Journal articles on the topic 'Density embedding'

To see the other types of publications on this topic, follow the link: Density embedding.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Density embedding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Knizia, Gerald, and Garnet Kin-Lic Chan. "Density Matrix Embedding: A Strong-Coupling Quantum Embedding Theory." Journal of Chemical Theory and Computation 9, no. 3 (February 21, 2013): 1428–32. http://dx.doi.org/10.1021/ct301044e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ye, Hong-Zhou, Matthew Welborn, Nathan D. Ricke, and Troy Van Voorhis. "Incremental embedding: A density matrix embedding scheme for molecules." Journal of Chemical Physics 149, no. 19 (November 21, 2018): 194108. http://dx.doi.org/10.1063/1.5053992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Džamonja, Mirna. "Isomorphic Universality and the Number of Pairwise Nonisomorphic Models in the Class of Banach Spaces." Abstract and Applied Analysis 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/184071.

Full text
Abstract:
We develop the framework ofnatural spacesto study isomorphic embeddings of Banach spaces. We then use it to show that a sufficient failure of the generalized continuum hypothesis implies that the universality number of Banach spaces of a given density under a certain kind of positive embedding (very positive embedding) is high. An example of a very positive embedding is a positive onto embedding betweenC(K)andCLfor 0-dimensionalKandLsuch that the following requirement holds for allh≠0andf≥0inC(K): if0≤Th≤Tf, then there are constantsa≠0andbwith0≤a·h+b≤fanda·h+b≠0.
APA, Harvard, Vancouver, ISO, and other styles
4

Artiukhin, Denis G., Christoph R. Jacob, and Johannes Neugebauer. "Excitation energies from frozen-density embedding with accurate embedding potentials." Journal of Chemical Physics 142, no. 23 (June 21, 2015): 234101. http://dx.doi.org/10.1063/1.4922429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Laricchia, S., E. Fabiano, and F. Della Sala. "Frozen density embedding with hybrid functionals." Journal of Chemical Physics 133, no. 16 (October 28, 2010): 164111. http://dx.doi.org/10.1063/1.3494537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Culpitt, Tanner, Kurt R. Brorsen, Michael V. Pak, and Sharon Hammes-Schiffer. "Multicomponent density functional theory embedding formulation." Journal of Chemical Physics 145, no. 4 (July 28, 2016): 044106. http://dx.doi.org/10.1063/1.4958952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hršak, Dalibor, Jógvan Magnus Haugaard Olsen, and Jacob Kongsted. "Polarizable Density Embedding Coupled Cluster Method." Journal of Chemical Theory and Computation 14, no. 3 (February 14, 2018): 1351–60. http://dx.doi.org/10.1021/acs.jctc.7b01153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hedegård, Erik D., and Markus Reiher. "Polarizable Embedding Density Matrix Renormalization Group." Journal of Chemical Theory and Computation 12, no. 9 (September 2016): 4242–53. http://dx.doi.org/10.1021/acs.jctc.6b00476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iannuzzi, Marcella, Barbara Kirchner, and Jürg Hutter. "Density functional embedding for molecular systems." Chemical Physics Letters 421, no. 1-3 (April 2006): 16–20. http://dx.doi.org/10.1016/j.cplett.2005.08.155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Niffenegger, K., Y. Oueis, J. Nafziger, and A. Wasserman. "Density embedding with constrained chemical potential." Molecular Physics 117, no. 15-16 (May 21, 2019): 2188–94. http://dx.doi.org/10.1080/00268976.2019.1618939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zech, Alexander, Francesco Aquilante, and Tomasz A. Wesolowski. "Homogeneity properties of the embedding potential in frozen-density embedding theory." Molecular Physics 114, no. 7-8 (December 22, 2015): 1199–206. http://dx.doi.org/10.1080/00268976.2015.1125027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sekaran, Sajanthan, Matthieu Saubanère, and Emmanuel Fromager. "Local Potential Functional Embedding Theory: A Self-Consistent Flavor of Density Functional Theory for Lattices without Density Functionals." Computation 10, no. 3 (March 18, 2022): 45. http://dx.doi.org/10.3390/computation10030045.

Full text
Abstract:
Quantum embedding is a divide and conquer strategy that aims at solving the electronic Schrödinger equation of sizeable molecules or extended systems. We establish in the present work a clearer and in-principle-exact connection between density matrix embedding theory (DMET) and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified density-functional approximations, a self-consistent local potential functional embedding theory (LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with our formally exact density-functional embedding theory reveals that a single statically embedded impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a complementary density-functional correlation potential (which is neglected in both DMET and LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple impurities (which would enable to circumvent the modeling of DDs) and its generalization to quantum chemical Hamiltonians are left for future work.
APA, Harvard, Vancouver, ISO, and other styles
13

Geng, Hao, and Quan-lin Jie. "An optimized cluster density matrix embedding theory." Chinese Physics B 30, no. 9 (September 1, 2021): 090305. http://dx.doi.org/10.1088/1674-1056/ac0cdc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pal, Partha Pratim, Pengchong Liu, and Lasse Jensen. "Polarizable Frozen Density Embedding with External Orthogonalization." Journal of Chemical Theory and Computation 15, no. 12 (October 22, 2019): 6588–96. http://dx.doi.org/10.1021/acs.jctc.9b00472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Roncero, O., A. Zanchet, P. Villarreal, and A. Aguado. "A density-division embedding potential inversion technique." Journal of Chemical Physics 131, no. 23 (December 21, 2009): 234110. http://dx.doi.org/10.1063/1.3274823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Reinholdt, Peter, Frederik Kamper Jørgensen, Jacob Kongsted, and Jógvan Magnus Haugaard Olsen. "Polarizable Density Embedding for Large Biomolecular Systems." Journal of Chemical Theory and Computation 16, no. 10 (September 29, 2020): 5999–6006. http://dx.doi.org/10.1021/acs.jctc.0c00763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Höfener, Sebastian, and Lucas Visscher. "Wave Function Frozen-Density Embedding: Coupled Excitations." Journal of Chemical Theory and Computation 12, no. 2 (January 3, 2016): 549–57. http://dx.doi.org/10.1021/acs.jctc.5b00821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Crawford, T. Daniel, Ashutosh Kumar, Kevin P. Hannon, Sebastian Höfener, and Lucas Visscher. "Frozen-Density Embedding Potentials and Chiroptical Properties." Journal of Chemical Theory and Computation 11, no. 11 (October 20, 2015): 5305–15. http://dx.doi.org/10.1021/acs.jctc.5b00845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Theophilou, Iris, Teresa E. Reinhard, Angel Rubio, and Michael Ruggenthaler. "Approximations based on density-matrix embedding theory for density-functional theories." Electronic Structure 3, no. 3 (August 31, 2021): 035001. http://dx.doi.org/10.1088/2516-1075/ac1660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yu, Kuang, and Emily A. Carter. "Extending density functional embedding theory for covalently bonded systems." Proceedings of the National Academy of Sciences 114, no. 51 (December 4, 2017): E10861—E10870. http://dx.doi.org/10.1073/pnas.1712611114.

Full text
Abstract:
Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix–based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital–lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.
APA, Harvard, Vancouver, ISO, and other styles
21

Cui, Zhi-Hao, Tianyu Zhu, and Garnet Kin-Lic Chan. "Efficient Implementation of Ab Initio Quantum Embedding in Periodic Systems: Density Matrix Embedding Theory." Journal of Chemical Theory and Computation 16, no. 1 (December 9, 2019): 119–29. http://dx.doi.org/10.1021/acs.jctc.9b00933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Trail, J. R., and D. M. Bird. "Density-functional embedding using a plane-wave basis." Physical Review B 62, no. 24 (December 15, 2000): 16402–11. http://dx.doi.org/10.1103/physrevb.62.16402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Henderson, Thomas M. "Embedding wave function theory in density functional theory." Journal of Chemical Physics 125, no. 1 (July 7, 2006): 014105. http://dx.doi.org/10.1063/1.2209688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Manby, Frederick R., Martina Stella, Jason D. Goodpaster, and Thomas F. Miller. "A Simple, Exact Density-Functional-Theory Embedding Scheme." Journal of Chemical Theory and Computation 8, no. 8 (July 20, 2012): 2564–68. http://dx.doi.org/10.1021/ct300544e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bulik, Ireneusz W., Weibing Chen, and Gustavo E. Scuseria. "Electron correlation in solids via density embedding theory." Journal of Chemical Physics 141, no. 5 (August 7, 2014): 054113. http://dx.doi.org/10.1063/1.4891861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pennifold, Robert C. R., Simon J. Bennie, Thomas F. Miller, and Frederick R. Manby. "Correcting density-driven errors in projection-based embedding." Journal of Chemical Physics 146, no. 8 (February 28, 2017): 084113. http://dx.doi.org/10.1063/1.4974929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Senjean, Bruno, Masahisa Tsuchiizu, Vincent Robert, and Emmanuel Fromager. "Local density approximation in site-occupation embedding theory." Molecular Physics 115, no. 1-2 (May 13, 2016): 48–62. http://dx.doi.org/10.1080/00268976.2016.1182224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mordovina, Uliana, Teresa E. Reinhard, Iris Theophilou, Heiko Appel, and Angel Rubio. "Self-Consistent Density-Functional Embedding: A Novel Approach for Density-Functional Approximations." Journal of Chemical Theory and Computation 15, no. 10 (September 6, 2019): 5209–20. http://dx.doi.org/10.1021/acs.jctc.9b00063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fink, Karin, and Sebastian Höfener. "Combining wavefunction frozen-density embedding with one-dimensional periodicity." Journal of Chemical Physics 154, no. 10 (March 14, 2021): 104114. http://dx.doi.org/10.1063/5.0041501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fabiano, Eduardo, Savio Laricchia, and Fabio Della Sala. "Frozen density embedding with non-integer subsystems’ particle numbers." Journal of Chemical Physics 140, no. 11 (March 21, 2014): 114101. http://dx.doi.org/10.1063/1.4868033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kovyrshin, Arseny, and Johannes Neugebauer. "Analytical gradients for excitation energies from frozen-density embedding." Physical Chemistry Chemical Physics 18, no. 31 (2016): 20955–75. http://dx.doi.org/10.1039/c6cp00392c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Aquilante, Francesco, and Tomasz A. Wesołowski. "Self-consistency in frozen-density embedding theory based calculations." Journal of Chemical Physics 135, no. 8 (August 28, 2011): 084120. http://dx.doi.org/10.1063/1.3624888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tsuchimochi, Takashi, Matthew Welborn, and Troy Van Voorhis. "Density matrix embedding in an antisymmetrized geminal power bath." Journal of Chemical Physics 143, no. 2 (July 14, 2015): 024107. http://dx.doi.org/10.1063/1.4926650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wesolowski, Tomasz A. "On the Correlation Potential in Frozen-Density Embedding Theory." Journal of Chemical Theory and Computation 16, no. 11 (September 28, 2020): 6880–85. http://dx.doi.org/10.1021/acs.jctc.0c00754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Xu, Zhuo, Yangping Li, Tingting Tan, and Zhengtang Liu. "Embedding germanium in graphene: A density functional theory study." Applied Surface Science 399 (March 2017): 742–50. http://dx.doi.org/10.1016/j.apsusc.2016.12.149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Heuser, Johannes, and Sebastian Höfener. "Communication: Biological applications of coupled-cluster frozen-density embedding." Journal of Chemical Physics 148, no. 14 (April 14, 2018): 141101. http://dx.doi.org/10.1063/1.5026651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tamukong, Patrick K., Yuriy G. Khait, and Mark R. Hoffmann. "Density Differences in Embedding Theory with External Orbital Orthogonality." Journal of Physical Chemistry A 118, no. 39 (August 11, 2014): 9182–200. http://dx.doi.org/10.1021/jp5062495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Linhai, Deyu Zhou, Yulan He, and Zeng Yang. "MERL: Multimodal Event Representation Learning in Heterogeneous Embedding Spaces." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 16 (May 18, 2021): 14420–27. http://dx.doi.org/10.1609/aaai.v35i16.17695.

Full text
Abstract:
Previous work has shown the effectiveness of using event representations for tasks such as script event prediction and stock market prediction. It is however still challenging to learn the subtle semantic differences between events based solely on textual descriptions of events often represented as (subject, predicate, object) triples. As an alternative, images offer a more intuitive way of understanding event semantics. We observe that event described in text and in images show different abstraction levels and therefore should be projected onto heterogeneous embedding spaces, as opposed to what have been done in previous approaches which project signals from different modalities onto a homogeneous space. In this paper, we propose a Multimodal Event Representation Learning framework (MERL) to learn event representations based on both text and image modalities simultaneously. Event textual triples are projected as Gaussian density embeddings by a dual-path Gaussian triple encoder, while event images are projected as point embeddings by a visual event component-aware image encoder. Moreover, a novel score function motivated by statistical hypothesis testing is introduced to coordinate two embedding spaces. Experiments are conducted on various multimodal event-related tasks and results show that MERL outperforms a number of unimodal and multimodal baselines, demonstrating the effectiveness of the proposed framework.
APA, Harvard, Vancouver, ISO, and other styles
39

Pernal, Katarzyna. "Reduced density matrix embedding. General formalism and inter-domain correlation functional." Physical Chemistry Chemical Physics 18, no. 31 (2016): 21111–21. http://dx.doi.org/10.1039/c6cp00524a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bensberg, Moritz, and Johannes Neugebauer. "Density functional theory based embedding approaches for transition-metal complexes." Physical Chemistry Chemical Physics 22, no. 45 (2020): 26093–103. http://dx.doi.org/10.1039/d0cp05188h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dresselhaus, Thomas, Johannes Neugebauer, Stefan Knecht, Sebastian Keller, Yingjin Ma, and Markus Reiher. "Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment." Journal of Chemical Physics 142, no. 4 (January 28, 2015): 044111. http://dx.doi.org/10.1063/1.4906152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dąbrowski, Mikołaj, Piotr Rogala, Ryszard Uklejewski, Adam Patalas, Mariusz Winiecki, and Bartosz Gapiński. "Subchondral Bone Relative Area and Density in Human Osteoarthritic Femoral Heads Assessed with Micro-CT before and after Mechanical Embedding of the Innovative Multi-Spiked Connecting Scaffold for Resurfacing THA Endoprostheses: A Pilot Study." Journal of Clinical Medicine 10, no. 13 (June 30, 2021): 2937. http://dx.doi.org/10.3390/jcm10132937.

Full text
Abstract:
The multi-spiked connecting scaffold (MSC-Scaffold) prototype is the essential innovation in the fixation of components of resurfacing total hip arthroplasty (THRA) endoprostheses in the subchondral trabecular bone. We conducted the computed micro-tomography (micro-CT) assessment of the subchondral trabecular bone microarchitecture before and after the MSC-Scaffold embedding in femoral heads removed during long-stem endoprosthesis total hip arthroplasty (THA) of different bone densities from 4 patients with hip osteoarthritis (OA). The embedding of the MSC-Scaffold in subchondral trabecular bone causes the change in its relative area (BA/TA, bone area/total area ratio) ranged from 18.2% to 24.7% (translating to the calculated density ρB relative change 11.1–14.4%, and the compressive strength S relative change 75.3–122.7%) regardless of its initial density (before the MSC-Scaffold embedding). The densification of the trabecular microarchitecture of subchondral trabecular bone due to the MSC-Scaffold initial embedding gradually decreases with the increasing distance from the apexes of the MSC-Scaffold’s spikes while the spatial extent of this subchondral trabecular bone densification ranged from 1.5 to 2.5 mm (which is about half the height of the MSC-Scaffold’s spikes). It may be suggested, despite the limited number of examined femoral heads, that: (1) the magnitude of the effect of the MSC-Scaffold embedding on subchondral trabecular bone densification may be a factor contributing to the maintenance of the MSC-Scaffold also for decreased initial bone density values, (2) the deeper this effect of the subchondral trabecular bone densification, the better strength of subchondral trabecular bone, and as consequence, the better post-operative embedding of the MSC-Scaffold in the bone should be expected.
APA, Harvard, Vancouver, ISO, and other styles
43

Egidi, Franco, Sara Angelico, Piero Lafiosca, Tommaso Giovannini, and Chiara Cappelli. "A polarizable three-layer frozen density embedding/molecular mechanics approach." Journal of Chemical Physics 154, no. 16 (April 28, 2021): 164107. http://dx.doi.org/10.1063/5.0045574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Kaitai, Bin Wang, and C. C. Jay Kuo. "PEDENet: Image anomaly localization via patch embedding and density estimation." Pattern Recognition Letters 153 (January 2022): 144–50. http://dx.doi.org/10.1016/j.patrec.2021.11.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jacob, Christoph R., and Lucas Visscher. "Calculation of nuclear magnetic resonance shieldings using frozen-density embedding." Journal of Chemical Physics 125, no. 19 (November 21, 2006): 194104. http://dx.doi.org/10.1063/1.2370947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bulo, Rosa E., Christoph R. Jacob, and Lucas Visscher. "NMR Solvent Shifts of Acetonitrile from Frozen Density Embedding Calculations." Journal of Physical Chemistry A 112, no. 12 (March 2008): 2640–47. http://dx.doi.org/10.1021/jp710609m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pavanello, Michele, and Johannes Neugebauer. "Modelling charge transfer reactions with the frozen density embedding formalism." Journal of Chemical Physics 135, no. 23 (December 21, 2011): 234103. http://dx.doi.org/10.1063/1.3666005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pham, Hung Q., Matthew R. Hermes, and Laura Gagliardi. "Periodic Electronic Structure Calculations with the Density Matrix Embedding Theory." Journal of Chemical Theory and Computation 16, no. 1 (December 9, 2019): 130–40. http://dx.doi.org/10.1021/acs.jctc.9b00939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fertitta, Edoardo, and George H. Booth. "Energy-weighted density matrix embedding of open correlated chemical fragments." Journal of Chemical Physics 151, no. 1 (July 7, 2019): 014115. http://dx.doi.org/10.1063/1.5100290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wesolowski, Tomasz A., Sapana Shedge, and Xiuwen Zhou. "Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure." Chemical Reviews 115, no. 12 (April 29, 2015): 5891–928. http://dx.doi.org/10.1021/cr500502v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography