Journal articles on the topic 'Denoisers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Denoisers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gu, Jeongmin, Jose A. Iglesias-Guitian, and Bochang Moon. "Neural James-Stein Combiner for Unbiased and Biased Renderings." ACM Transactions on Graphics 41, no. 6 (November 30, 2022): 1–14. http://dx.doi.org/10.1145/3550454.3555496.
Full textZheng, Shaokun, Fengshi Zheng, Kun Xu, and Ling-Qi Yan. "Ensemble denoising for Monte Carlo renderings." ACM Transactions on Graphics 40, no. 6 (December 2021): 1–17. http://dx.doi.org/10.1145/3478513.3480510.
Full textHofmann, Nikolai, Jon Hasselgren, and Jacob Munkberg. "Joint Neural Denoising of Surfaces and Volumes." Proceedings of the ACM on Computer Graphics and Interactive Techniques 6, no. 1 (May 12, 2023): 1–16. http://dx.doi.org/10.1145/3585497.
Full textHan, Kyu Beom, Olivia G. Odenthal, Woo Jae Kim, and Sung-Eui Yoon. "Pixel-wise Guidance for Utilizing Auxiliary Features in Monte Carlo Denoising." Proceedings of the ACM on Computer Graphics and Interactive Techniques 6, no. 1 (May 12, 2023): 1–19. http://dx.doi.org/10.1145/3585505.
Full textLiu, Shuaiqi, Tong Liu, Lele Gao, Hailiang Li, Qi Hu, Jie Zhao, and Chong Wang. "Convolutional Neural Network and Guided Filtering for SAR Image Denoising." Remote Sensing 11, no. 6 (March 23, 2019): 702. http://dx.doi.org/10.3390/rs11060702.
Full textChoi, Joon Hee, Omar A. Elgendy, and Stanley H. Chan. "Optimal Combination of Image Denoisers." IEEE Transactions on Image Processing 28, no. 8 (August 2019): 4016–31. http://dx.doi.org/10.1109/tip.2019.2903321.
Full textMeng, Xiyan, and Fang Zhuang. "A New Boosting Algorithm for Shrinkage Curve Learning." Mathematical Problems in Engineering 2022 (April 15, 2022): 1–14. http://dx.doi.org/10.1155/2022/6339758.
Full textLiu, Yukun, Bowen Wan, Daming Shi, and Xiaochun Cheng. "Generative Recorrupted-to-Recorrupted: An Unsupervised Image Denoising Network for Arbitrary Noise Distribution." Remote Sensing 15, no. 2 (January 6, 2023): 364. http://dx.doi.org/10.3390/rs15020364.
Full textGalande, Ashwini S., Vikas Thapa, Hanu Phani Ram Gurram, and Renu John. "Untrained deep network powered with explicit denoiser for phase recovery in inline holography." Applied Physics Letters 122, no. 13 (March 27, 2023): 133701. http://dx.doi.org/10.1063/5.0144795.
Full textKim, Bong-Hyun, and S. Madhavi. "Method for Quantum Denoisers Using Convolutional Neural Network." Computational Intelligence and Neuroscience 2022 (October 6, 2022): 1–7. http://dx.doi.org/10.1155/2022/4885897.
Full textGavaskar, Ruturaj G., Chirayu D. Athalye, and Kunal N. Chaudhury. "On Plug-and-Play Regularization Using Linear Denoisers." IEEE Transactions on Image Processing 30 (2021): 4802–13. http://dx.doi.org/10.1109/tip.2021.3075092.
Full textZhang, Jie, Qiyuan Zhang, Xixuan Zhao, and Jiangming Kan. "Boosting denoisers with reinforcement learning for image restoration." Soft Computing 26, no. 7 (February 20, 2022): 3261–72. http://dx.doi.org/10.1007/s00500-022-06840-3.
Full textGavaskar, Ruturaj G., and Kunal N. Chaudhury. "Plug-and-Play ISTA Converges With Kernel Denoisers." IEEE Signal Processing Letters 27 (2020): 610–14. http://dx.doi.org/10.1109/lsp.2020.2986643.
Full textZhou, Yuqian, Jianbo Jiao, Haibin Huang, Yang Wang, Jue Wang, Honghui Shi, and Thomas Huang. "When AWGN-Based Denoiser Meets Real Noises." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (April 3, 2020): 13074–81. http://dx.doi.org/10.1609/aaai.v34i07.7009.
Full textYu, Lijia, Jie Luo, Shaoping Xu, Xiaojun Chen, and Nan Xiao. "An Unsupervised Weight Map Generative Network for Pixel-Level Combination of Image Denoisers." Applied Sciences 12, no. 12 (June 19, 2022): 6227. http://dx.doi.org/10.3390/app12126227.
Full textJoo, Sunghwan, Sungmin Cha, and Taesup Moon. "DoPAMINE: Double-Sided Masked CNN for Pixel Adaptive Multiplicative Noise Despeckling." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4031–38. http://dx.doi.org/10.1609/aaai.v33i01.33014031.
Full textXu, Xiaojian, Yu Sun, Jiaming Liu, Brendt Wohlberg, and Ulugbek S. Kamilov. "Provable Convergence of Plug-and-Play Priors With MMSE Denoisers." IEEE Signal Processing Letters 27 (2020): 1280–84. http://dx.doi.org/10.1109/lsp.2020.3006390.
Full textHait-Fraenkel, Ester, and Guy Gilboa. "Revealing stable and unstable modes of denoisers through nonlinear eigenvalue analysis." Journal of Visual Communication and Image Representation 75 (February 2021): 103041. http://dx.doi.org/10.1016/j.jvcir.2021.103041.
Full textCascarano, Pasquale, Elena Loli Piccolomini, Elena Morotti, and Andrea Sebastiani. "Plug-and-Play gradient-based denoisers applied to CT image enhancement." Applied Mathematics and Computation 422 (June 2022): 126967. http://dx.doi.org/10.1016/j.amc.2022.126967.
Full textLiu, Yiwen, Shaoping Xu, and Zhenyu Lin. "An Improved Combination of Image Denoisers Using Spatial Local Fusion Strategy." IEEE Access 8 (2020): 150407–21. http://dx.doi.org/10.1109/access.2020.3016766.
Full textGross, Dennis, Christoph Schmidl, Nils Jansen, and Guillermo A. Pérez. "Model Checking for Adversarial Multi-Agent Reinforcement Learning with Reactive Defense Methods." Proceedings of the International Conference on Automated Planning and Scheduling 33, no. 1 (July 1, 2023): 162–70. http://dx.doi.org/10.1609/icaps.v33i1.27191.
Full textNearing, Jacob T., Gavin M. Douglas, André M. Comeau, and Morgan G. I. Langille. "Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches." PeerJ 6 (August 8, 2018): e5364. http://dx.doi.org/10.7717/peerj.5364.
Full textThomas, Manu Mathew, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik Vaidyanathan, and Angus G. Forbes. "Temporally Stable Real-Time Joint Neural Denoising and Supersampling." Proceedings of the ACM on Computer Graphics and Interactive Techniques 5, no. 3 (July 25, 2022): 1–22. http://dx.doi.org/10.1145/3543870.
Full textWu, Huixuan, Pan Du, Rohan Kokate, and Jian-Xun Wang. "A semi-analytical solution and AI-based reconstruction algorithms for magnetic particle tracking." PLOS ONE 16, no. 7 (July 9, 2021): e0254051. http://dx.doi.org/10.1371/journal.pone.0254051.
Full textDeledalle, Charles-Alban, Loic Denis, Sonia Tabti, and Florence Tupin. "MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?" IEEE Transactions on Image Processing 26, no. 9 (September 2017): 4389–403. http://dx.doi.org/10.1109/tip.2017.2713946.
Full textAhmad, Rizwan, Charles A. Bouman, Gregery T. Buzzard, Stanley Chan, Sizhuo Liu, Edward T. Reehorst, and Philip Schniter. "Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery." IEEE Signal Processing Magazine 37, no. 1 (January 2020): 105–16. http://dx.doi.org/10.1109/msp.2019.2949470.
Full textLi, Zun, and Jin Wu. "Learning Deep CNN Denoiser Priors for Depth Image Inpainting." Applied Sciences 9, no. 6 (March 15, 2019): 1103. http://dx.doi.org/10.3390/app9061103.
Full textMa, Ruijun, Shuyi Li, Bob Zhang, and Zhengming Li. "Generative Adaptive Convolutions for Real-World Noisy Image Denoising." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (June 28, 2022): 1935–43. http://dx.doi.org/10.1609/aaai.v36i2.20088.
Full textZhang, Hao, Xiuyan Yang, and Jianwei Ma. "Can learning from natural image denoising be used for seismic data interpolation?" GEOPHYSICS 85, no. 4 (May 7, 2020): WA115—WA136. http://dx.doi.org/10.1190/geo2019-0243.1.
Full textDing, Yuehao, Hao Wu, and Guowu Yuan. "A two-stage modular blind denoising algorithm based on real scene." Journal of Physics: Conference Series 2216, no. 1 (March 1, 2022): 012071. http://dx.doi.org/10.1088/1742-6596/2216/1/012071.
Full textMa, Yanting, Cynthia Rush, and Dror Baron. "Analysis of Approximate Message Passing With Non-Separable Denoisers and Markov Random Field Priors." IEEE Transactions on Information Theory 65, no. 11 (November 2019): 7367–89. http://dx.doi.org/10.1109/tit.2019.2934152.
Full textLiehr, Sascha, Christopher Borchardt, and Sven Münzenberger. "Long-distance fiber optic vibration sensing using convolutional neural networks as real-time denoisers." Optics Express 28, no. 26 (December 14, 2020): 39311. http://dx.doi.org/10.1364/oe.402789.
Full textKim, Kwanyoung, Shakarim Soltanayev, and Se Young Chun. "Unsupervised Training of Denoisers for Low-Dose CT Reconstruction Without Full-Dose Ground Truth." IEEE Journal of Selected Topics in Signal Processing 14, no. 6 (October 2020): 1112–25. http://dx.doi.org/10.1109/jstsp.2020.3007326.
Full textDeng, Xi, Miloš Hašan, Nathan Carr, Zexiang Xu, and Steve Marschner. "Path graphs." ACM Transactions on Graphics 40, no. 6 (December 2021): 1–15. http://dx.doi.org/10.1145/3478513.3480547.
Full textde Santi, Natalí S. M., and L. Raul Abramo. "Improving cosmological covariance matrices with machine learning." Journal of Cosmology and Astroparticle Physics 2022, no. 09 (September 1, 2022): 013. http://dx.doi.org/10.1088/1475-7516/2022/09/013.
Full textHe, Yilin, Yunhua Yao, Yu He, Zhengqi Huang, Pengpeng Ding, Dalong Qi, Zhiyong Wang, Tianqing Jia, Zhenrong Sun, and Shian Zhang. "High-speed compressive wide-field fluorescence microscopy with an alternant deep denoisers-based image reconstruction algorithm." Optics and Lasers in Engineering 165 (June 2023): 107541. http://dx.doi.org/10.1016/j.optlaseng.2023.107541.
Full textBen, Guangli, Xifeng Zheng, Yongcheng Wang, Ning Zhang, and Xin Zhang. "A Local Search Maximum Likelihood Parameter Estimator of Chirp Signal." Applied Sciences 11, no. 2 (January 12, 2021): 673. http://dx.doi.org/10.3390/app11020673.
Full textLin, Huangxing, Yihong Zhuang, Xinghao Ding, Delu Zeng, Yue Huang, Xiaotong Tu, and John Paisley. "Self-Supervised Image Denoising Using Implicit Deep Denoiser Prior." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 2 (June 26, 2023): 1586–94. http://dx.doi.org/10.1609/aaai.v37i2.25245.
Full textZhuang, Lina, Michael K. Ng, and Xiyou Fu. "Hyperspectral Image Mixed Noise Removal Using Subspace Representation and Deep CNN Image Prior." Remote Sensing 13, no. 20 (October 13, 2021): 4098. http://dx.doi.org/10.3390/rs13204098.
Full textZhuang, Lina, Michael K. Ng, and Xiyou Fu. "Hyperspectral Image Mixed Noise Removal Using Subspace Representation and Deep CNN Image Prior." Remote Sensing 13, no. 20 (October 13, 2021): 4098. http://dx.doi.org/10.3390/rs13204098.
Full textHuang, Zhenghua, Zifan Zhu, Yaozong Zhang, Zhicheng Wang, Biyun Xu, Jun Liu, Shaoyi Li, and Hao Fang. "MD3: Model-Driven Deep Remotely Sensed Image Denoising." Remote Sensing 15, no. 2 (January 11, 2023): 445. http://dx.doi.org/10.3390/rs15020445.
Full textDabbech, A., M. Terris, A. Jackson, M. Ramatsoku, O. M. Smirnov, and Y. Wiaux. "First AI for Deep Super-resolution Wide-field Imaging in Radio Astronomy: Unveiling Structure in ESO 137-006." Astrophysical Journal Letters 939, no. 1 (October 26, 2022): L4. http://dx.doi.org/10.3847/2041-8213/ac98af.
Full textZhao, Shengrong, and Hu Liang. "Multi-frame super resolution via deep plug-and-play CNN regularization." Journal of Inverse and Ill-posed Problems 28, no. 4 (August 1, 2020): 533–55. http://dx.doi.org/10.1515/jiip-2019-0054.
Full textMc Grath, Orlaith, Mohammad W. Sarfraz, Abha Gupta, Yan Yang, and Tariq Aslam. "Clinical Utility of Artificial Intelligence Algorithms to Enhance Wide-Field Optical Coherence Tomography Angiography Images." Journal of Imaging 7, no. 2 (February 10, 2021): 32. http://dx.doi.org/10.3390/jimaging7020032.
Full textZhao, Zitian, Wenhan Zhan, Yamin Cheng, Hancong Duan, Yue Wu, and Ke Zhang. "Denoising by Decorated Noise: An Interpretability-Based Framework for Adversarial Example Detection." Wireless Communications and Mobile Computing 2023 (April 11, 2023): 1–11. http://dx.doi.org/10.1155/2023/7669696.
Full textOh, Geunwoo, Jonghee Back, Jae-Pil Heo, and Bochang Moon. "Robust Image Denoising of No-Flash Images Guided by Consistent Flash Images." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 2 (June 26, 2023): 1993–2001. http://dx.doi.org/10.1609/aaai.v37i2.25291.
Full textSang, De Yi, Jian Jun Zhao, and Li Bin Yang. "Denoising Method for Calibration Data of Landing Guidance Radar Based on EMD and Wavelet." Advanced Materials Research 962-965 (June 2014): 2856–62. http://dx.doi.org/10.4028/www.scientific.net/amr.962-965.2856.
Full textKhan, Aamir, Weidong Jin, Amir Haider, MuhibUr Rahman, and Desheng Wang. "Adversarial Gaussian Denoiser for Multiple-Level Image Denoising." Sensors 21, no. 9 (April 24, 2021): 2998. http://dx.doi.org/10.3390/s21092998.
Full textZou, XiuFang, Dingju Zhu, Jun Huang, Wei Lu, Xinchu Yao, and Zhaotong Lian. "WGAN-Based Image Denoising Algorithm." Journal of Global Information Management 30, no. 9 (January 2022): 1–20. http://dx.doi.org/10.4018/jgim.300821.
Full textSu, Yunhao, Caiwen Ma, Junfeng Han, Xuan Wang, Yuanyuan Wang, and Zhou Ji. "Research on Magnetohydrodynamic Angular Rate Sensor Denoising for a Space Laser Stabilization Control System." Applied Sciences 13, no. 10 (May 10, 2023): 5895. http://dx.doi.org/10.3390/app13105895.
Full text