Academic literature on the topic 'Density'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Density.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Density"
Youssef, M. M. A. "Relationship between plant density and population density of Meloidogyne incognita on eggplant." Pakistan Journal of Nematology 37, no. 1 (January 10, 2019): 21–24. http://dx.doi.org/10.18681/pjn.v37.i01.p21-24.
Full textDe Koning, J. R. A., E. J. Bakker, and P. C. Rem. "Sorting of vegetable seeds by magnetic density separation in comparison with liquid density separation." Seed Science and Technology 39, no. 3 (October 1, 2011): 593–603. http://dx.doi.org/10.15258/sst.2011.39.3.06.
Full textShabat, Hafedh Ali, Khamael Raqim Raheem, and Wafaa Mohammed Ridha Shakir. "Blind Steganalysis Method Using Image Spectral Density and Differential Histogram Correlative Power Spectral Density." Journal of Image and Graphics 12, no. 1 (2024): 10–15. http://dx.doi.org/10.18178/joig.12.1.10-15.
Full textLi, Jie, and Si Ming Tu. "Density-equicontinuity and Density-sensitivity." Acta Mathematica Sinica, English Series 37, no. 2 (February 2021): 345–61. http://dx.doi.org/10.1007/s10114-021-0211-2.
Full textKarhausen, L. R. "Incidence Density is no Density." Scandinavian Journal of Social Medicine 21, no. 1 (March 1993): 1–2. http://dx.doi.org/10.1177/140349489302100101.
Full textMcWeeny, Roy. "Density functions and density functionals." Philosophical Magazine B 69, no. 5 (May 1994): 727–35. http://dx.doi.org/10.1080/01418639408240141.
Full textGhosh, Malay, and Partha Sarker. "Density divergence and density convergence." Journal of Statistical Research 56, no. 1 (February 1, 2023): 1–10. http://dx.doi.org/10.3329/jsr.v56i1.63943.
Full textKalmenov, Tynysbek, Aidana Les, and Ulzada Iskakova. "DETERMINATION OF DENSITY OF ELLIPTIC POTENTIAL." Eurasian Mathematical Journal 12, no. 4 (2021): 43–52. http://dx.doi.org/10.32523/2077-9879-2021-12-4-43-52.
Full textMelnyk, Anatoliy, and Volodymyr Saviak. "High Density Highperformance Computing Systems Cooling." Advances in Cyber-Physical Systems 3, no. 2 (November 10, 2018): 112–24. http://dx.doi.org/10.23939/acps2018.02.112.
Full textGaikwad, Anand, Shreya Shreya, and Shivani Patil. "Vehicle Density Based Traffic Control System." International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (April 30, 2018): 511–14. http://dx.doi.org/10.31142/ijtsrd10938.
Full textDissertations / Theses on the topic "Density"
Ucar, Egemen. "Ternary Nanocomposites Of High Density, Linear Low Density And Low Density Polyethylenes." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608446/index.pdf.
Full textAX8900), as organoclay Cloisite®
15A were used. All samples were prepared by a co-rotating twin screw extruder, followed by injection molding. Considering ternary nanocomposites, highest impact strength results were obtained with 10% compatibilizer plus 2% organoclay
highest yield stress, elastic modulus, flexural strength, flexural modulus were obtained with 5% compatibilizer plus 4-6% organoclay. DSC data indicated that addition of organoclay and compatibilizer did not change the melting point remarkably
on the other hand it affected the crystallinity. The organoclay used had no nucleation effect on polyethylene, and the compatibilizer decreased the crystallinity of the matrix. X-ray diffraction showed that in all ternary nanocomposites and in binary nanocomposite of high density polyethylene with organoclay, layer separation associated with intercalation of the clay structure occurred,. The highest increase of interlayer gallery spacing was obtained with 10% compatibilizer plus 2% organoclay, which were 25%, 28% and 27% for HDPE, LLDPE and LDPE matrices respectively.
Smith, Alyson Rae. "Designing density." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28147.
Full textAbraham, Jose P. "Density dynamics: a holistic understanding of high density environments." Kansas State University, 2014. http://hdl.handle.net/2097/17308.
Full textDepartment of Landscape Architecture/Regional and Community Planning
Jason Brody
Today, achieving higher residential densities is an integral part of most discussions on concepts such as sustainability, placemaking, smart growth and new urbanism. It is argued that high density environments can potentially improve quality of life through a range of social benefits. In attempting to achieve these benefits, often times, developments that provide more than a certain number of dwelling units are considered desirable and successful high-density developments. However, understanding high residential density merely in terms of an increase in the number of dwelling units over an area of development might not help realize meaningful social benefits; in fact it could result in problems such as parking constraints, increased vehicular traffic, crowding, and eventually abandonment. This implies a dilemma of understanding high density environments holistically. Using literature review and design exploration as two key research methods, this project aims at resolving this dilemma by presenting a holistic understanding of desirable high-density environments. The research works on the idea that high densities are a matter of design and performance. Through synthesis of literature review and explorative design findings, this research focuses on the qualitative aspects of high density environments that make them meaningful and desirable. Through synthesis of literature review and design findings, the research finds that desirable high density environments should (a) Be Physically Compact; (b) Support Urbanity; and (c) Offer Livability and Sense of Place. These three qualitative aspects of high density environments are critical in determining how well such environments perform. The research further proposes eight meaningful goals and seventeen specific guidelines to achieve aforementioned three qualities that influence the performance of high density developments. In addition to these principles and guidelines, opportunities and challenges posed by explorative design exercises also allows identifying certain supplementary guidelines necessary to strengthen the framework. Together, these findings result in a theoretical framework that may be used as an effective design and evaluation tool in considering high density environments. This framework is named “Density Dynamics” to signify various morphological and socio-economic dynamics involved in a holistic understanding of high density environments.
FERRERO, PIETRO. "Scalar Filtered Mass Density Function for Variable-Density Flows." Doctoral thesis, Politecnico di Torino, 2012. http://hdl.handle.net/11583/2503979.
Full textMorganti, Michele. "Sustainable density : form, built environment, energy = Densità sostenibile : forma, ambiente costruito, energia." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/365041.
Full textLa ricerca esplora significati, proprietà e capacità analitiche del concetto di densità e delle sue possibili interpretazioni nell’ambito dell’architettura e della sostenibilità. Il suo obiettivo è la determinazione di relazioni tra costruito, energia e forma dei tessuti urbani della città compatta mediterranea ricorrendo alla densità quale parametro utile a decifrarne le specificità. A dispetto della sempre maggiore insostenibilità della città odierna, di fronte alla crisi energetica ed ambientale in atto, recenti statistiche hanno confermato il crescente potere attrattivo delle aree metropolitane. Nel contesto della città compatta europea, i nuovi modelli insediativi basati su principi di risparmio energetico rappresentano una percentuale insignificante rispetto alla città esistente che, nel funzionare, incide notevolmente sull’inefficienza dell’intero sistema metropolitano. In questo quadro, potrebbe essere risolutivo identificare un approccio che individui strumenti e metodi progettuali alla scala urbana piuttosto che a quella architettonica, utili a definire condizioni più appropriate e realmente incisivi per la città compatta. Se riferito in primo luogo a tale scala il rapporto tra energia e forma assume un ruolo centrale sulla variazione delle prestazioni energetiche; allo stesso tempo il concetto di densità appare un’efficace strumento di analisi delle prestazioni morfologiche del costruito. La ricerca si compone di cinque parti. La prima analizza la condizione odierna delle dinamiche urbane ed energetiche, per comprendere ruolo e contributo dell’edilizia alla luce dell’avanzamento del pensiero scientifico e degli strumenti operativi disponibili. La seconda affronta il significato e l’evoluzione del concetto di densità quale parametro di misura, strumento progettuale e fondamento teorico, facendo riferimento in particolare alle interazioni con la forma urbana e la sostenibilità. Nella terza si utilizzano le capacità analitiche della densità per comprovare le implicazioni ambientali e verificare l’esistenza di leggi di dipendenza tra indicatori di sostenibilità urbana e densità. La quarta pone le basi per la comprensione delle relazioni tra densità ed energia alla scala urbana. La quinta parte, infine, indaga tali relazioni nei tessuti compatti di Roma e Barcellona declinandole in termini di caratteri formali e costruttivi, con l’ausilio di modellazioni e simulazioni strutturate allo scopo di controllare i corrispondenti fattori. S’illustra l’influenza di morfologia urbana e caratteri tipologico-costruttivi su guadagno solare e domanda energetica per riscaldamento e climatizzazione, individuando per mezzo di differenti definizioni d’indicatori di densità, i più adeguati ad esprimere con queste leggi di variazione affidabili. I risultati evidenziano che il contributo dell’edilizia alla complessa questione energetica posta dai sistemi metropolitani deve concentrarsi sulla riduzione della domanda - ancor prima che su consumo e impatto - operando con strumenti e metodi interscalari per la trasformazione della città esistente. La densità ha un ruolo privilegiato nel rapporto forma-sostenibilità per capacità interpretative e significati assunti quale categoria teorica e progettuale. A scala metropolitana, indicatori di sostenibilità urbana e densità non sempre mostrano chiare relazioni con le implicazioni ambientali ed energetiche. Morfologia, tipologia e aspetti costruttivi sono i fattori che più intervengono sulla variazione delle prestazioni energetiche dei tessuti urbani. Analizzarli mediante parametri di densità conduce alla comprensione del diverso comportamento energetico, fornendo un contributo agli strumenti d’indagine a scala urbana e favorendo una connotazione più efficiente del costruito riconducibile alla dimensione della densità sostenibile. Il metodo e gli strumenti individuati si offrono come base di conoscenza per trasformazioni consapevoli della città compatta mediterranea
El presente estudio indaga significados, propiedad y capacidad analíticas del concepto de densidad y de su posible interpretación en el ámbito de la arquitectura y de la sostenibilidad. El principal objetivo es determinar las relaciones entre ambiente construido, energía y forma de los tejidos urbanos recurriendo a la densidad como parámetro útil para descifrar sus especificidades de la ciudad compacta mediterránea. A pesar de una siempre mayor insostenibilidad de la ciudad actual, frente a la crisis energética y ambiental en curso, estadísticas recientes han confirmado el creciente poder atractivo de las metrópolis. En el contexto de la ciudad europea, los modelos de asentamiento actuales, basados en principios de ahorro energético, constituyen un porcentaje insignificante frente a la ciudad existente que, funcionando, grava notablemente en consumo el sistema metropolitano. En esta situación, podría ser resolutivo identificar un acercamiento que identifique herramientas y métodos para el proyecto a escala urbana, que sean útiles para definir condiciones más apropiadas y sean realmente eficaces para la ciudad compacta. Si se refiere en primer lugar a dicha escala, la relación entre energía y forma asume una función central para la variabilidad de la prestación energética; al mismo tiempo el concepto de densidad parece una herramienta eficaz para analizar las prestaciones morfológicas del ambiente construido. La investigación se compone de cinco partes. La primera analiza las dinámicas urbanas y energéticas actuales, para entender capacidad y contribución de la construcción a la luz del avance del pensamiento científico y de las herramientas disponibles. La segunda trata el significado y la evolución del concepto de densidad como parámetro de medida, herramienta del proyecto y origen teórico de la arquitectura, con particular referencia a las interacciones con la forma urbana y la sostenibilidad. En la tercera se utilizan las capacidades analíticas de la densidad para comprobar las repercusiones ambientales y verificar la existencia de leyes de dependencia entre indicadores de sostenibilidad urbana y densidad. La cuarta explica las relaciones entre densidad y energía a la escala urbana. La quinta, finalmente, estudia estas relaciones en los tejidos compactos de Roma y Barcelona, explicándolas en función de forma i construcción, con el auxilio de modelos y simulaciones. Se muestra la influencia de la morfología urbana y las características tipológicas y constructivas sobre la captación solar y la demanda energética por calefacción y climatización, individualizando entre diferentes indicadores de densidad los más apropiados para representar tendencias fiables. Los resultados prueban que la contribución de la construcción a la compleja cuestión energética tiene que basarse en la reducción de la demanda - antes que del consumo y del impacto - utilizando herramientas y métodos multi-escalares para la transformación de la ciudad existente. La densidad tiene una función privilegiada en la relación forma-sostenibilidad que depende de sus capacidades analíticas y significados en calidad de categoría teórica y del proyecto. A escala metropolitana, los indicadores de sostenibilidad urbana y densidad no siempre muestran una relación clara con las repercusiones ambientales y energéticas. Morfología, tipología y aspectos constructivos son los factores que más influyen sobre la variación de la prestación energética de los tejidos urbanos. Analizarlos recurriendo a parámetros de densidad, lleva a entender el diferente comportamiento energético, contribuye a las investigaciones a escala urbana y favorece la eficiencia del ambiente construido, con lo cual se reconduce el análisis al concepto de densidad sostenible. La metodología y las herramientas individualizadas se ofrecen como base de conocimiento para orientar las transformaciones de la ciudad compacta mediterránea.
Helbig, Nicole. "Orbital functionals in density-matrix- and current-density-functional theory." [S.l.] : [s.n.], 2006. http://www.diss.fu-berlin.de/2006/442/index.html.
Full textOliver, Matthew. "Density, temperature and magnetic field measurements in low density plasmas." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:df217453-1e10-4684-beb7-83c1bcecf285.
Full textHultgren, Kristoffer. "Cosmological Density Perturbations." Thesis, Karlstad University, Faculty of Technology and Science, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-925.
Full textThis thesis presents a brief review of gravitation and cosmology, and then gives an overview of the theory of cosmological perturbations; subsequently some applications are discussed, such as large-scale structure formation. Cosmological perturbations are here presented both in the Newtonian paradigm and in two di¤erent relativistic approaches. The relativistic approaches are (i) the metric approach, where small variations of the metric tensor are considered, and (ii) the covariant approach, which focusses on small variations of the curvature. Dealing with these two approaches also involves addressing the gauge problem how to map an idealized world model into a more accurate world model.
Færevåg, Åshild. "Predicting Snow Density." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20666.
Full textKelly, Frederick Alan. "Tokamak density limits." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/16628.
Full textBooks on the topic "Density"
McBride, R. A. Soil degradation risk indicator: Soil compaction component. Ottawa: Agriculture and Agri-Food Canada, 1997.
Find full textKekarainen, Pertti. Density. Frankfurt: Voges and Deisen Gallery, 2001.
Find full textErdahl, Robert, and Vadene H. Smith, eds. Density Matrices and Density Functionals. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7.
Full textS, MacLean Alex, ed. Visualizing density. Cambridge, Mass: Lincoln Institute of Land Policy, 2007.
Find full textKirk, Andy. Density Plot. 1 Oliver’s Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2016. http://dx.doi.org/10.4135/9781529776812.
Full textJohnson, Erin R., ed. Density Functionals. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19692-3.
Full textHilde, Heynen, and Vanderburgh David, eds. Inside density. Brussels: Lettre volée, 2003.
Find full textInternational Colloquium on Architecture and Cities. Inside density. Brussels: La lettre volée, 2002.
Find full textBellingham School District No. 501 (Wash.). Density, buoyancy. Bellingham, Wash: The Schools, 1989.
Find full textKallarackal, Jose, and Fernando Ramírez. Wood Density. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-61030-1.
Full textBook chapters on the topic "Density"
Löwdin, P. O. "A Tribute to A. John Coleman — The “Tame” Mathematician." In Density Matrices and Density Functionals, 1–4. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_1.
Full textPercus, J. K. "Griffiths Inequalities for Fermion Systems." In Density Matrices and Density Functionals, 193–212. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_10.
Full textRuskai, Mary Beth. "Entropy of Reduced Density Matrices." In Density Matrices and Density Functionals, 213–29. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_11.
Full textRosina, M., B. Golli, and R. M. Erdahl. "A Lower Bound to the Ground State Energy of a Boson System with Fermion Source." In Density Matrices and Density Functionals, 231–48. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_12.
Full textLarson, Everett G. "Reduced Density Operators, Their Related von Neumann Density Operators, Close Cousins of These, and their Physical Interpretation." In Density Matrices and Density Functionals, 249–74. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_13.
Full textValdemoro, C. "Theory and Practice of the Spin-Adapted Reduced Hamiltonians (SRH)." In Density Matrices and Density Functionals, 275–88. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_14.
Full textLudeña, Eduardo V. "Variational Principle with Built-In Pure State N-Representability Conditions. The N-Electron Case." In Density Matrices and Density Functionals, 289–304. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_15.
Full textCohen, Leon. "Wigner Distributions as Representations of the Density Matrix." In Density Matrices and Density Functionals, 305–25. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_16.
Full textThakkar, Ajit J., Anthony C. Tanner, and Vedene H. Smith. "Inter-Relationships Between Various Representations of One-Matrices and Related Densities: A Road Map and An Example." In Density Matrices and Density Functionals, 327–37. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_17.
Full textZaremba, E. "Current Problems in Density Functional Theory." In Density Matrices and Density Functionals, 339–57. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3855-7_18.
Full textConference papers on the topic "Density"
Desport, Olivier, and John Crowe. "Improved Density Processing for LWD Density." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/102404-ms.
Full textLalazissis, G. A. "Density-dependent covariant energy density functionals." In NUCLEAR STRUCTURE AND DYNAMICS 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4764244.
Full textAkhlaghi-Bouzan, Milad, and Aristide Dogariu. "Computational Optical Density-Density Correlation Sensing." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.sth3o.7.
Full textBesov, Y. "Multiple Beam Klystrons." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59034.
Full textMcDermott, D. B., A. T. Lin, Y. Hirata, S. B. Harriet, Q. S. Wang, and N. C. Luhmann. "High power harmonic gyro-TWT amplifiers in mode-selective circuits." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59035.
Full textArman, M. Joseph. "High efficiency long pulse gigawatt sources of HPM radiation." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59022.
Full textBearzatto, C., A. Beunas, and G. Faillon. "Long pulse and large bandwidth multibeam klystron." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59000.
Full textSmithe, David N., Mike Bettenhausen, Larry Ludeking, G. Caryotakis, Daryl Sprehn, and Glenn Scheitrum. "3-D simulations of multiple beam klystrons." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59001.
Full textYaogen, Ding, Peng Jun, Zhu Yunshu, and Shi Shaoming. "Theoretical and experimental research on multi-beam klystron." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59002.
Full textHaimson, J., B. Mecklenburg, G. Stowell, K. E. Kreischer, and I. Mastovsky. "Preliminary performance of the MKII 17 GHz traveling wave relativistic klystron." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59003.
Full textReports on the topic "Density"
Mattsson, Ann Elisabet, Normand Arthur Modine, Michael Paul Desjarlais, Richard Partain Muller, Mark P. Sears, and Alan Francis Wright. Beyond the local density approximation : improving density functional theory for high energy density physics applications. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/976954.
Full textDiebold, Francis, Todd Gunther, and Anthony Tay. Evaluating Density Forecasts. Cambridge, MA: National Bureau of Economic Research, October 1997. http://dx.doi.org/10.3386/t0215.
Full textHaigh, R. E., G. F. Jacobson, and S. Wojtczuk. High density photovoltaic. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/572620.
Full textDanos, Michael. Irreducible density matrices. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.85-3270.
Full textFermi Research Alliance. High Density Chip Interconnect Technology Using High Density Glass Interposers. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1569232.
Full textCarroll, Jay, Isaac A. Valdez, Todd Huber, Aron Robbins, and Brad Boyce. Sigma Labs Tensile Charpy Density Thermal Energy Density Results NMSBA Project. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1481519.
Full textHofman, G. L. High density dispersion fuel. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/373920.
Full textYoung, P., H. A. Baldis, P. Cheung, W. Rozmus, W. Kruer, S. Wilks, S. Crowley, W. Mori, and C. Hansen. Critical Density Interaction Studies. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/15013547.
Full textKlasky, Marc Louis, and Dean Lawrence Sanzo. Mass and Density Relationships. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1183955.
Full textMarchette, David J., Carey E. Priebe, George W. Rogers, and Jeffrey L. Solka. Filtered Kernel Density Estimation. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada288293.
Full text