Academic literature on the topic 'Dengue virus genome replication'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dengue virus genome replication.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dengue virus genome replication"

1

Alcaraz-Estrada, Sofia Lizeth, Martha Yocupicio-Monroy, and Rosa María del Angel. "Insights into dengue virus genome replication." Future Virology 5, no. 5 (2010): 575–92. http://dx.doi.org/10.2217/fvl.10.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Kezhen, Juanjuan Wang, Ta Sun, et al. "Glycosphingolipid GM3 is Indispensable for Dengue Virus Genome Replication." International Journal of Biological Sciences 12, no. 7 (2016): 872–83. http://dx.doi.org/10.7150/ijbs.15641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alvarez, Diego E., María F. Lodeiro, Silvio J. Ludueña, Lía I. Pietrasanta, and Andrea V. Gamarnik. "Long-Range RNA-RNA Interactions Circularize the Dengue Virus Genome." Journal of Virology 79, no. 11 (2005): 6631–43. http://dx.doi.org/10.1128/jvi.79.11.6631-6643.2005.

Full text
Abstract:
ABSTRACT Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5′ and 3′ ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy reveled that physical interaction between these RNA elements results in cyclization of the
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamoto, Kristie A., Kevin Blackburn, Michael B. Goshe, et al. "Tizoxanide Antiviral Activity on Dengue Virus Replication." Viruses 15, no. 3 (2023): 696. http://dx.doi.org/10.3390/v15030696.

Full text
Abstract:
Dengue virus is an important circulating arbovirus in Brazil responsible for high morbidity and mortality worldwide, representing a huge economic and social burden, in addition to affecting public health. In this study, the biological activity, toxicity, and antiviral activity against dengue virus type 2 (DENV-2) of tizoxanide (TIZ) was evaluated in Vero cell culture. TIZ has a broad spectrum of action in inhibiting different pathogens, including bacteria, protozoa, and viruses. Cells were infected for 1 h with DENV-2 and then treated for 24 h with different concentrations of the drug. The qua
APA, Harvard, Vancouver, ISO, and other styles
5

Leitmeyer, Katrin C., David W. Vaughn, Douglas M. Watts, et al. "Dengue Virus Structural Differences That Correlate with Pathogenesis." Journal of Virology 73, no. 6 (1999): 4738–47. http://dx.doi.org/10.1128/jvi.73.6.4738-4747.1999.

Full text
Abstract:
ABSTRACT The understanding of dengue virus pathogenesis has been hampered by the lack of in vitro and in vivo models of disease. The study of viral factors involved in the production of severe dengue, dengue hemorrhagic fever (DHF), versus the more common dengue fever (DF), have been limited to indirect clinical and epidemiologic associations. In an effort to identify viral determinants of DHF, we have developed a method for comparing dengue type 2 genomes (reverse transcriptase PCR in six fragments) directly from patient plasma. Samples for comparison were selected from two previously describ
APA, Harvard, Vancouver, ISO, and other styles
6

Dethoff, Elizabeth A., Mark A. Boerneke, Nandan S. Gokhale, et al. "Pervasive tertiary structure in the dengue virus RNA genome." Proceedings of the National Academy of Sciences 115, no. 45 (2018): 11513–18. http://dx.doi.org/10.1073/pnas.1716689115.

Full text
Abstract:
RNA virus genomes are efficient and compact carriers of biological information, encoding information required for replication both in their primary sequences and in higher-order RNA structures. However, the ubiquity of RNA elements with higher-order folds—in which helices pack together to form complex 3D structures—and the extent to which these elements affect viral fitness are largely unknown. Here we used single-molecule correlated chemical probing to define secondary and tertiary structures across the RNA genome of dengue virus serotype 2 (DENV2). Higher-order RNA structures are pervasive a
APA, Harvard, Vancouver, ISO, and other styles
7

Asyura, Muhammad Mikail Athif Zhafir, Ahmad Fauzi, and Fakhru Adlan Ayub. "Potential of Peptide-Based Non-Structural Protein 1 (NS1) Inhibitor in Obstructing Dengue Virus (DENV) Replication." Green Medical Journal 3, no. 1 (2021): 1–12. http://dx.doi.org/10.33096/gmj.v3i1.71.

Full text
Abstract:
Introduction: Dengue Virus (DENV) is the pathogen for human dengue fever and is responsible for 390 million infections per year. The viral genome produces about 10 viral protein products, one of them being NS1. The NS1 protein plays a key role in viral replication and stimulation of humoral immune cells, thus being the perfect candidate to create an effective antiviral drug or vaccine for dengue
 Methods: Dengue Virus (DENV) is the pathogen for human dengue fever and is responsible for 390 million infections per year. The viral genome produces about 10 viral protein products, one of them
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Siwy Ling, Riccardo Delli Ponti, Yue Wan, and Roland G. Huber. "Computational and Experimental Approaches to Study the RNA Secondary Structures of RNA Viruses." Viruses 14, no. 8 (2022): 1795. http://dx.doi.org/10.3390/v14081795.

Full text
Abstract:
Most pandemics of recent decades can be traced to RNA viruses, including HIV, SARS, influenza, dengue, Zika, and SARS-CoV-2. These RNA viruses impose considerable social and economic burdens on our society, resulting in a high number of deaths and high treatment costs. As these RNA viruses utilize an RNA genome, which is important for different stages of the viral life cycle, including replication, translation, and packaging, studying how the genome folds is important to understand virus function. In this review, we summarize recent advances in computational and high-throughput RNA structure-m
APA, Harvard, Vancouver, ISO, and other styles
9

Markoff, Lewis, Xiaou Pang, Huo-shu Houng, et al. "Derivation and Characterization of a Dengue Type 1 Host Range-Restricted Mutant Virus That Is Attenuated and Highly Immunogenic in Monkeys." Journal of Virology 76, no. 7 (2002): 3318–28. http://dx.doi.org/10.1128/jvi.76.7.3318-3328.2002.

Full text
Abstract:
ABSTRACT We recently described the derivation of a dengue serotype 2 virus (DEN2mutF) that exhibited a host range-restricted phenotype; it was severely impaired for replication in cultured mosquito cells (C6/36 cells). DEN2mutF virus had selected mutations in genomic sequences predicted to form a 3′ stem-loop structure (3′-SL) that is conserved among all flavivirus species. The 3′-SL constitutes the downstream terminal ∼95 nucleotides of the 3′ noncoding region in flavivirus RNA. Here we report the introduction of these same mutational changes into the analogous region of an infectious DNA der
APA, Harvard, Vancouver, ISO, and other styles
10

Sanford, Thomas J., Harriet V. Mears, Teodoro Fajardo, Nicolas Locker, and Trevor R. Sweeney. "Circularization of flavivirus genomic RNA inhibits de novo translation initiation." Nucleic Acids Research 47, no. 18 (2019): 9789–802. http://dx.doi.org/10.1093/nar/gkz686.

Full text
Abstract:
Abstract Members of the Flaviviridae family, including dengue virus (DENV) and yellow fever virus, cause serious disease in humans, whilst maternal infection with Zika virus (ZIKV) can induce microcephaly in newborns. Following infection, flaviviral RNA genomes are translated to produce the viral replication machinery but must then serve as a template for the transcription of new genomes. However, the ribosome and viral polymerase proceed in opposite directions along the RNA, risking collisions and abortive replication. Whilst generally linear, flavivirus genomes can adopt a circular conformat
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!