Dissertations / Theses on the topic 'Denoising'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Denoising.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kan, Hasan E. "Bootstrap based signal denoising." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://bosun.nps.edu/uhtbin/hyperion.exe/02Sep%5FKan.pdf.
Full textThesis Advisor(s): Monique P. Fargues, Ralph D. Hippenstiel. "September 2002." Includes bibliographical references (p. 89-90). Also available in print.
NIBHANUPUDI, SWATHI. "SIGNAL DENOISING USING WAVELETS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1070577417.
Full textEhret, Thibaud. "Video denoising and applications." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASN018.
Full textThis thesis studies the problem of video denoising. In the first part we focus on patch-based video denoising methods. We study in details VBM3D, a popular video denoising method, to understand the mechanisms that made its success. We also present a real-time implementation on GPU of this method. We then study the impact of patch search in video denoising and in particular how searching for similar patches in the entire video, a global patch search, improves the denoising quality. Finally, we propose a novel causal and recursive method called NL-Kalman that produces very good temporal consistency.In the second part, we look at the newer trend of deep learning for image and video denoising. We present one of the first neural network architecture, using temporal self-similarity, competitive with state-of-the-art patch-based video denoising methods. We also show that deep learning offers new opportunities. In particular, it allows for denoising without knowing the noise model. We propose a framework that allows denoising of videos that have been through an unknown processing pipeline. We then look at the case of mosaicked data. In particular, we show that deep learning is undeniably superior to previous approaches for demosaicking. We also propose a novel training process for demosaicking without ground-truth based on multiple raw acquisition. This allows training for real case applications. In the third part we present different applications taking advantage of mechanisms similar those studied for denoising. The first problem studied is anomaly detection. We show that this problem can be reduced to detecting anomalies in noise. We also look at forgery detection and in particular copy-paste forgeries. Just like for patch-based denoising, solving this problem requires searching for similar patches. For that, we do an in-depth study of PatchMatch and see how it can be used for detecting forgeries. We also present an efficient method based on sparse patch matching
Kan, Hasan Ertam. "Bootstrap based signal denoising." Thesis, Monterey, California. Naval Postgraduate School, 2002. http://hdl.handle.net/10945/2883.
Full text"This work accomplishes signal denoising using the Bootstrap method when the additive noise is Gaussian. The noisy signal is separated into frequency bands using the Fourier or Wavelet transform. Each frequency band is tested for Gaussianity by evaluating the kurtosis. The Bootstrap method is used to increase the reliability of the kurtosis estimate. Noise effects are minimized using a hard or soft thresholding scheme on the frequency bands that were estimated to be Gaussian. The recovered signal is obtained by applying the appropriate inverse transform to the modified frequency bands. The denoising scheme is tested using three test signals. Results show that FFT-based denoising schemes perform better than WT-based denoising schemes on the stationary sinusoidal signals, whereas WT-based schemes outperform FFT-based schemes on chirp type signals. Results also show that hard thresholding never outperforms soft thresholding, at best its performance is similar to soft thresholding."--p.i.
First Lieutenant, Turkish Army
Gaspar, John M. "Denoising amplicon-based metagenomic data." Thesis, University of New Hampshire, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3581214.
Full textReducing the effects of sequencing errors and PCR artifacts has emerged as an essential component in amplicon-based metagenomic studies. Denoising algorithms have been written that can reduce error rates in mock community data, in which the true sequences are known, but they were designed to be used in studies of real communities. To evaluate the outcome of the denoising process, we developed methods that do not rely on a priori knowledge of the correct sequences, and we applied these methods to a real-world dataset. We found that the denoising algorithms had substantial negative side-effects on the sequence data. For example, in the most widely used denoising pipeline, AmpliconNoise, the algorithm that was designed to remove pyrosequencing errors changed the reads in a manner inconsistent with the known spectrum of these errors, until one of the parameters was increased substantially from its default value.
With these shortcomings in mind, we developed a novel denoising program, FlowClus. FlowClus uses a systematic approach to filter and denoise reads efficiently. When denoising real datasets, FlowClus provides feedback about the process that can be used as the basis to adjust the parameters of the algorithm to suit the particular dataset. FlowClus produced a lower error rate compared to other denoising algorithms when analyzing a mock community dataset, while retaining significantly more sequence information. Among its other attributes, FlowClus can analyze longer reads being generated from current protocols and irregular flow orders. It has processed a full plate (1.5 million reads) in less than four hours; using its more efficient (but less precise) trie analysis option, this time was further reduced, to less than seven minutes.
Bayreuther, Moritz, Jamin Cristall, and Felix J. Herrmann. "Curvelet denoising of 4d seismic." European Association of Geoscientists and Engineers, 2004. http://hdl.handle.net/2429/453.
Full textOffei, Felix. "Denoising Tandem Mass Spectrometry Data." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3218.
Full textGhazel, Mohsen. "Adaptive Fractal and Wavelet Image Denoising." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/882.
Full textRafi, Nazari Mina. "Denoising and Demosaicking of Color Images." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35802.
Full textGärdenäs, Anders Derk. "Denoising and renoising of videofor compression." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-340425.
Full textHella, Vegard. "Digital Audio Restoration : Denoising phonograph recordings." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23521.
Full textLi, Zhi. "Variational image segmentation, inpainting and denoising." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/292.
Full textKhadivi, Pejman. "Online Denoising Solutions for Forecasting Applications." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/72907.
Full textPh. D.
Zhang, Jiachao. "Image denoising for real image sensors." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1437954286.
Full textCheng, Wu. "Optimal Denoising for Photon-limited Imaging." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1446401290.
Full textDanda, Swetha. "Generalized diffusion model for image denoising." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5481.
Full textTitle from document title page. Document formatted into pages; contains viii, 62 p. : ill. Includes abstract. Includes bibliographical references (p. 59-62).
Deng, Hao. "Mathematical approaches to digital color image denoising." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31708.
Full textCommittee Chair: Haomin Zhou; Committee Member: Luca Dieci; Committee Member: Ronghua Pan; Committee Member: Sung Ha Kang; Committee Member: Yang Wang. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Elahi, Pegah. "Application of Noise Invalidation Denoising in MRI." Thesis, Linköpings universitet, Medicinsk informatik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85215.
Full textHussain, Israr. "Non-gaussianity based image deblurring and denoising." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489022.
Full textDe, Santis Simone. "Quantum Median Filter for Total Variation denoising." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textSarjanoja, S. (Sampsa). "BM3D image denoising using heterogeneous computing platforms." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201504141380.
Full textKohinanpoisto on yksi keskeisimmistä digitaaliseen kuvankäsittelyyn liittyvistä ongelmista, joka useimmiten pyritään ratkaisemaan jo signaalinkäsittelyvuon varhaisessa vaiheessa. Kohinaa ilmestyy kuviin monella eri tavalla ja sen esiintyminen on väistämätöntä. Useat kuvankäsittelyalgoritmit toimivat paremmin, jos niiden syöte on valmiiksi mahdollisimman virheetöntä käsiteltäväksi. Jotta kuvankäsittelyviiveet pysyisivät pieninä eri laskenta-alustoilla, on tärkeää että myös kohinanpoisto suoritetaan nopeasti. Viihdeteollisuuden kehityksen myötä näytönohjaimien laskentateho on moninkertaistunut. Nykyisin näytönohjainpiirit koostuvat useista sadoista tai jopa tuhansista laskentayksiköistä. Näiden laskentayksiköiden käyttäminen yleiskäyttöiseen laskentaan on mahdollista OpenCL- ja CUDA-ohjelmointirajapinnoilla. Rinnakkaislaskenta usealla laskentayksiköllä mahdollistaa suuria suorituskyvyn parannuksia käyttökohteissa, joissa käsiteltävä tieto on toisistaan riippumatonta tai löyhästi riippuvaista. Näytönohjainpiirien käyttö yleisessä laskennassa on yleistymässä myös mobiililaitteissa. Lisäksi valokuvaaminen on nykypäivänä suosituinta juuri mobiililaitteilla. Tämä diplomityö pyrkii selvittämään viimeisimmän kohinanpoistoon käytettävän tekniikan, lohkonsovitus ja kolmiulotteinen suodatus (block-matching and three-dimensional filtering, BM3D), laskennan toteuttamista heterogeenisissä laskentaympäristöissä. Työssä arvioidaan esiteltyjen toteutusten suorituskykyä tekemällä vertailuja jo olemassa oleviin toteutuksiin. Esitellyt toteutukset saavuttavat merkittäviä hyötyjä rinnakkaislaskennan käyttämisestä. Samalla vertailuissa havainnollistetaan yleisiä ongelmakohtia näytönohjainlaskennan hyödyntämisessä monimutkaisten kuvankäsittelyalgoritmien laskentaan
Ma, Xiandong. "Wavelets for partial discharge denoising and analysis." Thesis, Glasgow Caledonian University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404617.
Full textHughes, John B. "Signal enhancement using time-frequency based denoising." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion/03Mar%5FHughes.pdf.
Full textAgresti, Gianluca. "Data Driven Approaches for Depth Data Denoising." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422722.
Full textLa profondità della scena è un importante informazione che può essere usata per recuperare la geometria della scena stessa, un elemento mancante nelle semplici immagini a colori. Per questo motivo, questi dati sono spesso usati in molte applicazioni come ricostruzione 3D, guida autonoma e robotica. L'ultima decade ha visto il diffondersi di diversi dispositivi capaci di stimare la profondità di una scena. Tra questi, le telecamere Time-of-Flight (ToF) stanno diventando sempre più popolari poiché sono relativamente poco costose e possono essere miniaturizzate e implementate su dispositivi portatili. I sistemi a visione stereoscopica sono i sensori 3D più diffusi e sono composti da due semplici telecamere a colori. Questi sensori non sono però privi di difetti, in particolare non riescono a stimare in maniera corretta la profondità di scene prive di texture. I sistemi stereoscopici attivi e i sistemi a luce strutturata sono stati sviluppati per risolvere questo problema usando un proiettore esterno. Questa tesi presenta i risultati che ho ottenuto durante il mio Dottorato di Ricerca presso l'Università degli Studi di Padova. Lo scopo principale del mio lavoro è stato quello di presentare metodi per il miglioramento dei dati 3D acquisiti con sensori commerciali. Nella prima parte della tesi i sensori 3D più diffusi verranno presentati introducendo i loro punti di forza e debolezza. In seguito verranno descritti dei metodi per il miglioramento della qualità dei dati di profondità acquisiti con telecamere ToF. Un primo metodo sfrutta una modifica hardware del proiettore ToF. Il secondo utilizza una rete neurale convoluzionale (CNN) che sfrutta dati acquisiti da una telecamera ToF per stimare un'accurata mappa di profondità della scena. Nel mio lavoro è stata data attenzione a come le prestazioni di questo metodo peggiorano quando la CNN è allenata su dati sintetici e testata su dati reali. Di conseguenza, un metodo per ridurre tale perdita di prestazioni verrà presentato. Poiché le mappe di profondità acquisite con sensori ToF e sistemi stereoscopici hanno proprietà complementari, la possibilità di fondere queste due sorgenti di informazioni è stata investigata. In particolare, è stato presentato un metodo di fusione che rinforza la consistenza locale dei dati e che sfrutta una stima dell'accuratezza dei due sensori, calcolata con una CNN, per guidare il processo di fusione. Una parte della tesi è dedita alla descrizione delle procedure di acquisizione dei dati utilizzati per l'allenamento e la valutazione dei metodi presentati.
Houdard, Antoine. "Some advances in patch-based image denoising." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT005/document.
Full textThis thesis studies non-local methods for image processing, and their application to various tasks such as denoising. Natural images contain redundant structures, and this property can be used for restoration purposes. A common way to consider this self-similarity is to separate the image into "patches". These patches can then be grouped, compared and filtered together.In the first chapter, "global denoising" is reframed in the classical formalism of diagonal estimation and its asymptotic behaviour is studied in the oracle case. Precise conditions on both the image and the global filter are introduced to ensure and quantify convergence.The second chapter is dedicated to the study of Gaussian priors for patch-based image denoising. Such priors are widely used for image restoration. We propose some ideas to answer the following questions: Why are Gaussian priors so widely used? What information do they encode about the image?The third chapter proposes a probabilistic high-dimensional mixture model on the noisy patches. This model adopts a sparse modeling which assumes that the data lie on group-specific subspaces of low dimensionalities. This yields a denoising algorithm that demonstrates state-of-the-art performance.The last chapter explores different way of aggregating the patches together. A framework that expresses the patch aggregation in the form of a least squares problem is proposed
Houdard, Antoine. "Some advances in patch-based image denoising." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT005.
Full textThis thesis studies non-local methods for image processing, and their application to various tasks such as denoising. Natural images contain redundant structures, and this property can be used for restoration purposes. A common way to consider this self-similarity is to separate the image into "patches". These patches can then be grouped, compared and filtered together.In the first chapter, "global denoising" is reframed in the classical formalism of diagonal estimation and its asymptotic behaviour is studied in the oracle case. Precise conditions on both the image and the global filter are introduced to ensure and quantify convergence.The second chapter is dedicated to the study of Gaussian priors for patch-based image denoising. Such priors are widely used for image restoration. We propose some ideas to answer the following questions: Why are Gaussian priors so widely used? What information do they encode about the image?The third chapter proposes a probabilistic high-dimensional mixture model on the noisy patches. This model adopts a sparse modeling which assumes that the data lie on group-specific subspaces of low dimensionalities. This yields a denoising algorithm that demonstrates state-of-the-art performance.The last chapter explores different way of aggregating the patches together. A framework that expresses the patch aggregation in the form of a least squares problem is proposed
McGraw, Tim E. "Denoising, segmentation and visualization of diffusion weighted MRI." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011618.
Full textBjörling, Robin. "Denoising of Infrared Images Using Independent Component Analysis." Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-4954.
Full textDenna uppsats syftar till att undersöka användbarheten av metoden Independent Component Analysis (ICA) för brusreducering av bilder tagna av infraröda kameror. Speciellt fokus ligger på att reducera additivt brus. Bruset delas upp i två delar, det Gaussiska bruset samt det sensorspecifika mönsterbruset. För att reducera det Gaussiska bruset används en populär metod kallad sparse code shrinkage som bygger på ICA. En ny metod, även den byggandes på ICA, utvecklas för att reducera mönsterbrus. För varje sensor utförs, i den nya metoden, en analys av bilddata för att manuellt identifiera typiska mönsterbruskomponenter. Dessa komponenter används därefter för att reducera mönsterbruset i bilder tagna av den aktuella sensorn. Det visas att metoderna ger goda resultat på infraröda bilder. Algoritmerna testas både på syntetiska såväl som på verkliga bilder och resultat presenteras och jämförs med andra algoritmer.
The purpose of this thesis is to evaluate the applicability of the method Independent Component Analysis (ICA) for noise reduction of infrared images. The focus lies on reducing the additive uncorrelated noise and the sensor specific additive Fixed Pattern Noise (FPN). The well known method sparse code shrinkage, in combination with ICA, is applied to reduce the uncorrelated noise degrading infrared images. The result is compared to an adaptive Wiener filter. A novel method, also based on ICA, for reducing FPN is developed. An independent component analysis is made on images from an infrared sensor and typical fixed pattern noise components are manually identified. The identified components are used to fast and effectively reduce the FPN in images taken by the specific sensor. It is shown that both the FPN reduction algorithm and the sparse code shrinkage method work well for infrared images. The algorithms are tested on synthetic as well as on real images and the performance is measured.
Tuncer, Guney. "A Java Toolbox For Wavelet Based Image Denoising." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12608037/index.pdf.
Full textMichael, Simon. "A Comparison of Data Transformations in Image Denoising." Thesis, Uppsala universitet, Statistiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-375715.
Full textAlmahdi, Redha A. "Recursive Non-Local Means Filter for Video Denoising." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1481033972368771.
Full textAparnnaa. "Image Denoising and Noise Estimation by Wavelet Transformation." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1555929391906805.
Full textLind, Johan. "Evaluating CNN-based models for unsupervised image denoising." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176092.
Full textLiu, Xiaoyang. "Advanced numerical methods for image denoising and segmentation." Thesis, University of Greenwich, 2013. http://gala.gre.ac.uk/11954/.
Full textLiao, Zhiwu. "Image denoising using wavelet domain hidden Markov models." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/616.
Full textZoppo, Viviana. "Denoising di immagini mediante tecniche basate sulla Total Variation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9499/.
Full textBarsanti, Robert J. "Denoising of ocean acoustic signals using wavelet-based techniques." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA329379.
Full textThesis advisor(s): Monique P. Fargues and Ralph Hippenstiel. "December 1996." Includes bibliographical references (p. 99-101). Also available online.
Cebeci, Coskun. "Denoising of acoustic signals using wavelet/wiener based techniques." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA349997.
Full text"June 1998." Thesis advisor(s): Monique P. Fargues, Ralph D. Hippenstiel. Includes bibliographical references (p. 63-64). Also available online.
Lee, Kai-wah, and 李啟華. "Mesh denoising and feature extraction from point cloud data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664330.
Full textBhattacharya, Gautam. "Sparse denoising of audio by greedy time-frequency shrinkage." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123263.
Full textL'algorithme de Matching Pursuit (MP) construit par itérations une représentation parcimonieuse du signal, au prix d'un coût de calcul élevé. Ce mémoire présente une analyse de l'algorithme de MP dans le contexte du débruitage audio. En interprétant l'algorithme MP comme une méthode de contraction simple (simple shrinkage), nous chercherons à identifier les facteurs essentiels à son succès, puis proposerons plusieurs approches afin d'en améliorer les performances et la robustesse. Plusieurs améliorations du modèle seront ainsi développées, et une approche du débruitage audio dénommée Greedy Time-Frequency Shrinkage (GTFS) sera présentée en détails. Des expérimentations numériques appliquées à un large éventail de signaux sonores démontrent que les résultats obtenus par débruitage GTFS s'avèrent compétitifs face aux méthodes de débruitage audio qui constituent l'état de l'art. En particulier, le GTFS ne retient qu'un faible pourcentage des coefficients de la transformée du signal pour en construire une représentation débruitée, et produit ainsi des résultats débruités très compacts.
Tucker, Dewey S. (Dewey Stanton). "Wavelet denoising techniques with applications to high-resolution radar." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10466.
Full textLiu, Yang. "Image Denoising: Invertible and General Denoising Frameworks." Phd thesis, 2022. http://hdl.handle.net/1885/270008.
Full textHua, Gang. "Noncoherent image denoising." Thesis, 2005. http://hdl.handle.net/1911/17859.
Full text"Tomographic reconstruction and denoising." 2011. http://library.cuhk.edu.hk/record=b5894709.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (leaves [110]-117).
Abstracts in English and Chinese.
Chapter 1 --- Radon Transform and Medical Tomography --- p.1
Chapter 1.1 --- Computed Tomography --- p.2
Chapter 1.2 --- Emission Computed Tomography --- p.4
Chapter 1.2.1 --- SPECT --- p.5
Chapter 1.2.2 --- PET --- p.6
Chapter 1.3 --- Radon Transform --- p.8
Chapter 1.3.1 --- Properties of Radon Transform --- p.10
Chapter 1.3.2 --- Fourier Slice Theorem --- p.11
Chapter 1.4 --- Research Objective --- p.12
Chapter 2 --- Popular Tomographic Reconstruction Algorithms --- p.14
Chapter 2.1 --- Analytic Method --- p.15
Chapter 2.1.1 --- Direct Fourier Method (DFM) --- p.15
Chapter 2.1.2 --- Backprojection (BP) --- p.17
Chapter 2.1.3 --- Backprojection Filtering (BPF) --- p.19
Chapter 2.1.4 --- Filtered Backprojection (FBP) --- p.21
Chapter 2.2 --- Iterative Method --- p.23
Chapter 2.2.1 --- Maximum Likelihood - Expectation Maximization (ML-EM) --- p.25
Chapter 2.2.2 --- Ordered Subsets Expectation Maximization (OSEM) --- p.27
Chapter 3 --- Consistent Reconstruction --- p.30
Chapter 3.1 --- Directional Filter Bank (DFB) --- p.30
Chapter 3.1.1 --- Interpolation in horizontal function space --- p.32
Chapter 3.1.2 --- Directional Multiresolution Analysis --- p.33
Chapter 3.1.3 --- Iterated Filter Bank Equivalence --- p.36
Chapter 3.1.4 --- Vertical Directional Function Space --- p.38
Chapter 3.1.5 --- Summary --- p.40
Chapter 3.2 --- Reconstruction Scheme --- p.42
Chapter 3.2.1 --- Choices for basis function 6m --- p.43
Chapter 3.2.2 --- Choices for coordinate mapping function wm --- p.46
Chapter 3.2.3 --- Summary --- p.49
Chapter 3.3 --- Experiment --- p.49
Chapter 3.3.1 --- Experiment for consistent reconstruction with different choices --- p.50
Chapter 3.3.2 --- Experiment for comparison with different reconstruction methods --- p.54
Chapter 3.4 --- Conclusion --- p.56
Chapter 4 --- Tomographic Denoising --- p.57
Chapter 4.1 --- SURE-LET and PURE-LET denoising --- p.59
Chapter 4.1.1 --- SURE-LET --- p.60
Chapter 4.1.2 --- PURE-LET --- p.62
Chapter 4.2 --- Experiment --- p.64
Chapter 4.2.1 --- Experiment on SURE-LET Denoising --- p.65
Chapter 4.2.2 --- Experiment on PURE-LET Denoising --- p.69
Chapter 4.2.3 --- Conclusion --- p.76
Chapter 5 --- Sinogram Retrieval --- p.77
Chapter 5.1 --- Sinogram Retrieval Method --- p.78
Chapter 5.1.1 --- MATLAB Radon Function --- p.79
Chapter 5.1.2 --- Subordinate Gradient (SG) Algorithm --- p.81
Chapter 5.1.3 --- Orthonormal Subordinate Gradient (OSG) Algorithm --- p.81
Chapter 5.2 --- Experiment --- p.84
Chapter 5.2.1 --- Limitation of Sinogram Retrieval --- p.84
Chapter 5.2.2 --- Comparison of Sinogram Retrieval Algorithms --- p.86
Chapter 5.2.3 --- Embedded in Tomographic Reconstruction --- p.88
Chapter 5.2.4 --- Embedded in Tomographic Denoising --- p.90
Chapter 5.3 --- Conclusion --- p.96
Chapter 6 --- Conclusion --- p.97
Chapter 6.1 --- Summary --- p.97
Chapter 6.1.1 --- Tomographic Reconstruction --- p.97
Chapter 6.1.2 --- Tomographic Denoising --- p.98
Chapter 6.1.3 --- Sinogram Retrieval --- p.98
Chapter 6.2 --- Future Research --- p.99
Chapter 6.2.1 --- Tomographic Reconstruction --- p.99
Chapter 6.2.2 --- Tomographic Denoising --- p.99
Chapter 6.2.3 --- Sinogram Retrieval --- p.99
Chapter A --- Examples of Radon Transform --- p.100
Chapter B --- Experimental Phantom Image --- p.104
Chapter C --- Results of sinogram retrieval experiments --- p.107
Bibliography --- p.110
Bao, Yufang. "Nonlinear image denoising methodologies." 2002. http://www.lib.ncsu.edu/theses/available/etd-05172002-131134/unrestricted/etd.pdf.
Full textMcIlhagga, William H. "Denoising and contrast constancy." 2004. http://hdl.handle.net/10454/3909.
Full textContrast constancy is the ability to perceive object contrast independent of size or spatial frequency, even though these affect both retinal contrast and detectability. Like other perceptual constancies, it is evidence that the visual system infers the stable properties of objects from the changing properties of retinal images. Here it is shown that perceived contrast is based on an optimal thresholding estimator of object contrast, that is identical to the VisuShrink estimator used in wavelet denoising.
Poderico, Mariana. "Denoising of SAR images." Tesi di dottorato, 2011. http://www.fedoa.unina.it/8779/1/Poderico_Mariana_24.pdf.
Full textParida, Satyabrata. "Denoising Of Satellite Images." Thesis, 2014. http://ethesis.nitrkl.ac.in/6612/1/Satyabrata_Parida_PROJECT_THESIS.pdf.
Full textCho, Dongwook. "Image denoising using wavelet transforms." Thesis, 2004. http://spectrum.library.concordia.ca/8141/1/MQ94737.pdf.
Full textTseng, Yi-Man, and 曾怡滿. "Noise Models and Denoising Techniques." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/57266931192491025786.
Full text臺灣大學
數學研究所
98
We propose to review four common types of image noises, including Gaussian noise, uniform noise, Poisson noise and salt & pepper noise. We set basic one-dimensional and two-dimensional images, and add four types of noises on different levels. We will denoise these corrupted images by using total variation, soft-thresholding and adaptive median filter, respectively. Finally, compare the PSNR values to analyse the denoising effect, edges preserving, and blurring.