Academic literature on the topic 'Dendritic Scaffolds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dendritic Scaffolds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dendritic Scaffolds"

1

Wang, Xiuhui, Naoki Kawazoe, and Guoping Chen. "Interaction of Immune Cells and Tumor Cells in Gold Nanorod–Gelatin Composite Porous Scaffolds." Nanomaterials 9, no. 10 (September 24, 2019): 1367. http://dx.doi.org/10.3390/nano9101367.

Full text
Abstract:
Composite porous scaffolds prepared by immobilization of photothermal nano-agents into porous scaffold have been used for both cancer therapy and tissue regeneration. However, it is not clear how the host immune cells and ablated tumor cells interact and stimulate each other in the composite scaffolds. In this research, a gold nanorod-incorporated gelatin composite scaffold with controlled spherical large pores and well interconnected small pores was fabricated by using ice particulates as a porogen. The composite porous scaffold was used for investigating the interaction between dendritic cells and photothermally ablated breast tumor cells. The composite scaffold demonstrated excellent photothermal property and the temperature change value could be adjusted by irradiation time and laser power density. The composite scaffold showed excellent photothermal ablation ability towards breast tumor cells. The photothermally ablated tumor cells induced activation of dendritic cells when immature dendritic cells were co-cultured in the composite scaffold. Consequently, the gold nanorod–incorporated gelatin composite porous scaffold should provide a useful platform for simultaneous photothermal-immune ablation of breast tumor.
APA, Harvard, Vancouver, ISO, and other styles
2

Appelhans, Dietmar, Barbara Klajnert-Maculewicz, Anna Janaszewska, Joanna Lazniewska, and Brigitte Voit. "Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications." Chemical Society Reviews 44, no. 12 (2015): 3968–96. http://dx.doi.org/10.1039/c4cs00339j.

Full text
Abstract:
The potential of dendritic glycopolymers based on dendritic polyamine scaffolds for biomedical applications is presented and compared with that of the structurally related anti-adhesive dendritic glycoconjugates.
APA, Harvard, Vancouver, ISO, and other styles
3

Amir, Roey J., Lorenzo Albertazzi, Jenny Willis, Anzar Khan, Taegon Kang, and Craig J. Hawker. "Multifunctional Trackable Dendritic Scaffolds and Delivery Agents." Angewandte Chemie International Edition 50, no. 15 (March 9, 2011): 3425–29. http://dx.doi.org/10.1002/anie.201007427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amir, Roey J., Lorenzo Albertazzi, Jenny Willis, Anzar Khan, Taegon Kang, and Craig J. Hawker. "Multifunctional Trackable Dendritic Scaffolds and Delivery Agents." Angewandte Chemie 123, no. 15 (March 9, 2011): 3487–91. http://dx.doi.org/10.1002/ange.201007427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Molina, Noemi, Ana González, Donato Monopoli, Belinda Mentado, José Becerra, Leonor Santos-Ruiz, Yolanda Vida, and Ezequiel Perez-Inestrosa. "Dendritic Scaffold onto Titanium Implants. A Versatile Strategy Increasing Biocompatibility." Polymers 12, no. 4 (April 1, 2020): 770. http://dx.doi.org/10.3390/polym12040770.

Full text
Abstract:
Osseointegration of metal prosthetic implants is a yet unresolved clinical need that depends on the interplay between the implant surface and bone cells. The lack of a relationship between bone cells and metal has traditionally been solved by coating the former with “organic” ceramics, such as hydroxyapatite. A novel approach is hereby presented, immobilizing covalently dendrimeric structures onto titanium implants. Amide-based amino terminal dendrons were synthetized and coupled to titanium surfaces in a versatile and controlled way. The dendritic moieties provide an excellent scaffold for the covalent immobilization of bioactive molecules, such as extracellular matrix (ECM) protein components or antibiotics. Herein, tripeptide arginine-glycine-aspartic acid (RGD) motifs were used to decorate the dendritic scaffolds and their influence on cell adhesion and proliferation processes was evaluated.
APA, Harvard, Vancouver, ISO, and other styles
6

Fernández-Pérez, Julia, Peter W. Madden, Robert Thomas Brady, Peter F. Nowlan, and Mark Ahearne. "The effect of prior long-term recellularization with keratocytes of decellularized porcine corneas implanted in a rabbit anterior lamellar keratoplasty model." PLOS ONE 16, no. 6 (June 1, 2021): e0245406. http://dx.doi.org/10.1371/journal.pone.0245406.

Full text
Abstract:
Decellularized porcine corneal scaffolds are a potential alternative to human cornea for keratoplasty. Although clinical trials have reported promising results, there can be corneal haze or scar tissue. Here, we examined if recellularizing the scaffolds with human keratocytes would result in a better outcome. Scaffolds were prepared that retained little DNA (14.89 ± 5.56 ng/mg) and demonstrated a lack of cytotoxicity by in vitro. The scaffolds were recellularized using human corneal stromal cells and cultured for between 14 in serum-supplemented media followed by a further 14 days in either serum free or serum-supplemented media. All groups showed full-depth cell penetration after 14 days. When serum was present, staining for ALDH3A1 remained weak but after serum-free culture, staining was brighter and the keratocytes adopted a native dendritic morphology with an increase (p < 0.05) of keratocan, decorin, lumican and CD34 gene expression. A rabbit anterior lamellar keratoplasty model was used to compare implanting a 250 μm thick decellularized lenticule against one that had been recellularized with human stromal cells after serum-free culture. In both groups, host rabbit epithelium covered the implants, but transparency was not restored after 3 months. Post-mortem histology showed under the epithelium, a less-compact collagen layer, which appeared to be a regenerating zone with some α-SMA staining, indicating fibrotic cells. In the posterior scaffold, ALDH1A1 staining was present in all the acellular scaffold, but in only one of the recellularized lenticules. Since there was little difference between acellular and cell-seeded scaffolds in our in vivo study, future scaffold development should use acellular controls to determine if cells are necessary.
APA, Harvard, Vancouver, ISO, and other styles
7

Leifer, Cynthia A. "Dendritic cells in host response to biologic scaffolds." Seminars in Immunology 29 (February 2017): 41–48. http://dx.doi.org/10.1016/j.smim.2017.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sadowski, Lukas P., Patricia E. Edem, John F. Valliant, and Alex Adronov. "Synthesis of Polyester Dendritic Scaffolds for Biomedical Applications." Macromolecular Bioscience 16, no. 10 (July 4, 2016): 1475–84. http://dx.doi.org/10.1002/mabi.201600154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Piñón-Zárate, Gabriela, Beatriz Hernández-Téllez, Katia Jarquín-Yáñez, Miguel Ángel Herrera-Enríquez, América Eréndira Fuerte-Pérez, Esther Alejandra Valencia-Escamilla, and Andrés Eliú Castell-Rodríguez. "Gelatin/Hyaluronic Acid Scaffold Coupled to CpG and MAGE-A5 as a Treatment against Murine Melanoma." Polymers 14, no. 21 (October 30, 2022): 4608. http://dx.doi.org/10.3390/polym14214608.

Full text
Abstract:
The half-time of cells and molecules used in immunotherapy is limited. Scaffolds-based immunotherapy against cancer may increase the half-life of the molecules and also support the migration and activation of leukocytes in situ. For this purpose, the use of gelatin (Ge)/hyaluronic acid (HA) scaffolds coupled to CpG and the tumor antigen MAGE-A5 is proposed. Ge and HA are components of the extracellular matrix that stimulate cell adhesion and activation of leucocytes; CpG can promote dendritic cell maturation, and MAGE-A5 a specific antitumor response. C57BL/6 mice were treated with Ge/HA/scaffolds coupled to MAGE-A5 and/or CpG and then challenged with the B16-F10 melanoma cell line. Survival, tumor growth rate and the immune response induced by the scaffolds were analyzed. Ge/HA/CpG and Ge/HA/MAGE-A5 mediated dendritic cell maturation and macrophage activation, increased survival, and decreased the tumor growth rate and a tumor parenchyma with abundant cell death areas and abundant tumor cells with melanin granules. Only the scaffolds coupled to MAGE-A5 induced the activation of CD8 T cells. In conclusion, Ge/HA scaffolds coupled to CpG or MAGE-A5, but not the mixture, can induce a successful immune response capable of promoting tumor cell clearance and increased survival.
APA, Harvard, Vancouver, ISO, and other styles
10

Sreeperumbuduru, R. S., Z. M. Abid, K. M. Claunch, H. H. Chen, S. M. McGillivray, and E. E. Simanek. "Synthesis and antimicrobial activity of triazine dendrimers with DABCO groups." RSC Advances 6, no. 11 (2016): 8806–10. http://dx.doi.org/10.1039/c5ra10388f.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dendritic Scaffolds"

1

Hed, Yvonne. "Multifunctional Dendritic Scaffolds: Synthesis, Characterization and Potential applications." Doctoral thesis, KTH, Ytbehandlingsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127429.

Full text
Abstract:
The development of materials for advanced applications requires innovative macromolecules with well-defined structures and the inherent ability to be tailored in a straightforward manner. Dendrimers, being a subgroup of the dendritic polymer family, possess properties which fulfill such demands. They have a highly branched architecture with a high number of functional groups and are one of the most well-defined types of macromolecules ever synthesized. However, despite their well-defined nature and high functional density, traditional dendrimers commonly lack diverse chemical functionalities. Therefore, this thesis focuses on the synthesis of more complex dendritic materials to extend their tailoring capacity by introduction of dualfunctionalities for multipurpose actions. It covers the synthesis of dualfunctional dendrimers, dendritic modification of linear poly(ethylene glycol) polymers and cellulose surfaces, and the synthesis of linear dendritic hybrids. The building blocks enabling this synthesis, AB2C monomers, were also developed during this work. The orthogonal nature between click groups (azide, alkyne and alkene) and hydroxyl groups have efficiently been utilized for postfunctionalization by robust click chemistry and traditional esterification reactions. Furthermore, linear dendritic hybrids were synthesized, merging the properties of linear and dendritic macromolecules. The dendritic frameworks were tailored towards the production of bone fracture adhesives, novel biofunctional dendritic hydrogels, biosensors and micellar drug delivery vehicles.
Utveckling av material för avancerade applikationer kräver innovativa makromolekyler med väldefinierade strukturer och som kan skräddarsys på ett enkelt sätt. Dendrimerer är en undergrupp av dendritiska polymerer vars egenskaper uppfyller dessa krav. De har en mycket förgrenad arkitektur med många funktionella grupper och är en av de mest väldefinierade befintliga syntetiska makromolekylerna. Trots dess väldefinierade karaktär och höga funktionalitet saknar ofta traditionella dendrimerer multipla kemiska funktionaliteter. Denna avhandling fokuserar därför på syntesen av mer komplexa dendritiska material för att förbättra deras kapacitet att skräddarsys, detta görs genom att introducera fler funktionaliteter som kan utnyttjas för multipla ändamål . Avhandlingen redogör för syntesen av difunktionella dendrimerer, dendritiska modifikationer av polyetylenglykol och cellulosaytor samt syntes av traditionella dendritiska hybrider. Byggstenarna som möjliggör syntesen, AB2C monomerer, framställdes också under detta arbete. Den ortogonala karaktären mellan klick grupper (azid, alkyn och alkene) och hydroxylgrupper har utnyttjats effektivt för funktionaliseringar genom användande av robust ”Click”-kemi och traditionella esterifikationsreaktioner. Vidare tillverkades de linjära dendritiska hybrider för att kombinera egenskaperna hos både linjära och traditionella dendritiska polymerer i en och samma makromolekyl. Samtliga dendritiska strukturer skräddarsyddes för applikationer så som benlimmer, biofunktionella dendritiska hydrogeler, biosensorer och läkemedels-bärande miceller.

QC 20130830

APA, Harvard, Vancouver, ISO, and other styles
2

Atkinson, Sarah Jane, and n/a. "Studies in Dendritic Scaffolds and Surface Functionalisation for Applications in Nanoscience." Griffith University. School of Biomolecular and Physical Sciences, 2007. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20071122.124705.

Full text
Abstract:
Chapter 1 includes a review on dendrimers, their synthesis and applications, with a particular focus on urea-linked dendritic species. The synthetic strategy utilised in this body of work was based on the preparation of a number of branched synthetic building blocks possessing differing terminal functionality. These branched dendrons, bearing three terminal residues and based on the cheap starting material tris(hydroxymethyl)aminomethane (TRIS) 23, involved the coupling of 3.3 equivalents of an appropriately para-substituted benzoic acid chloride with BOC protected TRIS 24 in DCM in the presence of triethylamine. The p-nitro, p-methoxy and p-methyl benzoyl chloride starting materials were obtained commercially, whilst N-(4-carboxyphenyl)maleimide was synthesised according to literature procedures. The BOC protected dendrons (25–27, 34) were synthesized in yields ranging from 50–92%. Deprotection of the BOC protected dendrons 25 and 26 in DCM with TFA, followed by the addition of 1M Na2CO3 afforded the TFA salts 35 and 36, respectively. The corresponding free base amines 37 and 38 were obtained on further treatment of the TFA salts with sodium carbonate. Deprotection of the BOC protected dendrons 27 and 34 afforded the free amines 39 and 48 directly after treatment with sodium carbonate. Synthesis of functionalised branched molecules containing 6- and 9-peripheral functionalities was achieved by refluxing 2 or 3 equivalents of the free amine dendrons with the bi- or tri- functional isocyanate cores, 15 and 45, in refluxing DCM, in most cases the products precipitated from the reaction mixture after 18 h and were isolated simply by filtration, otherwise the removal of the solvent from the reaction mixture afforded the spectroscopically pure product. Conversion of the peripheral nitro functionalised species 14 and 21 to the corresponding amines occurred smoothly via hydrogenation using 5% Pd/C under elevated temperature and pressure (DMF, 55 ºC, 600 psi) and afforded the polyamine 6-mer 51 in 92% yield and the 9-mer 50 in 90% yield, respectively. Similarly, conversion of the methoxy coated 9-mer 42, to the corresponding phenolic compound (AlBr3, dodecane thiol, DCM) afforded the 9-mer polyphenol 52 in an 87% yield. All compounds prepared were fully characterised and crystal structures were obtained for 26 and 35. Chapter 2 includes a review on self-assembled monolayers of organosulfur compounds on gold, applications, patterning techniques and techniques for the characterisation of these surfaces. A number of surface monomers were successfully synthesized, to be used for various surface functionalisations, including the formation of an amine reactive N-hydroxysuccinimide (NHS) disulfide 53, via the DCC coupling of 11,11’-dithiobisundecanoic acid 54 with N-hydroxysuccinimide with an isolated yield of 30%. A novel protein-resistant monomer 58 was also synthesized from 11-undecanoic acid 55 via an acid chloride coupling with triethylene glycol monomethyl ether 58, and isolated in a 72% yield. A number of attempts were made to produce an acyl azide SAM monomer 59, with success finally achieved via the acid chloride coupling of 11,11’-dithiobisundecanoic acid 54 with 5-amino-1,3-benzenedicarbonyl diazide 62 to produce 59 with an isolated yield of ~ 30%. Gold surfaces were prepared on atomically flat silicon wafers using an argon-ion sputterer. SAM films were formed on the gold surfaces via traditional solution based self-assembly methodology. A UV patterning protocol was developed, and a successful patterning trial using the NHS terminated monomer to backfill the UV exposed areas of a dodecane thiol monolayer was achieved and visualized using AFM and fluorescence microscopy after treating the surface with aminofluorescein. The covalent attachment of green fluorescent protein to the monolayer surface via reaction with the NHS terminated monolayer was demonstrated. The fluorescence of the biomolecule was preserved. The formation of a monolayer using the acyl azide monomer 59, was characterised by contact angle and XPS analysis. However, preliminary studies into the activation of the acyl azide surface into the reactive isocyanate were unsuccessful. There is however, significant scope for further investigations into this interesting surface technology. Chapter 3 includes a review on heterobifunctional linker technology with a particular focus on amine and thiol reactive moieties and literature examples of heterobifunctional linkers of this type. Synthesis of heterobifunctional reagents such as 71 and 74 via a two step synthetic methodology involving the coupling of maleic anhydride with the parent amino-acids in acetic acid, followed by a one pot cyclisation and NHS esterification using DCC in DMF were successful, with overall yields of 9% and 32% respectively for the two reaction steps. The one pot extension of 74 with 6-aminohexanoic acid, followed by DCC, facilitated NHS esterification was achieved successfully in a yield of 30%. Attempts to extend 74 with the synthesised amino acid 88 were unsuccessful due to the insolubility of 88 in organic solvents. A different synthetic strategy was devised towards the synthesis of 85 with the coupling of 74 and mono BOC protected ethylene diamine 91 in DCM to give 93 in an isolated yield of 60%. Deprotection of the terminal amine was achieved via reaction with TFA in DCM however all attempts to prepare the free amine were unsuccessful. Subsequent attempts to couple 94 with both succinic anhydride and 92 were unsuccessful. A maleimide functionalized crown ether was synthesised as a molecule for protein modification via the reaction of 74 with 4’-aminobenzo-15-crown-5 97 to produce 98 in an 80% yield. All compounds were fully characterised with crystal structures obtained for 74, 79 and 89.
APA, Harvard, Vancouver, ISO, and other styles
3

Goyal, Poorva. "Development of dendritic and polymeric scaffolds for biological and catalysis applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24826.

Full text
Abstract:
Thesis (Ph.D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2008.
Committee Chair: Weck, Marcus; Committee Member: Bunz, Uwe H. F.; Committee Member: Dickson, Robert M; Committee Member: Fahrni, Christoph J; Committee Member: Jones, Christopher W; Committee Member: Murthy, Niren.
APA, Harvard, Vancouver, ISO, and other styles
4

Atkinson, Sarah Jane. "Studies in Dendritic Scaffolds and Surface Functionalisation for Applications in Nanoscience." Thesis, Griffith University, 2007. http://hdl.handle.net/10072/366865.

Full text
Abstract:
Chapter 1 includes a review on dendrimers, their synthesis and applications, with a particular focus on urea-linked dendritic species. The synthetic strategy utilised in this body of work was based on the preparation of a number of branched synthetic building blocks possessing differing terminal functionality. These branched dendrons, bearing three terminal residues and based on the cheap starting material tris(hydroxymethyl)aminomethane (TRIS) 23, involved the coupling of 3.3 equivalents of an appropriately para-substituted benzoic acid chloride with BOC protected TRIS 24 in DCM in the presence of triethylamine. The p-nitro, p-methoxy and p-methyl benzoyl chloride starting materials were obtained commercially, whilst N-(4-carboxyphenyl)maleimide was synthesised according to literature procedures. The BOC protected dendrons (25–27, 34) were synthesized in yields ranging from 50–92%. Deprotection of the BOC protected dendrons 25 and 26 in DCM with TFA, followed by the addition of 1M Na2CO3 afforded the TFA salts 35 and 36, respectively. The corresponding free base amines 37 and 38 were obtained on further treatment of the TFA salts with sodium carbonate. Deprotection of the BOC protected dendrons 27 and 34 afforded the free amines 39 and 48 directly after treatment with sodium carbonate. Synthesis of functionalised branched molecules containing 6- and 9-peripheral functionalities was achieved by refluxing 2 or 3 equivalents of the free amine dendrons with the bi- or tri- functional isocyanate cores, 15 and 45, in refluxing DCM, in most cases the products precipitated from the reaction mixture after 18 h and were isolated simply by filtration, otherwise the removal of the solvent from the reaction mixture afforded the spectroscopically pure product. Conversion of the peripheral nitro functionalised species 14 and 21 to the corresponding amines occurred smoothly via hydrogenation using 5% Pd/C under elevated temperature and pressure (DMF, 55 ºC, 600 psi) and afforded the polyamine 6-mer 51 in 92% yield and the 9-mer 50 in 90% yield, respectively. Similarly, conversion of the methoxy coated 9-mer 42, to the corresponding phenolic compound (AlBr3, dodecane thiol, DCM) afforded the 9-mer polyphenol 52 in an 87% yield. All compounds prepared were fully characterised and crystal structures were obtained for 26 and 35. Chapter 2 includes a review on self-assembled monolayers of organosulfur compounds on gold, applications, patterning techniques and techniques for the characterisation of these surfaces. A number of surface monomers were successfully synthesized, to be used for various surface functionalisations, including the formation of an amine reactive N-hydroxysuccinimide (NHS) disulfide 53, via the DCC coupling of 11,11’-dithiobisundecanoic acid 54 with N-hydroxysuccinimide with an isolated yield of 30%. A novel protein-resistant monomer 58 was also synthesized from 11-undecanoic acid 55 via an acid chloride coupling with triethylene glycol monomethyl ether 58, and isolated in a 72% yield. A number of attempts were made to produce an acyl azide SAM monomer 59, with success finally achieved via the acid chloride coupling of 11,11’-dithiobisundecanoic acid 54 with 5-amino-1,3-benzenedicarbonyl diazide 62 to produce 59 with an isolated yield of ~ 30%. Gold surfaces were prepared on atomically flat silicon wafers using an argon-ion sputterer. SAM films were formed on the gold surfaces via traditional solution based self-assembly methodology. A UV patterning protocol was developed, and a successful patterning trial using the NHS terminated monomer to backfill the UV exposed areas of a dodecane thiol monolayer was achieved and visualized using AFM and fluorescence microscopy after treating the surface with aminofluorescein. The covalent attachment of green fluorescent protein to the monolayer surface via reaction with the NHS terminated monolayer was demonstrated. The fluorescence of the biomolecule was preserved. The formation of a monolayer using the acyl azide monomer 59, was characterised by contact angle and XPS analysis. However, preliminary studies into the activation of the acyl azide surface into the reactive isocyanate were unsuccessful. There is however, significant scope for further investigations into this interesting surface technology. Chapter 3 includes a review on heterobifunctional linker technology with a particular focus on amine and thiol reactive moieties and literature examples of heterobifunctional linkers of this type. Synthesis of heterobifunctional reagents such as 71 and 74 via a two step synthetic methodology involving the coupling of maleic anhydride with the parent amino-acids in acetic acid, followed by a one pot cyclisation and NHS esterification using DCC in DMF were successful, with overall yields of 9% and 32% respectively for the two reaction steps. The one pot extension of 74 with 6-aminohexanoic acid, followed by DCC, facilitated NHS esterification was achieved successfully in a yield of 30%. Attempts to extend 74 with the synthesised amino acid 88 were unsuccessful due to the insolubility of 88 in organic solvents. A different synthetic strategy was devised towards the synthesis of 85 with the coupling of 74 and mono BOC protected ethylene diamine 91 in DCM to give 93 in an isolated yield of 60%. Deprotection of the terminal amine was achieved via reaction with TFA in DCM however all attempts to prepare the free amine were unsuccessful. Subsequent attempts to couple 94 with both succinic anhydride and 92 were unsuccessful. A maleimide functionalized crown ether was synthesised as a molecule for protein modification via the reaction of 74 with 4’-aminobenzo-15-crown-5 97 to produce 98 in an 80% yield. All compounds were fully characterised with crystal structures obtained for 74, 79 and 89.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Physical Sciences
Full Text
APA, Harvard, Vancouver, ISO, and other styles
5

Öberg, Hed Kim. "Advanced polymeric scaffolds for functional materials in biomedical applications." Doctoral thesis, KTH, Ytbehandlingsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139944.

Full text
Abstract:
Advancements in the biomedical field are driven by the design of novel materials with controlled physical and bio-interactive properties. To develop such materials, researchers rely on the use of highly efficient reactions for the assembly of advanced polymeric scaffolds that meet the demands of a functional biomaterial. In this thesis two main strategies for such materials have been explored; these include the use of off-stoichiometric thiol-ene networks and dendritic polymer scaffolds. In the first case, the highly efficient UV-induced thiol-ene coupling (TEC) reaction was used to create crosslinked polymeric networks with a predetermined and tunable excess of thiol or ene functionality. These materials rely on the use of readily available commercial monomers. By adopting standard molding techniques and simple TEC surface modifications, patterned surfaces with tunable hydrophobicity could be obtained. Moreover, these materials are shown to have great potential for rapid prototyping of microfluidic devices. In the second case, dendritic polymer scaffolds were evaluated for their ability to increase surface interactions and produce functional 3D networks. More specifically, a self-assembled dendritic monolayer approach was explored for producing highly functional dendronized surfaces with specific interactions towards pathogenic E. coli bacteria. Furthermore, a library of heterofunctional dendritic scaffolds, with a controllable and exact number of dual-purpose azide and ene functional groups, has been synthesized. These scaffolds were explored for the production of cell interactive hydrogels and primers for bone adhesive implants. Dendritic hydrogels decorated with a selection of bio-relevant moieties and with Young’s moduli in the same range as several body tissues could be produced by facile UV-induced TEC crosslinking. These gels showed low cytotoxic response and relatively rapid rates of degradation when cultured with normal human dermal fibroblast cells. When used as primers for bone adhesive patches, heterofunctional dendrimers with high azide-group content led to a significant increase in the adhesion between a UV-cured hydrophobic matrix and the wet bone surface (compared to patches without primers).

QC 20140116

APA, Harvard, Vancouver, ISO, and other styles
6

Malaza, Siphelele. "Towards nuclear imaging with polynuclear radiotracers : the development of monomeric and dendritic scaffolds for radiometals." Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/20500.

Full text
Abstract:
A series of 1,4-diaminobutane poly(propylene amine) (DAB-PPI) dendrimer-based ligands were prepared with the aim of developing ligands that will permit the synthesis of multinuclear technetium-99m (99mTc) radiolabeled complexes. The ligands were synthesized by incorporating N,N-donor atom functionalities, at the periphery of DAB-PPI dendrimers, as potential 99mTc chelates. Monomeric ligands were also synthesized as model compounds to aid with the characterization of macromolecular structures. The first (DAB-G1dendr-(NH2)4) and second (DAB-G2dendr-(NH2)8) generation DAB-PPI peripheral amine end-groups were functionalized using appropriate aldehydes, bearing either 2,2'-bipyridyl or 2-picolylamino entities, via a single step reductive amination reaction. The monomeric and new dendritic ligands were comprehensively characterized using spectroscopic (1H NMR, 13C{1H} NMR, infrared) and analytical techniques (mass spectrometry and elemental analysis). Furthermore, the 2-picolylamino-functionalized ligands were found to be water-soluble, S25 °C = 0.01 mg/μL. A series of non-radioactive ('cold') neutral mononuclear and novel multinuclear dendritic rhenium(I) complexes of the form fac-[Ren(CO)3(N,N-bidentate)Xn] (n = 1, 4 and 8 for monomer, G1 and G2, respectively. X = Cl- or Br-) were prepared and characterized. The complexes with the fac-[Re(CO)3Br] core were synthesized at room temperature using the (Et4N)[Re(CO)3Br3]. One of the 2-picolylamino monomeric complexes, fac-[Re(CO)3(N,N-bidentate)Br], was additionally characterized by X-ray crystallography and the crystallographic structure confirms the facial arrangement of the three CO ligands together with the pseudo octahedral geometry around the metal centre.
APA, Harvard, Vancouver, ISO, and other styles
7

Pecchioli, Tommaso [Verfasser]. "Stereoselective C–C Bond Formations: Syntheses and Applications of Dendritic Organocatalysts and Polycyclic Hydrocarbon Scaffolds / Tommaso Pecchioli." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1207834726/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kinberger, Garth Alden. "The design, synthesis and characterization of scaffold-assembled and dendritic collagen mimetics /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3099544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Govender, Preshendren. "Synthesis, characterization and anticancer studies of multinuclear ruthenium(II) arene complexes based on a dendritic scaffold." Master's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/10568.

Full text
Abstract:
Includes bibliographical references.
A series of monodentate (N-) and chelating bidentate (N,N-, N,O-), monomeric and dendritic ligands based on a poly(propyleneimine) dendrimer scaffold were synthesized via Schiff base condensation reactions of the relevant amine and appropriate aldehydes. These reactions yielded air- and moisture-stable oils or solids. These ligands contained pyridyl-imine moieties and salicylaldimine moieties. These compounds were isolated in good yields and characterized using standard spectroscopic and spectrometric, analytical techniques.
APA, Harvard, Vancouver, ISO, and other styles
10

Sudding, Lara Cathryn. "Synthesis and biological evaluation of polynuclear cyclometalated ruthenium, rhodium and iridium complexes based on a PPI dendritic scaffold." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/9198.

Full text
Abstract:
Includes bibliographical references.
A series of chelating, bidentate (C,N-) monomeric and dendritic ligands based on a poly(propyleneimine) dendritic scaffold were synthesized via a Schiff-base condensation reaction of the relevant amine and either naphthaldehyde or benzaldehyde. These reactions yielded air- and moisture-stable solids or oils. These compounds were isolated in good yields and characterized using standard spectroscopic and analytical techniques.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dendritic Scaffolds"

1

Tasaki, Satoko, Chiaki Maeda, and Soshu Kirihara. "Biofluid Flow Simulation of Tissue Engineering Scaffolds with Dendrite Structures." In Advances in Bioceramics and Porous Ceramics V, 117–21. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118217504.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dendritic Scaffolds"

1

Nakagawa, K., T. Takaki, Y. Morita, and E. Nakamachi. "2D Phase-Field Analyses of Axonal Extension of Nerve Cell." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64281.

Full text
Abstract:
In this study, we aimed to develop a computer-aided simulation technique to predict the axonal extension in the neuronal network evolution processes for design new scaffolds to activate the nerve cell and promote the nerve regeneration. We developed a mathematical model of axonal extension by using phase-field method and evaluated the validity of the mathematical model by comparison with the experiments. In the previous experimental studies, the peripheral nerve scaffold has been introduced to guide the axonal extension. Damaged part of nerve was replaced by the artificial tube as the scaffold to induce the axonal growth through the artificial tube and regenerate the nerve network. However, the scaffold made of biodegradable materials has a problem that it is degraded and absorbed before the nerve regenerate, and then the nerve cannot regenerate. Therefore, there is a need for the design and development of a scaffold for nerve regeneration to promote nerve regeneration. For that purpose, it is necessary to understand the difference between the axonal extensions by the surrounding environment, such as the shape or materials of the scaffold for nerve regeneration. In particular, the numerical technique to analyze the remodeling process of the nerve in the scaffold is strongly required to be established because the in-vivo experimental observation technology at the micro scale, bioethical issues in the animal experiment and requires time and money are also remained as unresolved problems. In this study, we developed a new simulation code which employed the phase-field method to predict the two-dimensional dendritic and axonal growth processes of nerve cells on cultivation scaffolds. We curried out the phase-field analyses to make clear how the parameters of Kobayashi–Warren–Carter (KWC) phase-field model affected on the morphologic growths of dendrite and axon. Simultaneously, we had observed the axonal extension process by using the PC-12D cells with nerve growth factor (NGF) on two-dimensional cultivation dish. Based on these axonal extension observation results, we approximated the morphological changes and establish the phenomenological model for phase-field analysis. Finally, we confirmed the validity of our newly developed phase-field simulation scheme in two dimensions by comparison with the experiments.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography