufosinate alone desiccated potato vines 65% at the same timing; however, carfentrazone and saflufenacil added to glufosinate increased vine desiccation 8% and 16% compared with glufosinate alone, respectively. Vine desiccation by all treatments ranged 99% to 100% at 14 DAT. Desiccant and timing effects on skin set were determined using a torque meter before harvest. Skin set resulting from all desiccants and timings ranged between 1.88 and 2 lb-inch, and no significant differences were observed. No significant differences in yield were noted among desiccants. This research indicates that glufosinate and saflufenacil are suitable alternatives to diquat for potato vine desiccation; however, safety of saflufenacil applied to potatoes before harvest has not been determined.
APA, Harvard, Vancouver, ISO, and other styles
10

Cytryn, Eddie J., Dipen P. Sangurdekar, John G. Streeter, William L. Franck, Woo-suk Chang, Gary Stacey, David W. Emerich, Trupti Joshi, Dong Xu, and Michael J. Sadowsky. "Transcriptional and Physiological Responses of Bradyrhizobium japonicum to Desiccation-Induced Stress." Journal of Bacteriology 189, no. 19 (July 27, 2007): 6751–62. http://dx.doi.org/10.1128/jb.00533-07.

Full text
Abstract:
ABSTRACT The growth and persistence of rhizobia and bradyrhizobia in soils are negatively impacted by drought conditions. In this study, we used genome-wide transcriptional analyses to obtain a comprehensive understanding of the response of Bradyrhizobium japonicum to drought. Desiccation of cells resulted in the differential expression of 15 to 20% of the 8,480 B. japonicum open reading frames, with considerable differentiation between early (after 4 h) and late (after 24 and 72 h) expressed genes. While 225 genes were universally up-regulated at all three incubation times in response to desiccation, an additional 43 and 403 up-regulated genes were common to the 4/24- and 24/72-h incubation times, respectively. Desiccating conditions resulted in the significant induction (>2.0-fold) of the trehalose-6-phosphate synthetase (otsA), trehalose-6-phosphate phosphatase (otsB), and trehalose synthase (treS) genes, which encode two of the three trehalose synthesis pathways found in B. japonicum. Gene induction was correlated with an elevated intracellular concentration of trehalose and increased activity of trehalose-6-phosphate synthetase, collectively supporting the hypothesis that this disaccharide plays a prominent and important role in promoting desiccation tolerance in B. japonicum. Microarray data also indicated that σ54- and σ24-associated transcriptional regulators and genes encoding isocitrate lyase, oxidative stress responses, the synthesis and transport of exopolysaccharides, heat shock response proteins, enzymes for the modification and repair of nucleic acids, and the synthesis of pili and flagella are also involved in the response of B. japonicum to desiccation. Polyethylene glycol-generated osmotic stress induced significantly fewer genes than those transcriptionally activated by desiccation. However, 67 genes were commonly induced under both conditions. Taken together, these results suggest that B. japonicum directly responds to desiccation by adapting to changes imparted by reduced water activity, such as the synthesis of trehalose and polysaccharides and, secondarily, by the induction of a wide variety of proteins involved in protection of the cell membrane, repair of DNA damage, stability and integrity of proteins, and oxidative stress responses.
APA, Harvard, Vancouver, ISO, and other styles
11

Chandra, Jipsi, Mahima Dubey, and S. Keshavkant. "Influence of protein damage and proteasome gene expression on the longevity of recalcitrant Madhuca latifolia Roxb. seeds." Botany 98, no. 3 (March 2020): 173–83. http://dx.doi.org/10.1139/cjb-2019-0130.

Full text
Abstract:
Enhanced cellular damage during desiccation is considered to be one of the key factors limiting vigour and viability of seeds. The uncontrolled accumulation of reactive oxygen species and resultant damaging reactions such as the oxidation of lipids and DNA in desiccating seeds of Madhuca latifolia (Roxb.) J. F. Macbr. has already been well characterized. However, hydrolytic and (or) oxidative damage to proteins requires further study. This study investigated the desiccation-induced oxidative damage to proteins and proteolytic systems in recalcitrant M. latifolia seeds during ambient storage. Seeds experienced a significant drop in seed water content [ca. 1.32 to ca. 0.23 g·(g dry mass)−1] during storage resulting in complete loss of viability after 35 days of storage. A considerable decline in total protein content (3.0–3.6 fold) and activity (4.8–13.8 fold) in the gene expressions of proteasome subunits (α, β, and E2) were recorded in the embryonic axis of desiccating M. latifolia seeds. In contrast, increases in the level of protein carbonyls (2.46 fold), hydroperoxides (2.31 fold), malondialdehyde- and 4-hydroxy-2-nonenal-protein adducts (1.8 and 3.9 fold), and Amadori and Maillard reaction products, along with proteases (14.5–30.4 fold) were observed in desiccating M. latifolia seeds. This study revealed that increased oxidation/modification of proteins and proteasome dysfunction are involved in the deterioration of desiccating M. latifolia seeds.
APA, Harvard, Vancouver, ISO, and other styles
12

Greggains, Valerie, William E. Finch-Savage, W. Paul Quick, and Neil M. Atherton. "Putative desiccation tolerance mechanisms in orthodox and recalcitrant seeds of the genusAcer." Seed Science Research 10, no. 3 (September 2000): 317–27. http://dx.doi.org/10.1017/s0960258500000362.

Full text
Abstract:
AbstractRecalcitrant seeds are shed moist from the plant and do not survive desiccation to the low moisture contents required for prolonged storage. It has been widely hypothesised that during desiccation of these seeds a stress induced metabolic imbalance develops that leads to free radical mediated damage and viability loss. We investigated this hypothesis in a comparison of two sympatric species ofAcerduring late seed development and post-harvest desiccation:A. platanoides(Norway maple) has orthodox seeds andA. pseudoplatanus(sycamore) has recalcitrant seeds. In both species, respiration rates declined to similar levels at shedding, and the extent of defences against free radicals appears no less in sycamore than that in Norway maple. During drying there was no evidence for the accumulation of a stable free radical, increased lipid peroxidation or decline in free radical scavenging enzymes in either species. In addition, there was a very similar, large increase in total tocopherol in both species. This increase in sycamore was largely of alpha-tocopherol, whereas in Norway maple the increase was largely from its precursor, gamma-tocopherol. Arguably this suggests a similar mechanism in both species, but increased oxidative stress in sycamore. In general, the results suggest that, although damage resulting in viability loss was clearly taking place, the limitation to desiccation tolerance did not result from inadequate free radical scavenging. Soluble carbohydrates and dehydrin-like proteins were also measured during late seed development and drying in sycamore and Norway maple. The greater concentrations of sucrose, raffinose and stachyose and amounts of dehydrins in the radicles and cotyledons of Norway maple compared with those in sycamore was consistent with greater desiccation tolerance in the former. Sycamore seeds are dormant and at the tolerant end of the continuum of desiccation sensitivity among recalcitrant species, and this may account for their different response to that of the seeds of other more sensitive recalcitrant species studied.
APA, Harvard, Vancouver, ISO, and other styles
13

Vogl, C. J., M. J. Miksis, S. H. Davis, and D. Salac. "The effect of glass-forming sugars on vesicle morphology and water distribution during drying." Journal of The Royal Society Interface 11, no. 99 (October 6, 2014): 20140646. http://dx.doi.org/10.1098/rsif.2014.0646.

Full text
Abstract:
Cryopreservation requires that stored materials be kept at extremely low temperatures and uses cryoprotectants that are toxic to cells at high concentrations. Lyopreservation is a potential alternative where stored materials can remain at room temperatures. That storage process involves desiccating cells filled with special glass-forming sugars. However, current desiccation techniques fail to produce viable cells, and researchers suspect that incomplete vitrification of the cells is to blame. To explore this hypothesis, a cell is modelled as a lipid vesicle to monitor the water content and membrane deformation during desiccation. The vesicle is represented as a moving, bending-resistant, inextensible interface and is tracked by a level set method. The vesicle is placed in a fluid containing a spatially varying sugar concentration field. The glass-forming nature is modelled through a concentration-dependent diffusivity and viscosity. It is found that there are optimal regimes for the values of the osmotic flow parameter and of the concentration dependence of the diffusivity to limit water trapping in the vesicle. Furthermore, it is found that the concentration dependencies of the diffusivity and viscosity can have profound effects on membrane deformations, which may have significant implications for vesicle damage during the desiccation process.
APA, Harvard, Vancouver, ISO, and other styles
14

Tapia, Hugo, Lindsey Young, Douglas Fox, Carolyn R. Bertozzi, and Douglas Koshland. "Increasing intracellular trehalose is sufficient to confer desiccation tolerance toSaccharomyces cerevisiae." Proceedings of the National Academy of Sciences 112, no. 19 (April 27, 2015): 6122–27. http://dx.doi.org/10.1073/pnas.1506415112.

Full text
Abstract:
Diverse organisms capable of surviving desiccation, termed anhydrobiotes, include species from bacteria, yeast, plants, and invertebrates. However, most organisms are sensitive to desiccation, likely due to an assortment of different stresses such as protein misfolding and aggregation, hyperosmotic stress, membrane fracturing, and changes in cell volume and shape leading to an overcrowded cytoplasm and metabolic arrest. The exact stress(es) that cause lethality in desiccation-sensitive organisms and how the lethal stresses are mitigated in desiccation-tolerant organisms remain poorly understood. The presence of trehalose in anhydrobiotes has been strongly correlated with desiccation tolerance. In the yeastSaccharomyces cerevisiae, trehalose is essential for survival after long-term desiccation. Here, we establish that the elevation of intracellular trehalose in dividing yeast by its import from the media converts yeast from extreme desiccation sensitivity to a high level of desiccation tolerance. This trehalose-induced tolerance is independent of utilization of trehalose as an energy source, de novo synthesis of other stress effectors, or the metabolic effects of trehalose biosynthetic intermediates, indicating that a chemical property of trehalose is directly responsible for desiccation tolerance. Finally, we demonstrate that elevated intracellular maltose can also make dividing yeast tolerant to short-term desiccation, indicating that other disaccharides have stress effector activity. However, trehalose is much more effective than maltose at conferring tolerance to long-term desiccation. The effectiveness and sufficiency of trehalose as an antagonizer of desiccation-induced damage in yeast emphasizes its potential to confer desiccation tolerance to otherwise sensitive organisms.
APA, Harvard, Vancouver, ISO, and other styles
15

Streusand, V. J., J. A. Weber, and H. Ikuma. "Desiccation tolerance in mosses. II. Differences in the responses of Hedwigia ciliata and Mnium cuspidatum to desiccation and rehydration." Canadian Journal of Botany 64, no. 11 (November 1, 1986): 2393–98. http://dx.doi.org/10.1139/b86-317.

Full text
Abstract:
The responses of two mosses, Hedwigia ciliata and Mnium cuspidatum, to desiccation and rehydration were studied. Cell and shoot survival were about 30% lower in Mnium than in Hedwigia after the same desiccation and rehydration treatment. Time courses of water loss showed that both species lost water at the same rate and to the same extent, indicating that Hedwigia is desiccation tolerant rather than dehydration resistant. Chlorophyll content decreases in both species after desiccation and rehydration, but in Hedwigia net photosynthesis after desiccation and rehydration was at a rate similar to that in undesiccated plants whereas in Mnium photosynthetic rates were lower after desiccation and rehydration. This decreased photosynthetic rate suggests that chloroplast damage during desiccation and dry storage contributes to Mnium's lessened ability to survive after desiccation and rehydration.
APA, Harvard, Vancouver, ISO, and other styles
16

Peredo, Elena L., and Zoe G. Cardon. "Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae." Proceedings of the National Academy of Sciences 117, no. 29 (July 7, 2020): 17438–45. http://dx.doi.org/10.1073/pnas.1906904117.

Full text
Abstract:
Among green plants, desiccation tolerance is common in seeds and spores but rare in leaves and other vegetative green tissues. Over the last two decades, genes have been identified whose expression is induced by desiccation in diverse, desiccation-tolerant (DT) taxa, including, e.g., late embryogenesis abundant proteins (LEA) and reactive oxygen species scavengers. This up-regulation is observed in DT resurrection plants, mosses, and green algae most closely related to these Embryophytes. Here we test whether this same suite of protective genes is up-regulated during desiccation in even more distantly related DT green algae, and, importantly, whether that up-regulation is unique to DT algae or also occurs in a desiccation-intolerant relative. We used three closely related aquatic and desert-derived green microalgae in the family Scenedesmaceae and capitalized on extraordinary desiccation tolerance in two of the species, contrasting with desiccation intolerance in the third. We found that during desiccation, all three species increased expression of common protective genes. The feature distinguishing gene expression in DT algae, however, was extensive down-regulation of gene expression associated with diverse metabolic processes during the desiccation time course, suggesting a switch from active growth to energy-saving metabolism. This widespread downshift did not occur in the desiccation-intolerant taxon. These results show that desiccation-induced up-regulation of expression of protective genes may be necessary but is not sufficient to confer desiccation tolerance. The data also suggest that desiccation tolerance may require induced protective mechanisms operating in concert with massive down-regulation of gene expression controlling numerous other aspects of metabolism.
APA, Harvard, Vancouver, ISO, and other styles
17

Halbritter, D. A. "Exposed Neophasia terlooii (Lepidoptera: Pieridae) Eggs are Resistant to Desiccation During Quiescence." Environmental Entomology 49, no. 4 (June 9, 2020): 918–23. http://dx.doi.org/10.1093/ee/nvaa066.

Full text
Abstract:
Abstract Terrestrial insects face the risk of desiccation owing to their small size and high surface area to volume ratios. Insect eggs adhered to exposed substrates are especially prone to extremes in temperature and available moisture. The potential of butterfly egg clusters to withstand desiccation in saturated and unsaturated atmospheres was investigated in this study. Butterflies in the genus Neophasia (Lepidoptera: Pieridae) lay their eggs along live pine needles and they must survive long intervals without available liquid water while overwintering. After 2 d in a desiccating environment, groups of Neophasia terlooii Behr eggs were exposed to several different humidified chambers for 8 d at 5°C. Group masses were monitored over time and the change in mass was compared to the pre-desiccation mass. Changes in mass were minimal, ranging from a 3% increase in the saturated chamber (100% RH) to a 2% decrease in the driest chamber (<10% RH). Ambient humidity was recorded from among the pine needles of a live tree branch in the natural habitat for 2 wk at the start of the overwintering period. Daytime relative humidity among the pine needles dropped as low as 14.5% but rose as high as 92% at night. In the absence of precipitation, N. terlooii eggs can remain within 2% of their starting weight for 10 d at a constant RH of <10% at 5°C. The mechanism for avoiding desiccation and the physical properties of the egg coating are discussed in the context of life in an arid environment.
APA, Harvard, Vancouver, ISO, and other styles
18

Sommerville, K. D., G. Errington, Z.-J. Newby, G. S. Liyanage, and C. A. Offord. "Assessing the storage potential of Australian rainforest seeds: a decision-making key to aid rapid conservation." Biodiversity and Conservation 30, no. 11 (July 19, 2021): 3185–218. http://dx.doi.org/10.1007/s10531-021-02244-1.

Full text
Abstract:
AbstractSeed banking of rainforest species is hindered by lack of knowledge as to which species are tolerant of desiccation and freezing. We assessed 313 Australian rainforest species for seed banking suitability by comparing the germination percentage of fresh seeds to seeds dried at 15% RH and seeds stored at −20 °C after drying. We then compared desiccation responses to environmental, habit, fruit and seed characteristics to identify the most useful predictors of desiccation sensitivity. Of 162 species with ≥ 50% initial germination, 22% were sensitive to desiccation, 64% were tolerant and 10% were partially tolerant; the responses of 4% were uncertain. Of 107 desiccation tolerant species tested for response to freezing, 24% were freezing sensitive or short-lived in storage at −20 °C. Median values for fresh seed moisture content (SMC), oven dry weight (DW) and the likelihood of desiccation sensitivity (PD-S) were significantly greater for desiccation sensitive than desiccation tolerant seeds. Ninety-four to 97% of seeds with SMC < 29%, DW < 20 mg or PD-S < 0.01 were desiccation tolerant. Ordinal logistic regression of desiccation response against environmental, habit, fruit and seed characteristics indicated that the likelihood of desiccation sensitivity was significantly increased by a tree habit, fleshy fruit, increasing fresh SMC and increasing PD-S. The responses observed in this study were combined with earlier studies to develop a simple decision key to aid prediction of desiccation responses in untested rainforest species.
APA, Harvard, Vancouver, ISO, and other styles
19

Pardo, Jeremy, Ching Man Wai, Hannah Chay, Christine F. Madden, Henk W. M. Hilhorst, Jill M. Farrant, and Robert VanBuren. "Intertwined signatures of desiccation and drought tolerance in grasses." Proceedings of the National Academy of Sciences 117, no. 18 (April 23, 2020): 10079–88. http://dx.doi.org/10.1073/pnas.2001928117.

Full text
Abstract:
Grasses are among the most resilient plants, and some can survive prolonged desiccation in semiarid regions with seasonal rainfall. However, the genetic elements that distinguish grasses that are sensitive versus tolerant to extreme drying are largely unknown. Here, we leveraged comparative genomic approaches with the desiccation-tolerant grass Eragrostis nindensis and the related desiccation-sensitive cereal Eragrostis tef to identify changes underlying desiccation tolerance. These analyses were extended across C4 grasses and cereals to identify broader evolutionary conservation and divergence. Across diverse genomic datasets, we identified changes in chromatin architecture, methylation, gene duplications, and expression dynamics related to desiccation in E. nindensis. It was previously hypothesized that transcriptional rewiring of seed desiccation pathways confers vegetative desiccation tolerance. Here, we demonstrate that the majority of seed-dehydration–related genes showed similar expression patterns in leaves of both desiccation-tolerant and -sensitive species. However, we identified a small set of seed-related orthologs with expression specific to desiccation-tolerant species. This supports a broad role for seed-related genes, where many are involved in typical drought responses, with only a small subset of crucial genes specifically induced in desiccation-tolerant plants.
APA, Harvard, Vancouver, ISO, and other styles
20

Welch, Aaron Z., Patrick A. Gibney, David Botstein, and Douglas E. Koshland. "TOR and RAS pathways regulate desiccation tolerance inSaccharomyces cerevisiae." Molecular Biology of the Cell 24, no. 2 (January 15, 2013): 115–28. http://dx.doi.org/10.1091/mbc.e12-07-0524.

Full text
Abstract:
Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance.
APA, Harvard, Vancouver, ISO, and other styles
21

Brazil, Thamires, Ana Clara L. Caetano, Anderson L. Vargas, Reinaldo L. Bozelli, and Jayme M. Santangelo. "Desiccation increases the hatching of resting eggs of a freshwater calanoid copepod." Journal of Plankton Research 44, no. 2 (February 21, 2022): 273–77. http://dx.doi.org/10.1093/plankt/fbac008.

Full text
Abstract:
Abstract Many former permanent aquatic habitats now face occasional desiccation due to human activities. Zooplankton might recover from droughts after the hatching of resting eggs, but how desiccation duration affects the viability and hatching patterns of resting eggs is unclear. This study evaluated how desiccation of varying durations (0, 3, 6 and 9 months) affects the hatchling numbers of the freshwater calanoid Notodiaptomus iheringi inhabiting a permanent lake. Hatchlings were observed across all desiccation treatments, and hatchling abundance was higher in longer desiccation treatments. Resting eggs of N. iheringi survive desiccation for up to 9 months even though the tested population originated from sediments of a permanent lake. Desiccation may stimulate hatching by terminating dormancy and by weakening (wet) sediment adversity. Knowledge of the hatching patterns of resting eggs of varying taxa after desiccation can help to understand how zooplankton communities recover after droughts.
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Xun, Cody G. Cole, Cory D. DuPai, and Bryan W. Davies. "Protein Aggregation is Associated with Acinetobacter baumannii Desiccation Tolerance." Microorganisms 8, no. 3 (February 28, 2020): 343. http://dx.doi.org/10.3390/microorganisms8030343.

Full text
Abstract:
Desiccation tolerance has been implicated as an important characteristic that potentiates the spread of the bacterial pathogen Acinetobacter baumannii on dry surfaces. Here we explore several factors influencing desiccation survival of A. baumannii. At the macroscale level, we find that desiccation tolerance is influenced by cell density and growth phase. A transcriptome analysis indicates that desiccation represents a unique state for A. baumannii compared to commonly studied growth phases and strongly influences pathways responsible for proteostasis. Remarkably, we find that an increase in total cellular protein aggregates, which is often considered deleterious, correlates positively with the ability of A. baumannii to survive desiccation. We show that inducing protein aggregate formation prior to desiccation increases survival and, importantly, that proteins incorporated into cellular aggregates can retain activity. Our results suggest that protein aggregates may promote desiccation tolerance in A. baumannii through preserving and protecting proteins from damage during desiccation until rehydration occurs.
APA, Harvard, Vancouver, ISO, and other styles
23

Leopold, A. Carl. "Life after desiccation." Trends in Plant Science 7, no. 11 (November 2002): 519–20. http://dx.doi.org/10.1016/s1360-1385(02)02353-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sibil, Igor Vasil’evich, Nikolai Fedorovich Malai, and Vasilii Georgievich Shurupov. "Desiccation of Sunflower." UNIVERSITY NEWS NORTH-CAUCASIAN REGION. NATURAL SCIENCES SERIES, no. 4 (2015): 110–12. http://dx.doi.org/10.18522/0321-3005-2015-4-110-112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wada, Rika. "Panel desiccation agenda." BIOPHILIA 2019, no. 1 (June 14, 2019): 13. http://dx.doi.org/10.14813/ibra.2019.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Cho, Sung, Hyoungseok Lee, Soon Hong, and Jungeun Lee. "Study of Ecophysiological Responses of the Antarctic Fruticose Lichen Cladonia borealis Using the PAM Fluorescence System under Natural and Laboratory Conditions." Plants 9, no. 1 (January 9, 2020): 85. http://dx.doi.org/10.3390/plants9010085.

Full text
Abstract:
Antarctic lichens have been used as indicators of climate change for decades, but only a few species have been studied. We assessed the photosynthetic performance of the fruticose lichen Cladonia borealis under natural and laboratory conditions using the PAM fluorescence system. Compared to that of sun-adapted Usnea sp., the photosynthetic performance of C. borealis exhibits shade-adapted lichen features, and its chlorophyll fluorescence does not occur during dry days without rain. To understand its desiccation-rehydration responses, we measured changes in the PSII photochemistry in C. borealis under the average light intensity of dawn light and daylight and the desiccating conditions of its natural microclimate. Interestingly, samples under daylight and rapid-desiccation conditions showed a delayed reduction in Fv’/Fm’ and rETRmax, and an increase in Y(II) and Y(NPQ) levels. These results suggest that the photoprotective mechanism of C. borealis depends on sunlight and becomes more efficient with improved desiccation tolerance. Amplicon sequencing revealed that the major photobiont of C. borealis was Asterochloris irregularis, which has not been reported in Antarctica before. Collectively, these results from both field and laboratory could provide a better understanding of specific ecophysiological responses of shade-adapted lichens in the Antarctic region.
APA, Harvard, Vancouver, ISO, and other styles
27

Marques, Alexandre, Harm Nijveen, Charles Somi, Wilco Ligterink, and Henk Hilhorst. "Induction of desiccation tolerance in desiccation sensitive Citrus limon seeds." Journal of Integrative Plant Biology 61, no. 5 (March 28, 2019): 624–38. http://dx.doi.org/10.1111/jipb.12788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Khanam, Salma, Kimie Atsuzawa, and Yasuko Kaneko. "Localization of Lipid Droplets in Embryonic Axis Radicle Cells of Soybean Seeds under Various Imbibition Regimes Indicates Their Role in Desiccation Tolerance." Plants 12, no. 4 (February 10, 2023): 799. http://dx.doi.org/10.3390/plants12040799.

Full text
Abstract:
Desiccation tolerance allows plant seeds to remain viable during desiccation and subsequent re-hydration. In this study, we tried to develop an experimental system to understand the difference between desiccation tolerant and desiccation sensitive radicle cells by examining excised embryonic axes after re-desiccation and subsequent imbibition under various regimes. Embryonic axes excised from soybean (Glycine max (L.) Merr.) seeds imbibed for 3 h to 15 h which remained attached to the cotyledons during imbibition would grow normally after 24 h of desiccation and re-imbibition on wet filter paper. By contrast, when the embryonic axes excised after 3 h imbibition of seeds were kept on wet filter paper for 12 h to 16 h, their growth was significantly retarded after 24 h of desiccation and subsequent re-imbibition. Numerous lipid droplets were observed lining the plasma membrane and tonoplasts in radicle cells of desiccation tolerant embryonic axes before and after desiccation treatment. By contrast, the lipid droplets lining the plasma membrane and tonoplasts became very sparse in radicle cells that were placed for longer times on wet filter paper before desiccation. We observed a clear correlation between the amount of lipid droplets lining plasma membranes and the ability to grow after desiccation and re-imbibition of the excised embryonic axes. In addition to the reduction of lipid droplets in the cells, a gradual increase in starch grains was observed. Large starch grains accumulated in the radicle cells of those axes that failed to grow further.
APA, Harvard, Vancouver, ISO, and other styles
29

Leprince, O., G. A. F. Hendry, and N. M. Atherton. "Free radical processes induced by desiccation in germinating maize. The relationship with respiration and loss of desiccation tolerance." Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 102 (1994): 211–18. http://dx.doi.org/10.1017/s0269727000014135.

Full text
Abstract:
SynopsisUsing germination of maize as a model, desiccation-induced free radical processes were studied with the object of understanding desiccation tolerance. Several significant elements of damage were observed in desiccated material associated with development of desiccation intolerance: increased lipid peroxidation, phospholipid de-esterification, build-up of a stable free radical, supression or repression of respiratory enzymes from complex I, II and IV. An EPR (electron paramagnetic resonance) response was also detected in isolated mitochondria following in vitro desiccation. The loss of desiccation tolerance appeared to be dependent on oxygen concentration. Two highly significant correlations were independently found between respiration rates and production of a stable free radical detected by EPR. These data suggest that respiration is an important factor in the loss of desiccation tolerance. We present a model suggesting that activated oxygen formation during desiccation originates in the disruption of the mitochondrial electron transport chain with increasing leakage to oxygen so generating irreversible and lethal peroxidative damage, leading to the development of desiccation intolerance.
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Qian, and Tao Yan. "Correlation of Intracellular Trehalose Concentration with Desiccation Resistance of Soil Escherichia coli Populations." Applied and Environmental Microbiology 78, no. 20 (August 10, 2012): 7407–13. http://dx.doi.org/10.1128/aem.01904-12.

Full text
Abstract:
ABSTRACTNaturalized soilEscherichia colipopulations need to resist common soil desiccation stress in order to inhabit soil environments. In this study, four representative soilE. colistrains and one lab strain, MG1655, were tested for desiccation resistance via die-off experiments in sterile quartz sand under a potassium acetate-induced desiccation condition. The desiccation stress caused significantly lower die-off rates of the four soil strains (0.17 to 0.40 day−1) than that of MG1655 (0.85 day−1). Cellular responses, including extracellular polymeric substance (EPS) production, exogenous glycine betaine (GB) uptake, and intracellular compatible organic solute synthesis, were quantified and compared under the desiccation and hydrated control conditions. GB uptake appeared not to be a specific desiccation response, while EPS production showed considerable variability among theE. colistrains. AllE. colistrains produced more intracellular trehalose, proline, and glutamine under the desiccation condition than the hydrated control, and only the trehalose concentration exhibited a significant correlation with the desiccation-contributed die-off coefficients (Spearman's ρ = −1.0;P= 0.02).De novotrehalose synthesis was further determined for 15E. colistrains from both soil and nonsoil sources to determine its prevalence as a specific desiccation response. MostE. colistrains (14/15) synthesized significantly more trehalose under the desiccation condition, and the soilE. colistrains produced more trehalose (106.5 ± 44.9 μmol/mg of protein [mean ± standard deviation]) than the nonsoil reference strains (32.5 ± 10.5 μmol/mg of protein).
APA, Harvard, Vancouver, ISO, and other styles
31

Oliver, Melvin J., Jill M. Farrant, Henk W. M. Hilhorst, Sagadevan Mundree, Brett Williams, and J. Derek Bewley. "Desiccation Tolerance: Avoiding Cellular Damage During Drying and Rehydration." Annual Review of Plant Biology 71, no. 1 (April 29, 2020): 435–60. http://dx.doi.org/10.1146/annurev-arplant-071219-105542.

Full text
Abstract:
Desiccation of plants is often lethal but is tolerated by the majority of seeds and by vegetative tissues of only a small number of land plants. Desiccation tolerance is an ancient trait, lost from vegetative tissues following the appearance of tracheids but reappearing in several lineages when selection pressures favored its evolution. Cells of all desiccation-tolerant plants and seeds must possess a core set of mechanisms to protect them from desiccation- and rehydration-induced damage. This review explores how desiccation generates cell damage and how tolerant cells assuage the complex array of mechanical, structural, metabolic, and chemical stresses and survive.Likewise, the stress of rehydration requires appropriate mitigating cellular responses. We also explore what comparative genomics, both structural and responsive, have added to our understanding of cellular protection mechanisms induced by desiccation, and how vegetative desiccation tolerance circumvents destructive, stress-induced cell senescence.
APA, Harvard, Vancouver, ISO, and other styles
32

Aigner, Siegfried, Erwann Arc, Michael Schletter, Ulf Karsten, Andreas Holzinger, and Ilse Kranner. "Metabolite Profiling in Green Microalgae with Varying Degrees of Desiccation Tolerance." Microorganisms 10, no. 5 (April 30, 2022): 946. http://dx.doi.org/10.3390/microorganisms10050946.

Full text
Abstract:
Trebouxiophyceae are microalgae occupying even extreme environments such as polar regions or deserts, terrestrial or aquatic, and can occur free-living or as lichen photobionts. Yet, it is poorly understood how environmental factors shape their metabolism. Here, we report on responses to light and temperature, and metabolic adjustments to desiccation in Diplosphaera epiphytica, isolated from a lichen, and Edaphochlorella mirabilis, isolated from Tundra soil, assessed via growth and photosynthetic performance parameters. Metabolite profiling was conducted by GC–MS. A meta-analysis together with data from a terrestrial and an aquatic Chlorella vulgaris strain reflected elements of phylogenetic relationship, lifestyle, and relative desiccation tolerance of the four algal strains. For example, compatible solutes associated with desiccation tolerance were up-accumulated in D. epiphytica, but also sugars and sugar alcohols typically produced by lichen photobionts. The aquatic C. vulgaris, the most desiccation-sensitive strain, showed the greatest variation in metabolite accumulation after desiccation and rehydration, whereas the most desiccation-tolerant strain, D. epiphytica, showed the least, suggesting that it has a more efficient constitutive protection from desiccation and/or that desiccation disturbed the metabolic steady-state less than in the other three strains. The authors hope that this study will stimulate more research into desiccation tolerance mechanisms in these under-investigated microorganisms.
APA, Harvard, Vancouver, ISO, and other styles
33

Amarisiri, Aruna, Benjamin Shannon, and Jayantha Kodikara. "Numerical modelling of desiccation cracking in a restrained ring test." Canadian Geotechnical Journal 51, no. 1 (January 2014): 67–76. http://dx.doi.org/10.1139/cgj-2012-0408.

Full text
Abstract:
Tensile cracking due to desiccation and fracture properties are of great importance in clay liners, earth dam engineering, waste contaminant systems, and mine tailings. This paper presents restrained shrinkage test results and analyses of consolidated desiccating soil, and compares results with numerical analyses using the computer program Universal Distinct Element Code (UDEC). The cohesive crack method was used as it is more appropriate than linear elastic fracture mechanics for soil cracking at high moisture contents with the likely presence of plasticity during fracture. The variation of the radial stresses on the inner ring with water content was used to model mode I cracking and gather fracture properties of the propagating crack. The model was validated on kaolin clay tested under restrained ring shrinkage and was compared with various test results and results from the literature. The test could be a valuable tool in determining fracture properties during desiccation.
APA, Harvard, Vancouver, ISO, and other styles
34

Poulsen, K. M., and E. N. Eriksen. "Physiological aspects of recalcitrance in embryonic axes of Quercus robur L." Seed Science Research 2, no. 4 (December 1992): 215–21. http://dx.doi.org/10.1017/s0960258500001409.

Full text
Abstract:
AbstractThe sorption isotherm for excised embryonic axes of recalcitrant (i.e. desiccation-sensitive) Quercus robur L. acorns was determined to find the relation between moisture content and water potential. Subsequently, physiological studies on the effect of desiccating the axes to a range of water potentials were undertaken. The respiratory capacity declined steeply after short exposure to water potentials from −5 to −30 MPa. The leachate conductivity increased significantly after exposure to −5 MPa and rose steeply after exposure to between −12 and −40 MPa. Axes were equilibrated at different relative humidities and the proline content showed a 15-fold increase with a peak value at −10 MPa. It was concluded that the critical water potential for initiation of damage was −5 MPa, and that axes accumulated proline as a response to desiccation stress. The embryonic axes from Q. robur behave more like typical vegetative tissue of angiosperms than like orthodox seeds.
APA, Harvard, Vancouver, ISO, and other styles
35

Yu, Wei Wei, Qing Xiong, Yun Yu, and Hang Lin. "Research on Self-Desiccation at early Age of High Performance Concrete with Polypropylene Fiber." Advanced Materials Research 374-377 (October 2011): 1827–30. http://dx.doi.org/10.4028/www.scientific.net/amr.374-377.1827.

Full text
Abstract:
This paper focuses on the impact which polypropylene fiber (PF) has on the self-desiccation effect at early age of high performance concrete (HPC). The experimental results indicate that PF has little influence on the Internal Relative Humidity (IRH) caused by self-desiccation effect of concrete, but can reduce early aged self-desiccation shrinkage of concrete. With the PF dosage increasing, the values of early self-desiccation shrinkage of HPC decrease first and then increase. In the experimental conditions, the value of self-desiccation shrinkage of concrete with 0.6Kg/m3 PF is the lowest one.
APA, Harvard, Vancouver, ISO, and other styles
36

Wolkers, Willem F., and Folkert A. Hoekstra. "In situFTIR Assessment of Desiccation-Tolerant Tissues." Spectroscopy 17, no. 2-3 (2003): 297–313. http://dx.doi.org/10.1155/2003/831681.

Full text
Abstract:
This essay shows how Fourier transform infrared (FTIR) microspectroscopy can be applied to study thermodynamic parameters and conformation of endogenous biomolecules in desiccation-tolerant biological tissues. Desiccation tolerance is the remarkable ability of some organisms to survive complete dehydration. Seed and pollen of higher plants are well known examples of desiccation-tolerant tissues. FTIR studies on the overall protein secondary structure indicate that during the acquisition of desiccation tolerance, plant embryos exhibit proportional increases inα-helical structures and thatµ-sheet structures dominate upon drying of desiccation sensitive-embryos. During ageing of pollen and seeds, the overall protein secondary structure remains stable, whereas drastic changes in the thermotropic response of membranes occur, which coincide with a complete loss of viability. Properties of the cytoplasmic glassy matrix in desiccation-tolerant plant organs can be studied by monitoring the position of the OH-stretching vibration band of endogenous carbohydrates and proteins as a function of temperature. By applying these FTIR techniques to maturation-defective mutant seeds ofArabidopsis thalianawe were able to establish a correlation between macromolecular stability and desiccation tolerance. Taken together,in situFTIR studies can give unique information on conformation and stability of endogenous biomolecules in desiccation-tolerant tissues.
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Changrun, and Wendell Q. Sun. "Desiccation sensitivity and activities of free radical-scavenging enzymes in recalcitrant Theobroma cacao seeds." Seed Science Research 9, no. 3 (March 1999): 209–17. http://dx.doi.org/10.1017/s0960258599000215.

Full text
Abstract:
AbstractMature and immature axes of Theobroma cacao (cocoa) seeds tolerated desiccation under a rapid-drying regime to critical water contents of 1.0 and 1.7 g g-1 dw, respectively. These critical water contents corresponded to water contents below which activities of free radical-scavenging enzymes (ascorbate peroxidase, peroxidase and superoxide dismutase) decreased rapidly during desiccation. The decline in axis viability below the critical water content was correlated with sharp increases in lipid peroxidation and cellular leakage. Cotyledon tissues were more desiccation-tolerant than axes, with a low critical water content of 0.24 g g–1dw. Desiccation sensitivity in cotyledon tissues was also correlated with the decrease in superoxide dismutase activity and increased lipid peroxidation products. However, in the cotyledons, no ascorbate peroxidase activity was detected at any water content, and peroxidase activity was gradually reduced as desiccation proceeded. Cocoa embryonic axes contained large amounts of sucrose, raffinose and stachyose but only traces of reducing monosaccharides. Desiccation sensitivity of recalcitrant cocoa axes did not appear to be due to the lack of sugar-related protective mechanisms during desiccation, and it was more likely related to the decrease of enzymic protection against desiccation-induced oxidative stresses.
APA, Harvard, Vancouver, ISO, and other styles
38

Forsline, Philip L., Warren F. Lamboy, James R. McFerson, and Cecil Stushnoff. "Desiccation Tolerance of Dormant Grape Buds from Germplasm Accessions in the Cold-Hardy Vitis Core Subset Collection." HortScience 31, no. 4 (August 1996): 646a—646. http://dx.doi.org/10.21273/hortsci.31.4.646a.

Full text
Abstract:
The USDA–ARS germplasm collection of cold-hardy Vitis held at the Plant Genetic Resources Unit, Geneva, N.Y., has over 1300 clonal accessions maintained as field-grown vines. Security back-up using field-grown or potted vines at remote sites or via in vitro methods is costly. Cryopreservation offers a safe, cost-effective alternative. While we routinely employ cryogenic storage of dormant buds of Malus, dormant buds of Vitis generally do not appear to tolerate the desiccation levels required by our current cryopreservation protocol. Since tolerance to desiccation and cold appear to be correlated in Vitis, we tested desiccation tolerance of 60 germplasm accessions selected from the core subset to represent a range of cold hardiness. Budwood was collected in December 1995 in Geneva, stored at –4°C in sealed bags, and systematically desiccated to 30% and 20% moisture. In some treatments, additional desiccation was imposed by slow freezing to –25°C. Microscopic examination of rehydrated buds indicated 60% of accessions tolerated desiccation as low as 20% moisture. Freeze-desiccation at –25°C after desiccation at –4°C neither increased nor decreased viability in these accessions. Only slight modification so current protocols should be necessary for cryopreservation of this class. Of the remaining accessions, 25% tolerated desiccation to 30% moisture, but 15% were intolerant to any desiccation level tested. Techniques must be developed to successfully cryopreserve both these classes of accessions.
APA, Harvard, Vancouver, ISO, and other styles
39

Yang, Yujing, Xiaosai Li, Deguang Liu, Xiaojin Pei, and Abdul Ghaffar Khoso. "Rapid Changes in Composition and Contents of Cuticular Hydrocarbons in Sitobion avenae (Hemiptera: Aphididae) Clones Adapting to Desiccation Stress." Journal of Economic Entomology 115, no. 2 (January 11, 2022): 508–18. http://dx.doi.org/10.1093/jee/toab240.

Full text
Abstract:
Abstract Cuticular hydrocarbons (CHCs) are diverse in insects, and include variable classes of cuticular lipids, contributing to waterproofing for insects under desiccation environments. However, this waterproofing function of CHCs is still not well characterized in aphids. In this study, we compared CHC profiles for desiccation-resistant and nonresistant genotypes of the grain aphid, Sitobion avenae (Fabricius), in responses to desiccation. Our result showed that a total of 27 CHCs were detected in S. avenae, and linear alkanes (e.g., n-C29) were found to be the predominant components. Long-chain monomethyl alkanes were found to associate closely with water loss rates in S. avenae in most cases. Resistant genotypes of both wing morphs had higher contents of short-chain n-alkanes under control than nonresistant genotypes, showing the importance of short-chain n-alkanes in constitutive desiccation resistance. Among these, n-C25 might provide a CHC signature to distinguish between desiccation-resistant and nonresistant individuals. Compared with linear alkanes, methyl-branched CHCs appeared to display higher plasticity in rapid responses to desiccation, especially for 2-MeC26, implying that methyl-branched CHCs could be more sensitive to desiccation, and play more important roles in induced desiccation-resistance. Thus, both constitutive and induced CHCs (linear or methyl-branched) can contribute to adaptive responses of S. avenae populations under desiccation environments. Our results provide substantial evidence for adaptive changes of desiccation resistance and associated CHCs in S. avenae, and have significant implications for aphid evolution and management in the context of global climate change.
APA, Harvard, Vancouver, ISO, and other styles
40

Fu, J. R., J. P. Jin, Y. F. Peng, and Q. H. Xia. "Desiccation tolerance in two species with recalcitrant seeds: Clausena lansium (Lour.) and Litchi chinensis (Sonn.)." Seed Science Research 4, no. 2 (June 1994): 257–61. http://dx.doi.org/10.1017/s0960258500002245.

Full text
Abstract:
AbstractSeeds were collected at weekly intervals from mid-maturation to the fully ripened stage. As seed development progressed, desiccation tolerance increased. Desiccation tolerance of C. lansium seeds was greatest at 67 days after anthesis (DAA), when they tolerated air drying for 9 days; 74 DAA was considered as physiological maturity, and their full viability was only maintained for up to 3 days of drying; overripened seeds (88 DAA) had the lowest desiccation tolerance. In L. chinensis, the desiccation sensitivity of seeds at 98 DAA (fully mature) was higher than that at 84 and 91 DAA (less mature); among the excised embryonic axes at different developmental stages, the less mature ones were less sensitive to desiccation than the fully mature ones; excised embryonic axes of the same stage were more tolerant of desiccation than whole seeds.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Qingwei, and Dorothea Bartels. "Molecular responses to dehydration and desiccation in desiccation-tolerant angiosperm plants." Journal of Experimental Botany 69, no. 13 (January 29, 2018): 3211–22. http://dx.doi.org/10.1093/jxb/erx489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kaiser, K., D. F. Gaff, and W. H. Outlaw. "Sugar contents of leaves of desiccation-sensitive and desiccation-tolerant plants." Naturwissenschaften 72, no. 11 (November 1985): 608–9. http://dx.doi.org/10.1007/bf00365289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Fang, Jian, E. E. Roos, C. T. Walters, and F. D. Moore. "Factors Affecting the Loss of Viability when Maize Grains are Imbibed and then Redried." HortScience 31, no. 4 (August 1996): 574c—574. http://dx.doi.org/10.21273/hortsci.31.4.574c.

Full text
Abstract:
Seed hydration and dehydration affects many physiological reactions, including priming, accelerated aging, and desiccation intolerance. Maize grains were repeatedly imbibed and desiccated, or imbibed and held for periods of time to identify the role of each of these factors. Grains were equilibrated to 12% moisture content (mc) and subjected to cycles (up to 14) of hydration (2 hours) and immediate dryback, or one hydration of 2 to 12 hours and dryback. Germination and vigor (root length and leachate conductivity) were determined after each cycle. Grains adjusted to three levels of hydration (27%, 34%, and 40%) were held for up to 10 days in a sealed desiccator. Each day samples were taken and either dried to the original mc prior to evaluation, or evaluated immediately as above. With each cycle of 2 hours of imbibition, seed mc increased (22% to 39%). Root lengths increased (priming effect) during the early cycles of imbibition and dryback. Decline in germination after eight cycles was a result of either accelerated aging or desiccation intolerance. Based on the results of the holding study, both factors contributed to deterioration, but desiccation intolerance was only observed when mc was above 27%. Conductivity of grain leachates was not correlated with loss of germination or vigor in whole grains, but appeared to reflect deterioration in isolated embryos.
APA, Harvard, Vancouver, ISO, and other styles
44

Hou, Shiying, Zewei Jin, Wenwen Jiang, Liang Chi, Bin Xia, and Jinghua Chen. "Physiological and immunological responses of sea cucumber Apostichopus japonicus during desiccation and subsequent resubmersion." PeerJ 7 (August 2, 2019): e7427. http://dx.doi.org/10.7717/peerj.7427.

Full text
Abstract:
Desiccation is one of the extremely stressful situations experienced by aquatic animals, and sea cucumber usually suffers from desiccation stress during transportation without water. The present study was conducted to evaluate the effect of desiccation and subsequent resubmersion on physiological stress, oxidative damage, antioxidant status and non-specific immune response of Apostichopus japonicus, providing valuable information on the health management of sea cucumber culturing. Control and desiccation groups were set up, and each group has three replicates. After 1, 3 and 6 h of desiccation, individuals were resubmersed in aerated seawater for a 24 h recovery in three batches, which were represented as D1, D3 and D6, respectively. The results showed that glucose level in coelomic fluid of sea cucumber significantly decreased after desiccation, whereas lactate, cortisol and osmolality showed remarkable ascending trends. Thereafter, all stress parameters gently recovered towards normal levels as control group during 24 h resubmersion. The prolonged desiccation at D6 treatment induced the significant increases of malondialdehyde (MDA) and reactive oxygen species (ROS) contents, as well as relatively lower superoxide dismutase (SOD) and catalase (CAT) activities. During the period of desiccation and subsequent resubmersion, sea cucumber adjusted antioxidant defense to reduce the concentrations of MDA and ROS as a strategy for protecting against oxidative damage. Desiccation also had significant effects on non-specific immune parameters (total coelomocytes counts, TCC; complement C3; total nitric oxide synthase, T-NOS; lysozyme, LSZ; alkaline phosphatase, AKP) of A. japonicus, which could be recovered to some extent during resubmersion. In conclusion, less than 6 h of desiccation did not induce irreparable damage to sea cucumber, and was recommended for handling and shipping live sea cucumbers.
APA, Harvard, Vancouver, ISO, and other styles
45

OHLWEILER, Fernanda Pires, and Toshie KAWANO. "Biomphalaria tenagophila (Orbigny, 1835) (Mollusca): adaptation to desiccation and susceptibility to infection with Schistosoma mansoni Sambon, 1907." Revista do Instituto de Medicina Tropical de São Paulo 44, no. 4 (July 2002): 191–201. http://dx.doi.org/10.1590/s0036-46652002000400003.

Full text
Abstract:
Experiments were carried out to test the susceptibility of Biomphalaria tenagophila to the infection with strain SJ of Schistosoma mansoni in the F1, F2 and non-selected parental generation. The potential adaptation of B. tenagophila to desiccation, in healthy mollusks and those exposed to the larvae of S. mansoni of the F1, F2 and non-selected parental generations was also studied. The presence of mucus and soil, at the shell opening, protected the snails against desiccation, favoring survival. The healthy mollusks performed more attempts against desiccation than those exposed to the larvae of the parasite. The mortality rate, during desiccation, was higher among mollusks that remained buried and with the shell opening unobstructed. During the desiccation period the stage of development of the parasite was influenced by the weight loss and the survival of the snails. The longer the period of desiccation, the greater was the weight loss observed, abbreviating survival. The non-selected parental generation was more sensitive to desiccation than the F1 and F2 generations, both in healthy mollusks and in those exposed to S. mansoni larvae. Healthy mollusks were more resistant to desiccation than those exposed to the larvae of the S. mansoni. Desiccation did not interrupt the development of S. mansoni larvae in mollusks, causing a delay in the cercariae elimination. The susceptibility of B. tenagophila to the SJ strain of S. mansoni, in mollusks maintained in water during the larvae incubation period, was similar in all three generations.
APA, Harvard, Vancouver, ISO, and other styles
46

Willigen, Clare Vander, Norman W. Pammenter, Mohamed A. Jaffer, Sagadevan G. Mundree, and Jill M. Farrant. "An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation-tolerant and -sensitive tissues." Functional Plant Biology 30, no. 3 (2003): 281. http://dx.doi.org/10.1071/fp02221.

Full text
Abstract:
The ability of tissues to survive desiccation is common in seeds but rare in vegetative tissues. In this study the ultrastructure of hydrated and dehydrated tissues were examined at different stages of the life cycle of the resurrection grass, Eragrostis nindensis Ficalho & Hiern. Conventional fixation techniques are unsuitable for dry tissues as rehydration occurs during fixation in aqueous fixatives. Thus a cryofixation and freeze-substitution method was developed. As a result of the improved fixation methods, it was possible to identify the stage and nature of the damage in the desiccation-sensitive tissues. E. nindensis has desiccation-tolerant orthodox seeds, but the young seedlings are not tolerant to extreme water loss. However, like the seeds, most of the leaves of the adult plant are tolerant to desiccation (only the oldest outermost leaf on a tiller are not). Desiccation-induced damage in these outer leaves was observed in the later stage of dehydration, dominated by the appearance of abundant cell wall fractures (1 wall fracture per 50 μm2). Unlike the outer leaves, the leaves of seedlings appeared similar to those of the hydrated ones upon desiccation. Irreparable damage occurred on rehydration of these tissues possibly as a result of the absence of protection mechanisms observed during desiccation of the inner desiccation-tolerant leaves of the mature plants. The mesophyll tissues of these leaves become compact with extensive cell wall folding on drying. The bundle sheath cells maintained their shape with desiccation but became packed with small vacuoles.
APA, Harvard, Vancouver, ISO, and other styles
47

Hirobe, Sayako, and Kenji Oguni. "Modeling and Simulating Methods for the Desiccation Cracking." International Journal of Computational Methods 16, no. 05 (May 28, 2019): 1840011. http://dx.doi.org/10.1142/s021987621840011x.

Full text
Abstract:
The desiccation cracks can be observed on dry-out soil fields or other various materials under desiccation. These cracks have a net-like structure and tessellate the surface of the materials into polygonal cells. The averaged cell size changes systematically depending on the size of the specimen. In spite of the varieties of the materials, these fundamental features of the cell topology are conserved. This implies the existence of the governing mechanism behind the desiccation crack phenomenon regardless of the materials. In this paper, the desiccation crack phenomenon is modeled by the coupling of desiccation, deformation, and fracture. We perform simulations for the reproduction of the desiccation cracking based on this coupling model. In the simulations, the finite element analysis for the desiccation problem and the analysis of particle discretization scheme finite element method for the deformation and the fracture problems are weakly coupled. The results of the simulations show the satisfactory agreements with the experimental observations in terms of the geometry of the crack pattern, the increase tendency of the averaged cell size depending on the size of the specimen, and the hierarchical sequence of the cell formation. These agreements indicate that the proposed model and method capture the fundamental features and the mechanism of the desiccation cracking.
APA, Harvard, Vancouver, ISO, and other styles
48

Hill, James P., Will Edwards, and Peter J. Franks. "How long does it take for different seeds to dry?" Functional Plant Biology 37, no. 6 (2010): 575. http://dx.doi.org/10.1071/fp09210.

Full text
Abstract:
Reduction in rainfall and intensification of dry season moisture deficit threaten to expose desiccation-sensitive seeds in the seasonal tropics to greater potential negative effects of desiccation. A determinate affecting the recruitment of species under increased aridity is how quickly desiccation-sensitive seeds dehydrate. We investigated the rate of seed moisture loss in 24 species that produce desiccation-sensitive seeds in a seasonal tropical forest and tested the common hypothesis that seeds conform to a simple negative exponential model of moisture loss with time. A negative exponential model described moisture loss in 14 species, but was not the best model for the remaining 10 species. Moisture loss in eight species was best described by a double-negative exponential model and by a double-linear model in the remaining two species. We then tested the hypothesis that seed mass could predict the rate of desiccation between and within species. Within species the time to a given state of desiccation could be predicted by seed mass for eight species. Between species there was no relationship between desiccation rate and seed mass. We conclude that different modes of water loss and seed structural features may be more important than seed mass in prolonging desiccation.
APA, Harvard, Vancouver, ISO, and other styles
49

Saranga, Yehoshua, David Rhodes, and Jules Janick. "Changes in Amino Acid Composition Associated with Tolerance to Partial Desiccation of Celery Somatic Embryos." Journal of the American Society for Horticultural Science 117, no. 2 (March 1992): 337–41. http://dx.doi.org/10.21273/jashs.117.2.337.

Full text
Abstract:
Tolerance to partial desiccation and amino acid composition of celery (Apium graveolens L. cv. SB 12) somatic embryos were investigated under various culture durations and with exogenous application of 1 μm ABA, proline, and/or γ -aminobutyrate (GABA). ABA consistently increased tolerance to partial desiccation and elevated proline and GABA content of embryos. The changes in tolerance to partial desiccation associated with changes in culture duration (optimum 9 to 10 days) correlated with embryo proline content. Exogenous proline increased embryo proline content and tolerance to partial desiccation. Exogenous GABA increased embryo GABA content and tolerance to partial desiccation only when applied in combination with proline. Chemical name used: abscisic acid (ABA).
APA, Harvard, Vancouver, ISO, and other styles
50

Saranga, Yehoshua, David Rhodes, and Jules Janick. "FACTORS INDUCING DESICCATION TOLERANCE IN CELERY SOMATIC EMBRYOS." HortScience 25, no. 9 (September 1990): 1088d—1088. http://dx.doi.org/10.21273/hortsci.25.9.1088d.

Full text
Abstract:
Desiccation tolerance of somatic embryos is a key factor for production of dry synthetic seeds. In celery (Apium graveolens L.) desiccation tolerance can be enhanced by optimization of culture duration, ABA application, or sucrose concentration in the embryo production medium. Morphologically mature embryos cultured for 10 days have shown higher desiccation tolerance then those cultured for 8 days, indicating that biochemical changes occur without any noticeable morphological changes. Application of ABA (1 μM) for the last two days of the embryo production cycle was critical for inducing desiccation tolerance; ABA application for the last four days had some additional beneficial effect. Desiccation tolerance was further enhanced by increasing the sucrose concentration of the embryo production media from 3% to 7% for the last two days. Increased desiccation tolerance achieved with optimal harvest timing and ABA application were associated with increased endogenous proline and aminobutyrate, and reduced glutamine.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography