Academic literature on the topic 'Dental restorative composites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dental restorative composites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dental restorative composites"
Świderska, Jolanta, Zbigniew Czech, and Agnieszka Kowalczyk. "Polymerization shrinkage by investigation of uv curable dental restorative composites containing multifunctional methacrylates." Polish Journal of Chemical Technology 15, no. 2 (July 1, 2013): 81–85. http://dx.doi.org/10.2478/pjct-2013-0027.
Full textBonta, Dan Florin, Sergiu Alexandru Tofan, Liana Todor, Mariana Miron, Cristina Ioana Talpos, Raluca Mioara Cosroaba, florin Borcan, and Ramona Amina Popovici. "In vitro Study on Mechanical Properties of Polyacid-modified Composite Resins (Compomers)." Materiale Plastice 59, no. 1 (April 5, 2022): 90–98. http://dx.doi.org/10.37358/mp.22.1.5562.
Full textAlreshaid, L., W. El-Badrawy, HP Lawrence, MJ Santos, and A. Prakki. "Composite versus Amalgam Restorations Placed in Canadian Dental Schools." Operative Dentistry 46, no. 6 (November 1, 2021): 621–30. http://dx.doi.org/10.2341/20-212-c.
Full textCheng, Jingru, Yuyi Deng, Yujin Tan, Jiawei Li, Yongsheng Fei, Congcong Wang, Jingjing Zhang, Chenxi Niu, Qian Fu, and Lingbin Lu. "Preparation of Silica Aerogel/Resin Composites and Their Application in Dental Restorative Materials." Molecules 27, no. 14 (July 9, 2022): 4414. http://dx.doi.org/10.3390/molecules27144414.
Full textHuyang, George, and Jirun Sun. "Clinically Applicable Self-Healing Dental Resin Composites." MRS Advances 1, no. 8 (2016): 547–52. http://dx.doi.org/10.1557/adv.2016.86.
Full textMalara, P., and W. Świderski. "Contemporary aesthetic restorative dental composite materials." Journal of Achievements in Materials and Manufacturing Engineering 78, no. 1 (August 1, 2016): 32–40. http://dx.doi.org/10.5604/01.3001.0010.1493.
Full textSeifan, Mostafa, Zahra Sarabadani, and Aydin Berenjian. "Development of an Innovative Urease-Aided Self-Healing Dental Composite." Catalysts 10, no. 1 (January 7, 2020): 84. http://dx.doi.org/10.3390/catal10010084.
Full textNicholson, John W. "Fluoride-Releasing Dental Restorative Materials: An Update." Balkan Journal of Dental Medicine 18, no. 2 (July 1, 2014): 60–69. http://dx.doi.org/10.1515/bjdm-2015-0010.
Full textBasudan, Thuraya, Aymen Neyaz, Norah Alnasser, Afaf Alabdali, Walaa Alqahtan, Ghadah Asiri, Latifah Alshammari, et al. "Improvement of Quality of Life through Nanoparticles in Restorative Dentistry." Journal of Healthcare Sciences 02, no. 12 (2022): 560–67. http://dx.doi.org/10.52533/johs.2022.21209.
Full textDhar, V., KL Hsu, JA Coll, E. Ginsberg, BM Ball, S. Chhibber, M. Johnson, M. Kim, N. Modaresi, and N. Tinanoff. "Evidence-based Update of Pediatric Dental Restorative Procedures: Dental Materials." Journal of Clinical Pediatric Dentistry 39, no. 4 (June 1, 2015): 303–10. http://dx.doi.org/10.17796/1053-4628-39.4.303.
Full textDissertations / Theses on the topic "Dental restorative composites"
Adusei, Gabriel Opoku. "Development of novel organophosphorus based dental restorative materials." Thesis, King's College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289857.
Full textMikhail, Sarah Shawky. "Optical Properties of Two Brands of Composite Restorative Materials and Confirmation of Theoretical Predictions for Layering." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316436113.
Full textChadwick, R. D. "The durability of restorative materials." Thesis, University of Newcastle Upon Tyne, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383980.
Full textWang, Guigui. "Perfluorotriethylene glycol dimethacrylate modified composite resins for improved dental restoratives." The Ohio State University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/47350511.html.
Full textSunnegårdh-Grönberg, Karin. "Calcium aluminate cement as dental restorative : Mechanical properties and clinical durability." Doctoral thesis, Umeå universitet, Tandhygienistprogrammet, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-270.
Full textSunnegårdh-Grönberg, Karin. "Calcium aluminate cement as dental restorative : mechanical properties and clinical durability /." Umeå : Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-270.
Full textCheung, Big-chu Gloria. "An in vitro study of selected mechanical properties and surface profiles of some p̀osterior' composite resin restorative materials." Click to view the E-thesis via HKUTO, 1987. http://sunzi.lib.hku.hk/HKUTO/record/B38628259.
Full text張碧珠 and Big-chu Gloria Cheung. "An in vitro study of selected mechanical properties and surface profiles of some ��posterior' composite resin restorative materials." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1987. http://hub.hku.hk/bib/B38628259.
Full textSousa, Rosane Pontes de. "Anticariogenic in situ effect of different restorative dental materials." Universidade Federal do CearÃ, 2008. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1358.
Full textTooth structure immediately adjacent to restorations is susceptible to secondary caries, which may be caused by imperfect adaptation of restorative materials and subsequent microorganism colonization. Therefore, in order to identify methods of preventing secondary caries and increasing clinical dental restoration durability, different restorative dental materials have been introduced and applied in dental clinics. Thus, this in situ study assessed the effects of different restorative materials on the microbiological composition of dental biofilm and evaluated their ability of protecting the adjacent enamel against acid attacks from bacterial activity. A double-blind, split-mouth design was performed in one phase of 14 days, during which, 20 volunteers wore intra-oral palatal devices with five human enamel slabs, which were extra-orally restored according to the manufacturerâs specifications, using one of the following materials: Filtek Z 250/Single Bond composite resin; Permite amalgam; Fuji II encapsulated resin-modified glass ionomer; Vitremer resin-modified glass ionomer and Ketac Molar conventional glass ionomer.. During the experimental period, all subjects used fluoride-containing dentifrice 3x/day and a 20% sucrose solution was dripped onto the slabs 8x/day in predetermined times. The biofilm formed on the slabs was analyzed to determine total and mutans streptococci as well as lactobacilli counts. Demineralization (delta S) was determined on enamel by cross-sectional microhardness at 20 and 70 -Âm from the restoration margin. In order to verify the differences among the treatments, Kruskal-Wallis and ANOVA followed by Minimum Squares test were applied for cariogenic microbiota and delta S, respectivly. No statistically significant differences were found in the cariogenic microbiota grown on the slabs. At 20-Âm distance, only Fuji II statistically differed from the other groups presenting the lowest demineralization. At 70-Âm, Fuji II significantly inhibited demineralization when compared to Permite, Filtek-Z-250 and Ketac Molar. Concluding, in the background of fluoride dentifrice and under the cariogenic exposure condition of this study, only the encapsulated resin-modified glass ionomer material provided additional protection against secondary caries.
A estrutura dentÃria imediatamente adjacente a restauraÃÃes à suscetÃvel ao surgimento de cÃrie secundÃria, que pode ocorrer devido a imperfeiÃÃes na adaptaÃÃo de materiais restauradores e subseqÃente colonizaÃÃo por microrganismos. Logo, com o objetivo de identificar os mÃtodos de prevenÃÃo da cÃrie secundÃria e aumentar a longevidade das restauraÃÃes, diferentes materiais restauradores tÃm sido introduzidos e usados na clÃnica odontolÃgica. Desta forma, este estudo in situ avaliou os efeitos de diferentes materiais restauradores na composiÃÃo microbiolÃgica do biofilme dental bem como a habilidade destes materiais em proteger o esmalte adjacente dos ataques Ãcidos provenientes da atividade bacteriana. Foi empregado um delineamento duplo-cego, âsplit-mouthâ realizado em uma fase de 14 dias, durante a qual, 20 voluntÃrios utilizaram dispositivos intra-orais palatinos com cinco blocos de esmalte dental humano que foram restaurados extra-oralmente, de acordo com as recomendaÃÃes do fabricante com um dos seguintes materiais: Resina composta Filtek Z250/Single Bond (grupo controle), AmÃlgama Permite, IonÃmero de vidro modificado por resina encapsulado Fuji II, IonÃmero de vidro modificado por resina Vitremer e IonÃmero de vidro convencional Ketac Molar. Durante o perÃodo experimental, os voluntÃrios utilizaram dentifrÃcio fluoretado, 3 vezes ao dia e gotejaram sobre os blocos, uma soluÃÃo de sacarose a 20%, 8 vezes ao dia em horÃrios prÃ-determinados. No 14o dia, o biofilme formado sobre os blocos foi removido para determinar a contagem de estreptococos totais e estreptococos mutans, bem como lactobacilos. A desmineralizaÃÃo (delta S) ao redor da restauraÃÃo foi avaliada atravÃs da anÃlise de microdureza em corte longitudinal do esmalte a 20 e 70 Âm da margem da restauraÃÃo. Para detectar as diferenÃas entre os tratamentos, foram aplicados os testes Kruskal-Wallis e ANOVA seguida do teste dos quadrados mÃnimos para a microbiota cariogÃnica e delta S, respectivamente. NÃo foram encontradas diferenÃas estatisticamente significativas na microbiota cariogÃnica formada sobre os blocos. Na distÃncia 20 Âm, somente o Fuji II diferiu estatisticamente dos outros grupos apresentando a menor desmineralizaÃÃo. A 70 Âm, o Fuji II inibiu significativamente a desmineralizaÃÃo quando comparado ao Permite, Filtek-Z-250 e Ketac Molar. Conclui-se que na situaÃÃo de uso de dentÃfricio flouretado associada ao desafio cariogÃnico do presente estudo, somente, o ionÃmero de vidro modificado por resina encapsulado apresentou uma proteÃÃo adicional contra o desenvolvimento de cÃrie secundÃria
Khan, Abdul Samad. "A novel bioactive nano-composite : synthesis and characterisation with potential use as dental restorative material." Thesis, Queen Mary, University of London, 2009. http://qmro.qmul.ac.uk/xmlui/handle/123456789/441.
Full textBooks on the topic "Dental restorative composites"
E, Jordan Ronald, ed. Esthetic composite bonding: Techniques and materials. Toronto: Decker, 1988.
Find full textJordan, Ronald E. Esthetic composite bonding: Techniques and materials. 2nd ed. St. Louis: Mosby-Year Book, 1993.
Find full textÖrtengren, Ulf. On composite resin materials: Degradation, erosin and possible adverse effects in dentists. Göteborg, Sweden: Department of Prosthetic Dentistry / Dental Materials Science and Department of Occupational Medicine, 2000.
Find full textLundin, Sven-Åke. Studies on posterior composite resins with special reference to class II restorations. Göteborg: University of Göteborg, 1990.
Find full textPowers, Laurence James. A study of posterior composite resin dental restorative materials with special reference to the sorption of water and plane strain fracture toughness. Toronto: Faculty of Dentistry, University of Toronto, 1988.
Find full textHendriks, Francisca Helena Johanna. Posterior composite restorations: An experimental clinical study. 1985.
Find full textPowers, Laurence James. A study of posterior composite resin dental restorative materials with special reference to the sorption of water and plane strain fracture toughness. 1988.
Find full textBook chapters on the topic "Dental restorative composites"
Dudea, Diana, Camelia Alb, Bogdan Culic, and Florin Alb. "Performance of Dental Composites in Restorative Dentistry." In Handbook of Bioceramics and Biocomposites, 1075–114. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12460-5_53.
Full textDudea, Diana, Camelia Alb, Bogdan Culic, and Florin Alb. "Performance of Dental Composites in Restorative Dentistry." In Handbook of Bioceramics and Biocomposites, 1–40. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09230-0_53-1.
Full textPrati, Carlo, Eugenio Toschi, Cesare Nucci, Romano Mongiorgi, and Antonio Savino. "Dental Ceramics and Composite Resins as Restorative Materials." In Bioceramics and the Human Body, 256–59. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2896-4_34.
Full textKorach, Chad S., Matvey Sirotkin, and Ranjith Krishna Pai. "A Novel Dental Restorative Composite Fabricated with Nanostructured Poly(KAMPS)/Aragonite Filler." In Mechanics of Biological Systems and Materials, Volume 4, 79–82. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00777-9_11.
Full textShiekh, Rayees Ahmad, and Visweswara Rao Pasupuleti. "Mesoporous Silica Powder for Dental Restoration Composites from Rice Husk: A Green Sol–Gel Synthesis." In Agricultural Biomass Based Potential Materials, 245–58. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13847-3_12.
Full textYu, Qing Song, H. Li, A. C. Ritts, B. Yang, M. Chen, L. Hong, C. Xu, X. Yao, and Y. Wang. "Non-thermal Atmospheric Plasma Treatment for Deactivation of Oral Bacteria and Improvement of Dental Composite Restoration." In Plasma for Bio-Decontamination, Medicine and Food Security, 215–28. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2852-3_17.
Full text"Restorative Materials—Composites and Polymers." In Craig's Restorative Dental Materials, 161–98. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-323-08108-5.10009-x.
Full textJoshi, Gajendra, Devansh Goyal, and Gautam Chaturvedi. "Mechanical Properties of Dental Restorative Composite Materials: A Review." In SCRS Proceedings of International Conference of Undergraduate Students, 65–73. Soft Computing Research Society, 2023. http://dx.doi.org/10.52458/978-81-95502-01-1-7.
Full textBanerjee, Avijit, and Timothy F. Watson. "Restorative materials and their relationship to tooth structure." In Pickard's Guide to Minimally Invasive Operative Dentistry. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780198712091.003.0010.
Full text"Case Study: Natural Tooth and Dental Restorative Materials." In Tribology of Ceramics and Composites, 251–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118021668.ch16.
Full textConference papers on the topic "Dental restorative composites"
Abdel Hamid, Dalia, Amal Esawi, Inas Sami, and Randa Elsalawy. "Characterization of Nano- and Micro-Filled Resin Composites Used as Dental Restorative Materials." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47053.
Full textRafiee, M. A., and J. Rafiee. "Strength properties of light-cured dental restorative composites." In 2009 IEEE 35th Annual Northeast Bioengineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/nebc.2009.4967816.
Full textGrassia, Luigi, and Alberto D’Amore. "Finite element calculation of residual stress in dental restorative material." In 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738480.
Full textLaughlin, Gayle A., John L. Williams, and J. David Eick. "An Elastic/Viscoplastic Finite Element Model for Predicting Polymerization Stresses in Light-Activated Dental Composites." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43789.
Full textDevaprakasam, D., P. V. Hatton, G. Moebus, and B. J. Inkson. "Nanomechanical and Nanotribological Properties of Nano- and Micro-Particle Filled Polymer Composites Used for Dental Restorative Applications." In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44182.
Full textWellinghoff, S. T., D. P. Nicolella, D. P. Hanson, H. R. Rawls, and B. K. Norling. "Photopolymerizable Liquid Crystal Monomer-Oxide Nanoparticle Composites." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39367.
Full textWang, Shuang, Zhenzhen Xu, Xiaofei Wang, and Hongna Gao. "Evaluation of cytotoxicity of dental restorative nanometer hydroxyapatite composite resin in vitro by dentin barrier method." In 4TH INTERNATIONAL CONFERENCE ON FRONTIERS OF BIOLOGICAL SCIENCES AND ENGINEERING (FBSE 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0094276.
Full textArmencia, Adina Oana, Roxana Ionela Vasluianu, Dana Gabriela Budala, Dragos Vicoveanu, Dragos Ioan Virvescu, Elena Raluca Baciu, and Carina Balcos. "Tribological Comparative Study on Two Composite Materials for Restorative Dental Applications." In 2021 International Conference on e-Health and Bioengineering (EHB). IEEE, 2021. http://dx.doi.org/10.1109/ehb52898.2021.9657637.
Full textLodato, Vincenzo, Roberto De Santis, Vito Gallicchio, Carlo Rengo, Gianrico Spagnuolo, and Sandro Rengo. "Dentinal temperature rise during photo-activation of restorative composites." In 1st International Electronic Conference on Applied Sciences. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/asec2020-07759.
Full textPratap, Bhanu, Meetu Nag, Ramkumar Yadav, Sultan Althahban, and John Chuol Wal. "Dynamic mechanical analysis of zinc oxide and hydroxyapatite particulate filled dental restorative composite materials." In RECENT ADVANCES IN SCIENCES, ENGINEERING, INFORMATION TECHNOLOGY & MANAGEMENT. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0154476.
Full text