Academic literature on the topic 'Dense collagen'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dense collagen.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dense collagen"
Zou, Chao, Wen Jian Weng, Xu Liang Deng, Kui Cheng, Pi Yi Du, Ge Shen, and Gao Rong Han. "Influence of Collagen Status on Microstructures of Porous Collagen/TCP Composites." Key Engineering Materials 330-332 (February 2007): 495–98. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.495.
Full textShort, Ben. "Dense collagen kindles invadopodia formation." Journal of Cell Biology 208, no. 3 (February 2, 2015): 252. http://dx.doi.org/10.1083/jcb.2083iti3.
Full textKeene, D. R., L. Y. Sakai, G. P. Lunstrum, N. P. Morris, and R. E. Burgeson. "Type VII collagen forms an extended network of anchoring fibrils." Journal of Cell Biology 104, no. 3 (March 1, 1987): 611–21. http://dx.doi.org/10.1083/jcb.104.3.611.
Full textGiraud Guille, Marie Madeleine, Christophe Helary, Sylvain Vigier, and Nadine Nassif. "Dense fibrillar collagen matrices for tissue repair." Soft Matter 6, no. 20 (2010): 4963. http://dx.doi.org/10.1039/c0sm00260g.
Full textChicatun, Florencia, Claudio E. Pedraza, Chiara E. Ghezzi, Benedetto Marelli, Mari T. Kaartinen, Marc D. McKee, and Showan N. Nazhat. "Osteoid-Mimicking Dense Collagen/Chitosan Hybrid Gels." Biomacromolecules 12, no. 8 (August 8, 2011): 2946–56. http://dx.doi.org/10.1021/bm200528z.
Full textTraub, W., L. Zylberberg, V. de Buffrenil, T. Arad, and S. Weiner. "Collagen-apatite complexes in very dense bones." Acta Crystallographica Section A Foundations of Crystallography 58, s1 (August 6, 2002): c172. http://dx.doi.org/10.1107/s0108767302091900.
Full textFatiroi, Nurul Syazwanie, Abdul Aziz Jaziri, Rossita Shapawi, Ruzaidi Azli Mohd Mokhtar, Wan Norhana Md Noordin, and Nurul Huda. "Biochemical and Microstructural Characteristics of Collagen Biopolymer from Unicornfish (Naso reticulatus Randall, 2001) Bone Prepared with Various Acid Types." Polymers 15, no. 4 (February 20, 2023): 1054. http://dx.doi.org/10.3390/polym15041054.
Full textAplin, J. D., S. Campbell, and T. D. Allen. "The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition." Journal of Cell Science 79, no. 1 (November 1, 1985): 119–36. http://dx.doi.org/10.1242/jcs.79.1.119.
Full textAhmed, Zara, Lydia C. Powell, Navid Matin, Andrew Mearns-Spragg, Catherine A. Thornton, Ilyas M. Khan, and Lewis W. Francis. "Jellyfish Collagen: A Biocompatible Collagen Source for 3D Scaffold Fabrication and Enhanced Chondrogenicity." Marine Drugs 19, no. 8 (July 22, 2021): 405. http://dx.doi.org/10.3390/md19080405.
Full textEbelt, Nancy D., Vic Zamloot, Edith Zuniga, Kevin B. Passi, Lukas J. Sobocinski, Cari A. Young, Bruce R. Blazar, and Edwin R. Manuel. "Collagenase-Expressing Salmonella Targets Major Collagens in Pancreatic Cancer Leading to Reductions in Immunosuppressive Subsets and Tumor Growth." Cancers 13, no. 14 (July 16, 2021): 3565. http://dx.doi.org/10.3390/cancers13143565.
Full textDissertations / Theses on the topic "Dense collagen"
Lama, Miléna. "Structure-properties relationship in dense collagen gels produced by injection of spray-dried collagen." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS559.pdf.
Full textInjection of dense collagen to obtain 3D biomimetic scaffolds in terms of structure and mechanical properties is challenging for regenerative medicine since it would avoid open-surgery. It is well-known that highly concentrated collagen solutions can form liquid crystal mesophases with tissue-like geometries. Thus, it is possible to obtain 3D collagen gels in vitro with better mechanical properties, without widely used chemical crosslinkers that may lead to inflammatory responses. Nevertheless, the injection of highly concentrated collagen solutions is unlikely due to their high viscosity.How to combine biomimetism and injectability of dense collagen gels?To achieve this goal we concentrate acidic collagen solutions by spray-drying, forming dense collagen beads. A simple weighing of the beads determines the concentration of the gels. Mixed with an aqueous solvent, the beads are injected into a mold mimicking a tissue defect. The fibrillogenesis in vitro is induced within the collagen solutions that transform into stiff gels. Electron and polarized light microscopies show organizations resulting from collagen self-assembly at macroscopic length scale depending on the collagen concentration i.e. from 3wt% to 8wt%. Mechanical tests results reveal tissue-like properties strongly linked to collagen fibrils ultrastructure. This study opens perspectives in tissue repair in setting the framework of a library made of biomimetic (anisotropic, dense and stiff) and injectable collagen gels, enabling minimally invasive procedures
Metzmacher, Iris. "Enzymatic Degradation and Drug Release Behavior of Dense Collagen Implants." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-45495.
Full textGhezzi, Chiara Elia. "Dense collagen-based tubular tissue constructs for airway tissue engineering." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114489.
Full textÀ ce jour, seuls les tissus synthétisés de forme plane, comme les substituts dermiques et épidermiques, ont réussi à percer le marché, surtout en raison de leur complexité relativement faible et de leur géométrie simple. À l'opposé, les exigences mécaniques et fonctionnelles des tissus tubulaires imposent un plus grand nombre de contraintes que les tissus planaires. Principales composantes de plusieurs systèmes biologiques (circulatoire, urinaire ou respiratoire), les tissus tubulaires sont non seulement plus complexes sur le plan de la géométrie et de l'architecture tissulaire, mais ils sont aussi composés de cellules de différents types. De plus, ils sont continuellement exposés à des stimuli mécaniques cycliques. Voilà pourquoi il est essentiel de comprendre les milieux physiologiquement équivalents et de pouvoir les reproduire si on veut obtenir des néotissus ou des modèles tissulaires fonctionnels sur le plan mécanique et biologique.La présente recherche de doctorat visait donc à produire et à caractériser des constructions tubulaires 3D à base de CD, les tissus des voies respiratoires dans des conditions de culture physiologiquement pertinentes. Le premier objectif était de concevoir des constructions à base de CD et d'évaluer la réaction des fibroblastes ensemencés à la CP et à la culture dans un milieu à base de CD; de fabriquer et de caractériser des hybrides multicouches CD-fibroïne-CD ensemencés de cellules souches mésenchymateuses (CSM); et d'évaluer la différenciation.Le deuxième objectif de la présente recherche était de concevoir et de caractériser des constructions tubulaires faites de collagène dense (CTCD). Le troisième objectif était d'implanter des constructions tubulaires à base de CD comme modèle tissulaire des voies respiratoires par l'évaluation de la réponse des cellules musculaires lisses (CML) des voies respiratoires dans les CTCD en présence de stimuli mécaniques physiologiques.En leur fournissant une niche physiologiquement équivalente, et grâce à la stimulation de l'écoulement pulsatoire, in vitro, les CML des voies respiratoires ont pris leur orientation naturelle, maintenu leur phénotype contractile et amélioré les propriétés mécaniques de la CTCD grâce au remodelage matriciel. La capacité de la CTCD à transférer la stimulation physiologique pulsatile aux CSM résidentes a donné une orientation des cellules s'apparentant à leur orientation naturelle et induit l'expression phénotypique.En conclusion, les constructions tubulaires à base de collagène dense qui ont été développées et implantées sont parvenues à fournir in vitro un modèle tissulaire des voies respiratoires pour d'éventuelles études précliniques visant à reproduire les conditions physiologiques et pathologiques.
Alekseeva, T. "Introducing controllable 3D features into dense collagen constructs for tissue engineering applications." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1344165/.
Full textAlcock, Rebekah D. "Dietary collagen intake and sources for support of dense connective tissues in athletes." Thesis, Australian Catholic University, 2019. https://acuresearchbank.acu.edu.au/download/735dcbe3102bcc4d19ddd84efe04e7267e078206d002757b8221417651e13847/5376764/Alcock_2019_Dietary_collagen_intake_and_sources_for_Redacted.pdf.
Full textMarelli, Benedetto. "In vitro mineralization of an osteoid-like dense collagen construct for bone tissue engineering." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106503.
Full textDes millions de personnes dans le monde souffrent de maladies osseuses. Les techniques chirurgicales actuelles font appel à l'autogreffe, à l'allogreffe, à la xénogreffe et à la greffe de matériaux artificiels. Cependant, comme ces interventions comportent plusieurs inconvénients, l'ingénierie tissulaire de l'os (ITO) est apparue comme une solution prometteuse. Comme l'os est un biocomposite constitué de nanofibres de collagène de type I renforcées de nanocristaux d'hydroxylapatite carbonatée (HAC), les gels de collagène de type I représentent un choix attrayant pour la production de ces matrices. Toutefois, la minéralisation in vivo de ces matrices de collagène est difficile et la minéralisation in vitro n'est obtenue qu'après avoir soustrait les matrices des contraintes physiologiques, ce qui limite leur utilisation.Ces travaux s'appuyaient sur l'hypothèse selon laquelle la densité en fibrine du collagène (DFC) influe sur le microenvironnement et les propriétés physiques de la charpente de gels de collagène. Afin de vérifier cette hypothèse, et d'atteindre l'objectif premier de l'essai, la minéralisation de gel de collagène d'une DFC croissante a été réalisée dans du liquide organique simulé (LOS). Les gels de collagène d'une DFC physiologique ont permis d'obtenir une plus grande minéralisation et a aussi influé sur les propriétés électrostatiques des gels. Cette découverte suggère donc que l'augmentation de la DF du gel de collagène a permis de créer un microenvironnement plus physiologique, ce qui a facilité la formation minérale et a permis de valider le modèle proposé. Comme deuxième objectif, la minéralisation de gels de collagène dense a été améliorée et accélérée en reproduisant le rôle des protéines anioniques (PANC) au sein des ostéoïdes indigènes. Deux stratégies ont été mises en œuvre : étude de l'influence du pH des fibrines du collagène et de polypeptides anioniques dérivés de la fibroïne. Premièrement, la charge de la molécule de collagène étant légèrement positive dans un milieu doté d'un pH physiologique l'hypothèse est que un milieu dont le pH se situe au-dessus de son point isoélectrique, a été posée et validée. L'effet du pH alcalin durant la formation de fibrines sur la minéralisation du gel de collagène dense a été constaté par la quantité d'HAC formée; la matrice s'était largement minéralisée au jour 3. De plus, la minéralisation a significativement augmenté le module apparents des gels, rendant les structures autoportantes. Deuxièmement, la minéralisation de gels de collagène dense additionnés de 10 % poids de polypeptides anioniques dérivés de la fibroïne a été évaluée dans du LOS. De l'apatite s'était formée dans les 6 heures et des cristaux d'HAC étaient distribués de façon homogène dans les rouleaux de gels au jour 3.Le troisième objectif a été la mise au point d'une approche bio-inorganique en vue d'améliorer et d'accélérer la minéralisation du collagène. Des gels de collagène dense ont été additionnés de micro- et de nanoparticules de verre bioactif (μBG et nBG, respectivement) 45S5 à base de silice. Les gels de collagène dense additionnés de μBG préparés dans un LOS ont produit une importante minéralisation de la matrice de collagène. De plus, l'effet des nBG sur la minéralisation du collagène dense et son effet sur des cellules préostéoblastiques ensemencées ont aussi été étudiés. La formation d'apatite a immédiatement été détectée par la présence de gels hybrides de collagène dense contenant des nBG. Au jour 7, le module à la compression de la construction de gel hybride était 13 fois plus élevé. De plus, l'activité métabolique des MC3T3 cellules a été altérée par la présence des nBG, indiquant une différenciation ostéogénique accélérée en l'absence de suppléments ostéogéniques.En conclusion, le rôle des matrices de collagène à microstructures dans la minéralisation ayant été ignoré jusqu'ici, la présente dissertation doctorale jette un nouvel éclairage sur la minéralisation du collagène.
Chicatun, Florencia. "In vitro generation of a bilayered dense collagen / chitosan hydrogel scaffold as an osteochondral model." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121353.
Full textLe succès de régénération du tissu ostéochondral requiert le développement des matrices stratifiées afin d'imiter la composition biophysiquechimiques du cartilage et l'os sous-chondral. Les hydrogels de collagène de type I (Coll) reconstitués in vitro sont grandement utilisés en tant que matrices biomimétiques pour le génie tissulaire (GT). En raison de leur nature hautement hydratée s'affaissent à cause des forces gravitationnelles (auto-compression; SC). La compression plastique (CP) est un procédé rapide qui génère des matrices denses avec un pourcentage massique de solide que se rapprochant du taux de solide des tissus naturels. Cette recherche de doctorat a pour but de développer et caractériser un modèle à deux couches pour des applications en GT ostéochondral basés sur l'incorporation de GAGs analogiques (i.e. chitosan; CTS) dans un hydrogel Coll dense afin de reproduire de près la matrice extra-cellulaire (MEC) naturelle de l'interface ostéochondrale. Le premier objectif était de développer et d'optimiser un système co-gélifiant pour la génération de gels hybrides de Coll/CTS hautement hydraté avec diverses proportions de CTS. In a été démontré que la CP est un procédé rapide capable de générer des gels hybrides de Coll/CTS dense avec un taux de solide accru, un module de compression et une résistance à la dégradation enzimatique, le tout dicté par la teneur en CTS.Comme second objectif l'effet de l'incorporation de CTS sur la modulation de la fonction de cellules ensemencées pré-ostéoblastes MC3T3-E1 à l'intérieur de gels Coll denses a été étudié. Les hydrogels de Coll/CTS dense ont permis la viabilité et la prolifération de cellules ainsi que leur différentiation dans des conditions ostéogéniques. Ces résultats démontrent que les hybrides de Coll/CTS denses sont une approche pour l'assemblage de structures de type ostéoïdes en tant que modèle in vitro pour GT. En tant que troisième objectif l'effet de l'incorporation de CTS à des disques de gel Coll dense afin de supporter la différentiation de chondro-progéniteurs RCJ3.1C5.18 (RCJ) a été étudié. L'immunohistochimie du colagène de type II, combiné avec la coloration avec du Safranin O et la quantification des GAGs, ont indiqué que la différentiation des chondro-progéniteurs est meilleures avec les matrices de Coll/CTS. Les résultats ont démontré la pertinence de les hybrides de Coll/CTS denses pour être utilisé comme modèles in vitro pour la réparation du cartilageLe quatrième objectif était de développer une structure à deux couches d'hydrogel de Coll/CTS denses avec des ratios se rapprochant celui de Coll/GAGs se retrouvant dans l'interface ostéochondrale. De plus l'optimisation des conditions de co-culture permettant de supportent les réactions concurrentes de chondrogénèse et d'ostéogénèse. Les résultats démontrent la possibilité d'utiliser les hydrogels de Coll/CTS denses à deux couches en tant que modèles ostéochondraux in vitro. En tant que cinquièmes objectif l'effet des CTS sur la consolidation du gel de colagène a été étudié en surveillant la distribution spatiotemporelle de billes fluorescentes par microscopie confocale. Le modèle de Happel a été utilisé afin de prédire la perméabilité hydraulique des hydrogels. Aussi l'effet de la charge fixe des CTS sur les hydrogels Coll/CTS a été étudié par leur caractérisation structurelle, mécanique et de gonflement dans des conditions isotoniques et hypertoniques. Les résultats ont indiqué la capacité d'un analogue de GAG chargé à s'adapter aux propriétés biophysicochimiques des hydrogels Coll, offrant un modèle de tissus in vitro pour diverses applications de GT. En conclusion la structure à deux couches de Coll/CTS dense développée et caractérisée dans le cadre de ce doctorat a procuré un milieu de culture de cellules in vitro reproduisant la MEC complexe. Cette structure pourrait potentiellement être utilisé cliniquement en tant qu'implant biomimétique avec des capacités régénératrices ostéochondrales.
Serpooshan, Vahid. "Control of dense collagen gel scaffolds for tissue engineering through measurement and modeling of hydraulic permeability." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97117.
Full textParmi les biopolymères naturels couramment utilisés, les gels de collagène de type I se sont révélés être parmi les matrices biomimétiques les plus prometteuses pour l'ingénierie tissulaire. Cependant, le succès des applications thérapeutiques des matrices collagéniques nécessite une meilleure compréhension de la relation entre leur microstructure et leurs propriétés mécaniques. C'est pourquoi une méthode précise permettant de moduler la microstructure du gel de collagène est nécessaire pour pouvoir espérer atteindre les propriétés optimales de la matrice pour des applications médicales diverses. Cette thèse de doctorat décrit le développement et l'évaluation d'une nouvelle approche pour produire des gels de collagène avec une microstructure définie. Cette méthode permet de quantifier la perméabilité hydraulique (k) afin d'optimiser les propriétés de la matrice pour des applications en ingénierie tissulaire. Il a émis l'hypothèse que la mesure de k peut être utilisée pour étudier le rôle de la microstructure dans les propriétés du gel de collagène ainsi que la fonction cellulaire et les interactions matrice-cellules a été formulée.Appliquant des différents niveaux de compression plastique (PC) à des gels de collagène a entraîné une augmentation de la densité de fibrillaire, réduit les valeurs de k dérivées du modèle de Happel, augmentation de la rigidité du gel, stimulé l'activité métabolique des MSC, la différenciation ostéogénique et le dépôt de minéral, alors que la contraction du gel induite par les cellules a été réduite. Ainsi, les gels de collagène qui présentent une valeur de k plus faible et des valeurs de rigidité plus élevées ont présenté un potentiel plus élevé pour des applications en ingénierie tissulaire osseuse. Corréler la microstructure du gel de collagène, la perméabilité, et la fonction des fibroblastes cultivés dans des gels de collagène a indiqué que l'augmentation du niveau de PC résultait en la diminution de la taille des pores et une augmentation du diamètre des faisceaux de fibres. Diminution des valeurs de k résultait en une diminution de la contraction du gel et une augmentation de l'activité cellulaire métabolique. C'est pourquoi la fonction des fibroblastes, cultivés à l'intérieur de matrices de collagène, peut être optimisée en réalisant une balance entre les propriétés de microstructure, définie par k et par la densité cellulaire.Développement d'un modèle micromécanique pour mesurer la valeur expérimentale de k des gels de collagène pendant l'auto-compression radiaire confinée (SC) a révélé la formation d'une lamelle de collagène dense à la limite de l'expulsion de fluide, générant ainsi un model à deux couches. En appliquant la perte de masse de gel à la loi de Darcy, les valeurs expérimentales de k de la lamelle, ainsi que l'épaisseur de la lamelle (c) et hydratée couche de gel (b) ont été mesurés. Une augmentation soit au niveau de compression ou de temps de compression résultait en une diminution de k, diminution de b, et une augmentation de c.En conclusion, la compression contrôlée des gels hydratés de collagène peut être utilisée afin de produire des matrices multicouches biomimétiques présentant une microstructure définie et des valeurs de perméabilité permettant d'atteindre des propriétés optimales pour des applications en ingénierie tissulaire.
Serpooshan, Vahid. "Control of dense collagen gel scaffolds for tissue engineering through measurement and modelling of hydraulic permeability." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111921.
Full textCorrelating between collagen gel microstructure, k, and fibroblast function within collagen gels indicated that increasing the level of PC yielded a reduction in pore size and an increase in fibril bundle diameter. Decrease in k values resulted in a decrease in gel contraction and an increase in cell metabolic activity. An increase in cell density accelerated contraction. Therefore, fibroblast function within collagen gels can be optimised by a balance between the microstructure, k, and cell seeding density.
Developing a micromechanical model to measure experimental k of collagen gels during confined compression revealed the formation of a dense collagen lamella at the fluid expulsion boundary, thereby generating a two-layer model. By applying gel mass loss into Darcy's law, experimental k values of the lamella, along with the thickness of lamella (c) and hydrated gel layer (b) were measured. An increase in either compression level or compression time resulted in a decrease in k, decrease in b, and an increase in c. In conclusion, controlled compression of collagen gels can be used to produce multi-layered biomimetic scaffolds with defined microstructures and k in order to attain optimal properties for tissue engineering applications.
Camman, Marie. "Hydrogels de collagène dense structurés par impression 3D pour modéliser la matrice extracellulaire musculaire et cardiaque dans la Dystrophie Musculaire de Duchenne." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS447.
Full textDuchenne Muscular Dystrophy is a rare genetic disease characterized by progressive degeneration of striated muscles, notably skeletal and cardiac. At the cellular level, the absence of dystrophin disturbs the integrity of the plasma membrane, cell signaling, and consequently muscle contraction. At the tissue level, these changes result in muscle weakness and a disturbance of the extracellular matrix which becomes rigid and loses its anisotropic organization with reduced porosity. The matrix plays a crucial role in the evolution of the disease and is often neglected in existing models. The matrix plays a crucial role in the evolution of the disease and is often neglected in existing models. This project aims to develop a new tissue model that considers these structural changes in ECM to improve our understanding of the pathology and discover novel therapeutic solutions. First, the 3D printing of dense type I collagen generated a healthy extracellular matrix model. Its parameters were adjusted to reproduce the physiological matrix, i.e., a stiffness of 10 kPa, anisotropy, and porosity. Dense collagen printing allows collagen molecules alignment and generates porosity. Then, its pathological counterpart could be synthesized by modifying the printing and gelling parameters of collagen to get a matrix with a 50 kPa stiffness, isotropic, and non-porous. In vivo, the muscle and heart cells are physiologically arranged in bundles. A cellularized cylindrical pore generated by molding reproduced this morphology within the matrices. To mimic the physiological conditions, the challenge was to recreate a joined microtissue with densely-packed cells within these pores. We obtained a cardiac and a muscular microtissue with both types of matrices (healthy or pathological) using human cardiomyocytes derived from induced pluripotent stem cells or murine myoblasts. For the muscle microtissue, the healthy cells seeded in the pathological matrix showed high stress due to hypoxia, associated with cell cycle arrest and weak differentiation into myotubes. For the cardiac microtissue, cells seeded in the pathological model had irregular beatings when stimulated. In addition, the matrices were adapted to a microfluidic chip to ensure the perfusion of the culture medium through the pores created by the 3D printing. This perfusion enhances nutrient and oxygen diffusion in the model. These new cardiac and muscular tissue models take into account cell/cell and cell/matrix interactions in the evolution of the pathology. Thus, the different combinations between healthy/pathological matrix and healthy/mutated cells will allow us a better understanding of the pathology to discover novel and adapted therapeutic strategies
Books on the topic "Dense collagen"
Hoyle, Denise, and Emma Mason. Denise Hoyle : An Artist at Her Kitchen Table: Collages and Other Works. Bread and Butter Press, 2018.
Find full textBook chapters on the topic "Dense collagen"
Pavelka, Margit, and Jürgen Roth. "Dense Connective Tissue: Collagen Bundles in the Cornea." In Functional Ultrastructure, 282–83. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99390-3_145.
Full textLe Touze, Anne. "Scars in Pediatric Patients." In Textbook on Scar Management, 397–404. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_46.
Full textWeinberg, Crispin B., Kimberlie D. O’Neil, Robert M. Carr, John F. Cavallaro, Bruce A. Ekstein, Paul D. Kemp, Mireille Rosenberg, Jose P. Garcia, Michael Tantillo, and Shukri F. Khuri. "Matrix Engineering: Remodeling of Dense Fibrillar Collagen Vascular Grafts in Vivo." In Tissue Engineering, 190–98. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4615-8186-4_18.
Full textPark, Hyeree, Derek H. Rosenzweig, and Showan N. Nazhat. "Dense collagen-based scaffolds for soft tissue engineering applications." In Tissue Engineering Using Ceramics and Polymers, 771–802. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-820508-2.00010-6.
Full textVedam-Mai, Vinata, Anthony T. Yachnis, Michael Ullman, Saman P. Javedan, and Michael S. Okun. "Fibrous Scarring and Deep Brain Stimulation Lead Implantation." In Deep Brain Stimulation, edited by Laura S. Surillo Dahdah, Padraig O’Suilleabhain, Hrishikesh Dadhich, Mazen Elkurd, Shilpa Chitnis, and Richard B. Dewey, 137–40. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780190647209.003.0028.
Full textVincent, Maria, Jose Quintero, Henry D. Perry, and James M. Rynerson. "Biofilm Theory for Lid Margin and Dry Eye Disease." In Ocular Surface Diseases - Some Current Date on Tear Film Problem and Keratoconic Diagnosis. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.89969.
Full textVincent, Maria, Jose Quintero, Henry D. Perry, and James M. Rynerson. "Biofilm Theory for Lid Margin and Dry Eye Disease." In Ocular Surface Diseases - Some Current Date on Tear Film Problem and Keratoconic Diagnosis. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.89969.
Full textRicard-Blum, Sylvie, *. Bernard Dublet, and Michel van der Rest. "Collagen VII and the formation of anchoring fibrils." In Unconventional Collagens, 25–41. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780198505457.003.0003.
Full textLima, Larissa Luana Lopes, Regina Moura de Oliveira, Ana Hester Silva Santos, Maria Eduarda Gomes Freires, Jonatas Monteiro Simião, Alexandrino José de Carvalho Neto, Erasmo de Almeida Júnior, and Émerson de Oliveira Ferreira. "Incidence of metopism in dried skulls of adults from the osteological collection of the faculty of medicine of FAP-Araripina (PE)." In Health and Medicine: Science, Care, and Discoveries. Seven Editora, 2023. http://dx.doi.org/10.56238/sevened2023.004-018.
Full textHollywood, Eleanor, and Paul Costello. "The renal system." In Clinical Skills in Children's Nursing. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780199559039.003.0020.
Full textConference papers on the topic "Dense collagen"
Esbona, Karla, David Inman, Sandeep Saha, Kevin Eliceiri, Lee G. Wilke, and Patricia J. Keely. "Abstract 1116: Response to cyclooxygenase-2 inhibition is regulated by collagen dense stroma." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1116.
Full textGarcia Mendoza, Maria Gracia, David Inman, Suzanne M. Ponik, and Patricia J. Keely. "Abstract 2345: The collagen-dense tumor microenvironment increases neutrophil recruitment in mouse mammary carcinoma." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2345.
Full textHong, Hyeonjun, Hyeonji Kim, Seonjin Han, Hong Kyun Kim, Dong-Woo Cho, and Dong Sung Kim. "Development of dense collagenous construct mimicking native corneal stroma based on collagen compression process." In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS). IEEE, 2018. http://dx.doi.org/10.1109/cbs.2018.8612178.
Full textEsbona, K., DR Inman, S. Saha, LG Wilke, and PJ Keely. "Abstract P1-03-04: Response to cyclooxygenase-2 inhibition is regulated by collagen dense stroma." In Abstracts: Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 8-12, 2015; San Antonio, TX. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.sabcs15-p1-03-04.
Full textCoudrillier, Baptiste, Craig Boote, and Thao D. Nguyen. "Modeling the Effect of the Experimentally-Derived Collagen Structure on the Mechanical Anisotropy of the Human Sclera." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53272.
Full textCoudrillier, Baptiste, Craig Boote, and Thao D. Nguyen. "Effects of the Scleral Collagen Structure on the Biomechanical Response of the Optic Nerve Head." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80540.
Full textMendoza, Maria Gracia Garcia, David R. Inman, Justin J. Jeffery, and Patricia J. Keely. "Abstract C09: The collagen-dense tumor microenvironment recruits tumor promoting Ly6G+Ly6C+ neutrophils in mouse mammary carcinoma." In Abstracts: AACR Special Conference: The Function of Tumor Microenvironment in Cancer Progression; January 7-10, 2016; San Diego, CA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.tme16-c09.
Full textHarley, Brendan A. C. "Collagen Scaffold-Membrane Composites for Mimicking Orthopedic Interfaces." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-54026.
Full textZiegler, Kimberly A., and Thao D. Nguyen. "Modeling Study Incorporating Depth-Dependent Transverse Reinforcement due to Variation in Collagen Lamellae Interweaving in Corneal Tissue." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80771.
Full textMalmgren, R. "LUMI-AGGREGOMETER STUDIES OF THE INITIAL ATP-SECRETION FROM COLLAGEN-ADHERENT PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643550.
Full text