To see the other types of publications on this topic, follow the link: Density Functional Theory.

Journal articles on the topic 'Density Functional Theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Density Functional Theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ziesche, Paul. "Pair density functional theory — a generalized density functional theory." Physics Letters A 195, no. 3-4 (December 1994): 213–20. http://dx.doi.org/10.1016/0375-9601(94)90155-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DOBSON, J. F. "ELECTRON DENSITY FUNCTIONAL THEORY." International Journal of Modern Physics B 13, no. 05n06 (March 10, 1999): 511–23. http://dx.doi.org/10.1142/s0217979299000412.

Full text
Abstract:
A brief summary is given of electronic density functional theory, including recent developments: generalized gradient methods, hybrid functionals, time dependent density functionals and excited states, van der Waals energy functionals.
APA, Harvard, Vancouver, ISO, and other styles
3

Ghouri, Mohammed M., Saurabh Singh, and B. Ramachandran. "Scaled Density Functional Theory Correlation Functionals†." Journal of Physical Chemistry A 111, no. 41 (October 2007): 10390–99. http://dx.doi.org/10.1021/jp0728353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brink, D. M. "Density functional theory." Nuclear Physics News 12, no. 4 (August 2002): 27–32. http://dx.doi.org/10.1080/10506890208232107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chermette, H. "Density functional theory." Coordination Chemistry Reviews 178-180 (December 1998): 699–721. http://dx.doi.org/10.1016/s0010-8545(98)00179-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Orio, Maylis, Dimitrios A. Pantazis, and Frank Neese. "Density functional theory." Photosynthesis Research 102, no. 2-3 (February 24, 2009): 443–53. http://dx.doi.org/10.1007/s11120-009-9404-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sharma, Prachi, Jie J. Bao, Donald G. Truhlar, and Laura Gagliardi. "Multiconfiguration Pair-Density Functional Theory." Annual Review of Physical Chemistry 72, no. 1 (April 20, 2021): 541–64. http://dx.doi.org/10.1146/annurev-physchem-090419-043839.

Full text
Abstract:
Kohn-Sham density functional theory with the available exchange–correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.
APA, Harvard, Vancouver, ISO, and other styles
8

Geerlings, Paul. "From Density Functional Theory to Conceptual Density Functional Theory and Biosystems." Pharmaceuticals 15, no. 9 (September 6, 2022): 1112. http://dx.doi.org/10.3390/ph15091112.

Full text
Abstract:
The position of conceptual density functional theory (CDFT) in the history of density functional theory (DFT) is sketched followed by a chronological report on the introduction of the various DFT descriptors such as the electronegativity, hardness, softness, Fukui function, local version of softness and hardness, dual descriptor, linear response function, and softness kernel. Through a perturbational approach they can all be characterized as response functions, reflecting the intrinsic reactivity of an atom or molecule upon perturbation by a different system, including recent extensions by external fields. Derived descriptors such as the electrophilicity or generalized philicity, derived from the nature of the energy vs. N behavior, complete this picture. These descriptors can be used as such or in the context of principles such as Sanderson’s electronegativity equalization principle, Pearson’s hard and soft acids and bases principle, the maximum hardness, and more recently, the minimum electrophilicity principle. CDFT has known an ever-growing use in various subdisciplines of chemistry: from organic to inorganic chemistry, from polymer to materials chemistry, and from catalysis to nanotechnology. The increasing size of the systems under study has been coped with thanks to methodological evolutions but also through the impressive evolution in software and hardware. In this flow, biosystems entered the application portfolio in the past twenty years with studies varying (among others) from enzymatic catalysis to biological activity and/or the toxicity of organic molecules and to computational peptidology. On the basis of this evolution, one can expect that “the best is yet to come”.
APA, Harvard, Vancouver, ISO, and other styles
9

Bader, Richard F. W. "The density in density functional theory." Journal of Molecular Structure: THEOCHEM 943, no. 1-3 (March 2010): 2–18. http://dx.doi.org/10.1016/j.theochem.2009.10.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

March, N. H. "Density functional theory via density matrices." International Journal of Quantum Chemistry 56, S29 (February 25, 1995): 137–44. http://dx.doi.org/10.1002/qua.560560814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Marrazzini, Gioia, Tommaso Giovannini, Marco Scavino, Franco Egidi, Chiara Cappelli, and Henrik Koch. "Multilevel Density Functional Theory." Journal of Chemical Theory and Computation 17, no. 2 (January 15, 2021): 791–803. http://dx.doi.org/10.1021/acs.jctc.0c00940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

TSUNEDA, Takao. "Relativistic Density Functional Theory." Journal of Computer Chemistry, Japan 13, no. 1 (2014): 71–82. http://dx.doi.org/10.2477/jccj.2013-0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Colò, G. "Nuclear density functional theory." Advances in Physics: X 5, no. 1 (January 1, 2020): 1740061. http://dx.doi.org/10.1080/23746149.2020.1740061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kutzelnigg, Werner. "Density-cumulant functional theory." Journal of Chemical Physics 125, no. 17 (November 7, 2006): 171101. http://dx.doi.org/10.1063/1.2387955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Khein, A., and N. W. Ashcroft. "Generalized Density Functional Theory." Physical Review Letters 78, no. 17 (April 28, 1997): 3346–49. http://dx.doi.org/10.1103/physrevlett.78.3346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Stoitsov, M. "Nuclear density functional theory." Physics of Particles and Nuclei 41, no. 6 (November 2010): 868–73. http://dx.doi.org/10.1134/s1063779610060092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Biagini, M. "Generalized density functional theory." Journal of Physics: Condensed Matter 8, no. 13 (March 25, 1996): 2233–36. http://dx.doi.org/10.1088/0953-8984/8/13/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kaduk, Benjamin, Tim Kowalczyk, and Troy Van Voorhis. "Constrained Density Functional Theory." Chemical Reviews 112, no. 1 (November 11, 2011): 321–70. http://dx.doi.org/10.1021/cr200148b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Geerlings, P., F. De Proft, and W. Langenaeker. "Conceptual Density Functional Theory." Chemical Reviews 103, no. 5 (May 2003): 1793–874. http://dx.doi.org/10.1021/cr990029p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Higuchi, Masahiko, and Katsuhiko Higuchi. "Pair density functional theory." Computational and Theoretical Chemistry 1003 (January 2013): 91–96. http://dx.doi.org/10.1016/j.comptc.2012.09.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Keller, Jaime, and Eduardo Lude�a. "Density functional theory formalism." International Journal of Quantum Chemistry 32, S21 (March 12, 1987): 171–80. http://dx.doi.org/10.1002/qua.560320720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jacob, Christoph R., and Johannes Neugebauer. "Subsystem density-functional theory." Wiley Interdisciplinary Reviews: Computational Molecular Science 4, no. 4 (July 2014): 325–62. http://dx.doi.org/10.1002/wcms.1175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

March, N. H. "Relativistic density functional theory." Journal of Molecular Structure: THEOCHEM 199 (September 1989): 75–83. http://dx.doi.org/10.1016/0166-1280(89)80043-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Yousefi, Ahmad, and Ariel Caticha. "Entropic Density Functional Theory." Entropy 26, no. 1 (December 21, 2023): 10. http://dx.doi.org/10.3390/e26010010.

Full text
Abstract:
A formulation of density functional theory (DFT) is constructed as an application of the method of maximum entropy for an inhomogeneous fluid in thermal equilibrium. The use of entropy as a systematic method to generate optimal approximations is extended from the classical to the quantum domain. This process introduces a family of trial density operators that are parameterized by the particle density. The optimal density operator is that which maximizes the quantum entropy relative to the exact canonical density operator. This approach reproduces the variational principle of DFT and allows a simple proof of the Hohenberg–Kohn theorem at finite temperature. Finally, as an illustration, we discuss the Kohn–Sham approximation scheme at finite temperature.
APA, Harvard, Vancouver, ISO, and other styles
25

Sameera, W. M. C., and Feliu Maseras. "Transition metal catalysis by density functional theory and density functional theory/molecular mechanics." Wiley Interdisciplinary Reviews: Computational Molecular Science 2, no. 3 (January 17, 2012): 375–85. http://dx.doi.org/10.1002/wcms.1092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ayers, Paul W., and Weitao Yang. "Legendre-transform functionals for spin-density-functional theory." Journal of Chemical Physics 124, no. 22 (June 14, 2006): 224108. http://dx.doi.org/10.1063/1.2200884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mejía-Rodríguez, Daniel, and Aurélien de la Lande. "Multicomponent density functional theory with density fitting." Journal of Chemical Physics 150, no. 17 (May 7, 2019): 174115. http://dx.doi.org/10.1063/1.5078596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pan, Xiao-Yin, and Viraht Sahni. "Density and physical current density functional theory." International Journal of Quantum Chemistry 110, no. 15 (August 17, 2010): 2833–43. http://dx.doi.org/10.1002/qua.22862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sekaran, Sajanthan, Matthieu Saubanère, and Emmanuel Fromager. "Local Potential Functional Embedding Theory: A Self-Consistent Flavor of Density Functional Theory for Lattices without Density Functionals." Computation 10, no. 3 (March 18, 2022): 45. http://dx.doi.org/10.3390/computation10030045.

Full text
Abstract:
Quantum embedding is a divide and conquer strategy that aims at solving the electronic Schrödinger equation of sizeable molecules or extended systems. We establish in the present work a clearer and in-principle-exact connection between density matrix embedding theory (DMET) and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified density-functional approximations, a self-consistent local potential functional embedding theory (LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with our formally exact density-functional embedding theory reveals that a single statically embedded impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a complementary density-functional correlation potential (which is neglected in both DMET and LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple impurities (which would enable to circumvent the modeling of DDs) and its generalization to quantum chemical Hamiltonians are left for future work.
APA, Harvard, Vancouver, ISO, and other styles
30

Naito, Tomoya, Daisuke Ohashi, and Haozhao Liang. "Improvement of functionals in density functional theory by the inverse Kohn–Sham method and density functional perturbation theory." Journal of Physics B: Atomic, Molecular and Optical Physics 52, no. 24 (November 19, 2019): 245003. http://dx.doi.org/10.1088/1361-6455/ab4eef.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Seifert, Gotthard, and Jan-Ole Joswig. "Density-functional tight binding-an approximate density-functional theory method." Wiley Interdisciplinary Reviews: Computational Molecular Science 2, no. 3 (January 25, 2012): 456–65. http://dx.doi.org/10.1002/wcms.1094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhang, Dayou, Matthew R. Hermes, Laura Gagliardi, and Donald G. Truhlar. "Multiconfiguration Density-Coherence Functional Theory." Journal of Chemical Theory and Computation 17, no. 5 (April 5, 2021): 2775–82. http://dx.doi.org/10.1021/acs.jctc.0c01346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nguyen, Minh, Wenfei Li, Yangtao Li, Eran Rabani, Roi Baer, and Daniel Neuhauser. "Tempering stochastic density functional theory." Journal of Chemical Physics 155, no. 20 (November 28, 2021): 204105. http://dx.doi.org/10.1063/5.0063266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Penz, Markus, and Robert van Leeuwen. "Density-functional theory on graphs." Journal of Chemical Physics 155, no. 24 (December 28, 2021): 244111. http://dx.doi.org/10.1063/5.0074249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nagy, Á., and Robert G. Parr. "Density functional theory as thermodynamics." Proceedings / Indian Academy of Sciences 106, no. 2 (April 1994): 217–27. http://dx.doi.org/10.1007/bf02840745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chuev, Gennady N., Marina V. Fedotova, and Marat Valiev. "Renormalized site density functional theory." Journal of Statistical Mechanics: Theory and Experiment 2021, no. 3 (March 1, 2021): 033205. http://dx.doi.org/10.1088/1742-5468/abdeb3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ramos, Pablo, and Michele Pavanello. "Constrained subsystem density functional theory." Physical Chemistry Chemical Physics 18, no. 31 (2016): 21172–78. http://dx.doi.org/10.1039/c6cp00528d.

Full text
Abstract:
Constrained Subsystem Density Fucntional Theory (CSDFT) allows to compute diabatic states for charge transfer reactions using the machinery of the constrained DFT method, and at the same time is able to embed such diabatic states in a molecular environment via a subsystem DFT scheme.
APA, Harvard, Vancouver, ISO, and other styles
38

Garza, Jorge, and Juvencio Robles. "Density-functional-theory softness kernel." Physical Review A 47, no. 4 (April 1, 1993): 2680–85. http://dx.doi.org/10.1103/physreva.47.2680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Görling, Andreas. "Symmetry in density-functional theory." Physical Review A 47, no. 4 (April 1, 1993): 2783–99. http://dx.doi.org/10.1103/physreva.47.2783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Vlasov, G. V. "Non-Abelian density functional theory." Physical Review C 58, no. 4 (October 1, 1998): 2581–84. http://dx.doi.org/10.1103/physrevc.58.2581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Argaman, Nathan, and Guy Makov. "Density functional theory: An introduction." American Journal of Physics 68, no. 1 (January 2000): 69–79. http://dx.doi.org/10.1119/1.19375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sarry, A. M., and M. F. Sarry. "On the density functional theory." Physics of the Solid State 54, no. 6 (June 2012): 1315–22. http://dx.doi.org/10.1134/s1063783412060297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Söderlind, Per, A. Landa, and B. Sadigh. "Density-functional theory for plutonium." Advances in Physics 68, no. 1 (January 2, 2019): 1–47. http://dx.doi.org/10.1080/00018732.2019.1599554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Burke, Kieron. "Perspective on density functional theory." Journal of Chemical Physics 136, no. 15 (April 17, 2012): 150901. http://dx.doi.org/10.1063/1.4704546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Grayce, Christopher J., and Robert A. Harris. "Magnetic-field density-functional theory." Physical Review A 50, no. 4 (October 1, 1994): 3089–95. http://dx.doi.org/10.1103/physreva.50.3089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gonze, Xavier. "Adiabatic density-functional perturbation theory." Physical Review A 52, no. 2 (August 1, 1995): 1096–114. http://dx.doi.org/10.1103/physreva.52.1096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Harbola, Manoj K., M. Hemanadhan, Md Shamim, and P. Samal. "Excited-state density functional theory." Journal of Physics: Conference Series 388, no. 1 (November 5, 2012): 012011. http://dx.doi.org/10.1088/1742-6596/388/1/012011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Genova, Alessandro, Davide Ceresoli, and Michele Pavanello. "Periodic subsystem density-functional theory." Journal of Chemical Physics 141, no. 17 (November 7, 2014): 174101. http://dx.doi.org/10.1063/1.4897559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mi, Wenhui, and Michele Pavanello. "Nonlocal Subsystem Density Functional Theory." Journal of Physical Chemistry Letters 11, no. 1 (December 10, 2019): 272–79. http://dx.doi.org/10.1021/acs.jpclett.9b03281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li Manni, Giovanni, Rebecca K. Carlson, Sijie Luo, Dongxia Ma, Jeppe Olsen, Donald G. Truhlar, and Laura Gagliardi. "Multiconfiguration Pair-Density Functional Theory." Journal of Chemical Theory and Computation 10, no. 9 (August 5, 2014): 3669–80. http://dx.doi.org/10.1021/ct500483t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography