Academic literature on the topic 'Denoising Image'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Denoising Image.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Denoising Image"
Rubel, Andrii, Oleksii Rubel, Vladimir Lukin, and Karen Egiazarian. "Decision-making on image denoising expedience." Electronic Imaging 2021, no. 10 (January 18, 2021): 237–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.10.ipas-237.
Full textR. Tripathi, Mr Vijay. "Image Denoising." IOSR Journal of Engineering 1, no. 1 (November 2011): 84–87. http://dx.doi.org/10.9790/3021-0118487.
Full textXu, Shaoping, Xiaojun Chen, Yiling Tang, Shunliang Jiang, Xiaohui Cheng, and Nan Xiao. "Learning from Multiple Instances: A Two-Stage Unsupervised Image Denoising Framework Based on Deep Image Prior." Applied Sciences 12, no. 21 (October 24, 2022): 10767. http://dx.doi.org/10.3390/app122110767.
Full textHuang, Tingsheng, Chunyang Wang, and Xuelian Liu. "Depth Image Denoising Algorithm Based on Fractional Calculus." Electronics 11, no. 12 (June 19, 2022): 1910. http://dx.doi.org/10.3390/electronics11121910.
Full textBertalmío, Marcelo, and Stacey Levine. "Denoising an Image by Denoising Its Curvature Image." SIAM Journal on Imaging Sciences 7, no. 1 (January 2014): 187–211. http://dx.doi.org/10.1137/120901246.
Full textKhan, Aamir, Weidong Jin, Amir Haider, MuhibUr Rahman, and Desheng Wang. "Adversarial Gaussian Denoiser for Multiple-Level Image Denoising." Sensors 21, no. 9 (April 24, 2021): 2998. http://dx.doi.org/10.3390/s21092998.
Full textGavini, Venkateswarlu, and Gurusamy Ramasamy Jothi Lakshmi. "CT Image Denoising Model Using Image Segmentation for Image Quality Enhancement for Liver Tumor Detection Using CNN." Traitement du Signal 39, no. 5 (November 30, 2022): 1807–14. http://dx.doi.org/10.18280/ts.390540.
Full textZhang, Xiangning, Yan Yang, and Lening Lin. "Edge-aware image denoising algorithm." Journal of Algorithms & Computational Technology 13 (October 30, 2018): 174830181880477. http://dx.doi.org/10.1177/1748301818804774.
Full textManjón, José V., Neil A. Thacker, Juan J. Lull, Gracian Garcia-Martí, Luís Martí-Bonmatí, and Montserrat Robles. "Multicomponent MR Image Denoising." International Journal of Biomedical Imaging 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/756897.
Full textBadgainya, Shruti, Prof Pankaj Sahu, and Prof Vipul Awasthi. "Image Denoising by OWT for Gaussian Noise Corrupted Images." International Journal of Trend in Scientific Research and Development Volume-2, Issue-5 (August 31, 2018): 2477–84. http://dx.doi.org/10.31142/ijtsrd18337.
Full textDissertations / Theses on the topic "Denoising Image"
Zhang, Jiachao. "Image denoising for real image sensors." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1437954286.
Full textGhazel, Mohsen. "Adaptive Fractal and Wavelet Image Denoising." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/882.
Full textLi, Zhi. "Variational image segmentation, inpainting and denoising." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/292.
Full textDanda, Swetha. "Generalized diffusion model for image denoising." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5481.
Full textTitle from document title page. Document formatted into pages; contains viii, 62 p. : ill. Includes abstract. Includes bibliographical references (p. 59-62).
Deng, Hao. "Mathematical approaches to digital color image denoising." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31708.
Full textCommittee Chair: Haomin Zhou; Committee Member: Luca Dieci; Committee Member: Ronghua Pan; Committee Member: Sung Ha Kang; Committee Member: Yang Wang. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Hussain, Israr. "Non-gaussianity based image deblurring and denoising." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489022.
Full textSarjanoja, S. (Sampsa). "BM3D image denoising using heterogeneous computing platforms." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201504141380.
Full textKohinanpoisto on yksi keskeisimmistä digitaaliseen kuvankäsittelyyn liittyvistä ongelmista, joka useimmiten pyritään ratkaisemaan jo signaalinkäsittelyvuon varhaisessa vaiheessa. Kohinaa ilmestyy kuviin monella eri tavalla ja sen esiintyminen on väistämätöntä. Useat kuvankäsittelyalgoritmit toimivat paremmin, jos niiden syöte on valmiiksi mahdollisimman virheetöntä käsiteltäväksi. Jotta kuvankäsittelyviiveet pysyisivät pieninä eri laskenta-alustoilla, on tärkeää että myös kohinanpoisto suoritetaan nopeasti. Viihdeteollisuuden kehityksen myötä näytönohjaimien laskentateho on moninkertaistunut. Nykyisin näytönohjainpiirit koostuvat useista sadoista tai jopa tuhansista laskentayksiköistä. Näiden laskentayksiköiden käyttäminen yleiskäyttöiseen laskentaan on mahdollista OpenCL- ja CUDA-ohjelmointirajapinnoilla. Rinnakkaislaskenta usealla laskentayksiköllä mahdollistaa suuria suorituskyvyn parannuksia käyttökohteissa, joissa käsiteltävä tieto on toisistaan riippumatonta tai löyhästi riippuvaista. Näytönohjainpiirien käyttö yleisessä laskennassa on yleistymässä myös mobiililaitteissa. Lisäksi valokuvaaminen on nykypäivänä suosituinta juuri mobiililaitteilla. Tämä diplomityö pyrkii selvittämään viimeisimmän kohinanpoistoon käytettävän tekniikan, lohkonsovitus ja kolmiulotteinen suodatus (block-matching and three-dimensional filtering, BM3D), laskennan toteuttamista heterogeenisissä laskentaympäristöissä. Työssä arvioidaan esiteltyjen toteutusten suorituskykyä tekemällä vertailuja jo olemassa oleviin toteutuksiin. Esitellyt toteutukset saavuttavat merkittäviä hyötyjä rinnakkaislaskennan käyttämisestä. Samalla vertailuissa havainnollistetaan yleisiä ongelmakohtia näytönohjainlaskennan hyödyntämisessä monimutkaisten kuvankäsittelyalgoritmien laskentaan
Houdard, Antoine. "Some advances in patch-based image denoising." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT005/document.
Full textThis thesis studies non-local methods for image processing, and their application to various tasks such as denoising. Natural images contain redundant structures, and this property can be used for restoration purposes. A common way to consider this self-similarity is to separate the image into "patches". These patches can then be grouped, compared and filtered together.In the first chapter, "global denoising" is reframed in the classical formalism of diagonal estimation and its asymptotic behaviour is studied in the oracle case. Precise conditions on both the image and the global filter are introduced to ensure and quantify convergence.The second chapter is dedicated to the study of Gaussian priors for patch-based image denoising. Such priors are widely used for image restoration. We propose some ideas to answer the following questions: Why are Gaussian priors so widely used? What information do they encode about the image?The third chapter proposes a probabilistic high-dimensional mixture model on the noisy patches. This model adopts a sparse modeling which assumes that the data lie on group-specific subspaces of low dimensionalities. This yields a denoising algorithm that demonstrates state-of-the-art performance.The last chapter explores different way of aggregating the patches together. A framework that expresses the patch aggregation in the form of a least squares problem is proposed
Karam, Christina Maria. "Acceleration of Non-Linear Image Filters, and Multi-Frame Image Denoising." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1575976497271633.
Full textTuncer, Guney. "A Java Toolbox For Wavelet Based Image Denoising." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12608037/index.pdf.
Full textBooks on the topic "Denoising Image"
Shukla, K. K. Efficient Algorithms for Discrete Wavelet Transform: With Applications to Denoising and Fuzzy Inference Systems. London: Springer London, 2013.
Find full textBertalmío, Marcelo, ed. Denoising of Photographic Images and Video. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96029-6.
Full textKok, Chi-Wah, and Wing-Shan Tam. Digital Image Denoising in MATLAB. Wiley & Sons, Incorporated, John, 2022.
Find full textKok, Chi-Wah, and Wing-Shan Tam. Digital Image Denoising in MATLAB. Wiley & Sons, Incorporated, John, 2022.
Find full textKok, Chi-Wah, and Wing-Shan Tam. Digital Image Denoising in MATLAB. Wiley & Sons, Limited, John, 2022.
Find full textKok, Chi-Wah, and Wing-Shan Tam. Digital Image Denoising in MATLAB. Wiley & Sons, Incorporated, John, 2022.
Find full textShukla, K. K., and Arvind K. Tiwari. Efficient Algorithms for Discrete Wavelet Transform: With Applications to Denoising and Fuzzy Inference Systems. Springer London, Limited, 2013.
Find full textBertalmío, Marcelo. Denoising of Photographic Images and Video: Fundamentals, Open Challenges and New Trends. Springer, 2018.
Find full textBertalmío, Marcelo. Denoising of Photographic Images and Video: Fundamentals, Open Challenges and New Trends. Springer, 2018.
Find full textBook chapters on the topic "Denoising Image"
Lisowska, Agnieszka. "Image Denoising." In Geometrical Multiresolution Adaptive Transforms, 67–82. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05011-9_6.
Full textElad, Michael. "Image Denoising." In Sparse and Redundant Representations, 273–307. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7011-4_14.
Full textAravind, B. N., K. V. Suresh, Nataraj H. D. Urs, N. Yashwanth, and Usha Desai. "Image Denoising." In Human-Machine Interface Technology Advancements and Applications, 181–212. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003326830-9.
Full textGomo, Panganai. "PageRank Image Denoising." In Lecture Notes in Computer Science, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13772-3_1.
Full textXiao, Yao, Kai Huang, Hely Lin, and Ruogu Fang. "Medical Imaging Denoising." In Medical Image Synthesis, 99–119. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003243458-10.
Full textRadow, Georg, Michael Breuß, Laurent Hoeltgen, and Thomas Fischer. "Optimised Anisotropic Poisson Denoising." In Image Analysis, 502–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59126-1_42.
Full textZhang, Jiangang, Xiang Pan, and Tianxu Lv. "Unsupervised MRI Images Denoising via Decoupled Expression." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 769–77. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_77.
Full textLisowska, Agnieszka. "Multiwedgelets in Image Denoising." In Lecture Notes in Electrical Engineering, 3–11. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6738-6_1.
Full textKoziarski, Michał, and Bogusław Cyganek. "Deep Neural Image Denoising." In Computer Vision and Graphics, 163–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46418-3_15.
Full textKumbhar, Mursal Furqan. "Image Denoising Using Autoencoders." In Artificial Intelligence and Knowledge Processing, 137–44. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003328414-13.
Full textConference papers on the topic "Denoising Image"
Yue, Huanjing, Xiaoyan Sun, Jingyu Yang, and Feng Wu. "Image denoising using cloud images." In SPIE Optical Engineering + Applications, edited by Andrew G. Tescher. SPIE, 2013. http://dx.doi.org/10.1117/12.2022506.
Full textEstrada, Francisco, David Fleet, and Allan Jepson. "Stochastic Image Denoising." In British Machine Vision Conference 2009. British Machine Vision Association, 2009. http://dx.doi.org/10.5244/c.23.117.
Full textLiu, Yang, Saeed Anwar, Liang Zheng, and Qi Tian. "GradNet Image Denoising." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00262.
Full textAravind, B. N., and K. V. Suresh. "Hybrid image denoising." In 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). IEEE, 2017. http://dx.doi.org/10.1109/iceeccot.2017.8284524.
Full textKattakinda, Priyatham, and A. N. Rajagopalan. "Unpaired Image Denoising." In 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020. http://dx.doi.org/10.1109/icip40778.2020.9190932.
Full textS. B, Anuja, and Ramesh Dhanaseelan F. "Denoising of Diabetic Retinopathy Images Using Adaptive Median Filter." In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/gxpd6690/ngcesi23p15.
Full textНасонов, Андрей, Andrey Nasonov, Николай Мамаев, Nikolay Mamaev, Ольга Володина, Olga Volodina, Андрей Крылов, and Andrey Krylov. "Automatic Choice of Denoising Parameter in Perona-Malik Model." In 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-2-144-147.
Full textGondara, Lovedeep. "Medical Image Denoising Using Convolutional Denoising Autoencoders." In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). IEEE, 2016. http://dx.doi.org/10.1109/icdmw.2016.0041.
Full textXiang, Qian, and Xuliang Pang. "Improved Denoising Auto-Encoders for Image Denoising." In 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2018. http://dx.doi.org/10.1109/cisp-bmei.2018.8633143.
Full textJain, Arti, and Anand Singh Jalal. "An Effective Image Denoising Approach Based on Denoising with Image Interpolation." In 2023 IEEE World Conference on Applied Intelligence and Computing (AIC). IEEE, 2023. http://dx.doi.org/10.1109/aic57670.2023.10263909.
Full textReports on the topic "Denoising Image"
Yufang, Bao. Nonlinear Image Denoising Methodologies. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada460128.
Full textD'Elia, Marta, and De lo Reyes, Juan Carlos, Miniguano, Andres. Bilevel parameter optimization for nonlocal image denoising models. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1592945.
Full textD'Elia, Marta, Juan Carlos De los Reyes, and Andres Trujillo. Bilevel parameter optimization for learning nonlocal image denoising models. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1617438.
Full textPotts, Catherine Gabriel. Visual Data: Technical Diagrams. Denoising of Technical Diagram Images. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1558025.
Full textNifong, Nathaniel. Learning General Features From Images and Audio With Stacked Denoising Autoencoders. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1549.
Full textTadmor, Eitan, Suzanne Nezzar, and Luminita Vese. Multiscale Hierarchical Decomposition of Images with Applications to Deblurring, Denoising and Segmentation. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada489758.
Full textLevesque, Joseph. Neural network denoising of HED x-ray images, with an introduction to neural networks. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1970268.
Full text