Dissertations / Theses on the topic 'Dendritic cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Dendritic cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Carnathan, Diane Gail Vilen Barbara J. "Dendritic cell regulation of B cells." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,1200.
Full textTitle from electronic title page (viewed Mar. 26, 2008). "... in partial fulfillment of the requirements for the degree of Master of Science in the Department of Microbiology and Immunology, School of Medicine." Discipline: Microbiology and Immunology; Department/School: Medicine.
Liu, Hao. "Dendritic cell development directed by stromal cells." Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516409.
Full textHansell, C. A. H. "Identification of avian dendritic cells." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603659.
Full textJones, Lucy Helen. "Alternative activation of dendritic cells." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8284.
Full textRigby, Rachael Jane. "Intestinal dendritic cells : characterisation of the colonic dendritic cell population and identification of potential precursors." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407134.
Full textJavorovic, Miran. "T-Cell Stimulation by Melanoma RNA-Pulsed Dendritic Cells." Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-30569.
Full textKavikondala, Sushma. "Dendritic cell and B cell interactions in systemic lupuserythematosus." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39793710.
Full textKwong, Amelia. "Crosstalk Between T Cells, Dendritic Cells, Cytokines, and Chemokines." Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/146198.
Full textLee, Michael Hweemoon. "Modulators of Dendritic Cells and B cells in Lupus." Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/565007.
Full textPh.D.
Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies directed against ubiquitous self-antigens, many of which are nuclear autoantigens like dsDNA and chromatin (Pisetsky, 2016), and by elevated type I interferons (IFN) (Hooks et al., 1979; Weckerle et al., 2011), a family of pro-inflammatory cytokines that have antiviral activity (Pestka et al., 2004). Microarray analysis of peripheral blood mononuclear cells (PBMC) from SLE patients discovered the increased expression of IFN-responsive genes that was named the IFN Signature (Baechler et al., 2003a; Bennett et al., 2003b; Crow et al., 2003). Genome wide association studies indicate a clear genetic component in lupus pathogenesis (Chung et al., 2011; SLEGEN et al., 2008) and murine models of SLE confirm genetic drivers of the disease (Morel, 2010; Morel et al., 2000). However, the concordance of SLE in monozygotic twins is only 30-40% (Connolly and Hakonarson, 2012), while the inc
Temple University--Theses
Milioti, Natalia. "Immunomodulation of atherosclerosis using dendritic cells." Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608344.
Full textMarín, Millán Eros Alexandre. "Novel mechanisms in tolerogenic dendritic cells." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT1032/document.
Full textThe research focused on tolerogenic dendritic cells during the last 20 years has culminated on their therapeutic application in several clinical trials. Among these trials, our team is currently conducting the first trial in the context of kidney transplantation using tolerogenic dendritic cells generated with low dose of GM-CSF (ATDC). We previously reported that Tol-BMDC generated with this protocol prolong thesurvival of different allografts in rodent models and do not induce adverse effects in nonhuman primates. In this work I demonstrated that ATDC derived from human monocytes, similarly to their bone marrow equivalent, display a low expression of costimulatory molecules, do not maturate and impair T-cell proliferation. Interestingly, ATDC display a particular phenotype, transcriptomic profile and metabolism comparing to other myeloid cells. In order to determine the suppressive mechanisms of these cells, I performed different assays demonstrating that ATDC impaired CD4+T-cells proliferation and IFN and IL-17A production, and induced de novo CD4+CD25+FoxP3hiTreg by contactindependent mechanisms. The analysis of ATDC supernatant (ATDC-SN) revealed a high concentration of lactate. I demonstrated that this lactate production is in part responsible of ATDC immunosuppressive effects. This study allowed to demonstrate that lactic acid secretion is a novel mechanisms displayed by ATDC and opens a new perspective of cell therapy based on the production of small molecules
Rivera, Cifuentes Claudia Andrea. "Intraepithelial dendritic cells : origin and function." Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5167.
Full textDendritic cells (DCs) patrol tissues and transport antigens to lymph nodes to initiate adaptive immune responses. Within tissues, DCs constitute a complex cell population made of distinct subsets that can exhibit different activation states and functions. How tissue-specific cues orchestrate DC diversification remains elusive. Particularly, the small intestine (SI) Lamina Propria (LP) is enriched in a peculiar population of cDC2s expressing the integrins CD103 and CD11b. Interestingly, a fraction of these cells can transmigrate into the epithelial layer both at steady state and in higher proportion upon infection. However, the consequences of such event on the identity and fate of these cells is unknown. By using single cell RNAseq analysis, we found that their epithelial colonization deeply modifies their transcriptomic profile, downregulating inflammatory genes expression and stimulating the transcription of antimicrobial genes. We then further described that the small intestine includes two pools of cDC2s originating from common preDC precursors: (1) lamina propria CD103+CD11b+ cDC2s that are mature-like pro-inflammatory cells and (2) intraepithelial cDC2s that exhibit an immature-like phenotype and induce tolerogenic T lymphocyte properties. Intraepithelial cDC2 phenotype results from the action of food-derived retinoic acid (ATRA), which enhances actomyosin contractility and promotes LP cDC2 transmigration into the epithelium. There, cDC2s are imprinted by environmental cues including ATRA itself and the mucus component Muc2. Hence, by reaching distinct sub-tissular niches, DCs can exist as immature and mature cells within the same tissue, revealing a novel mechanism of DC functional diversification
Kim, Jong-won. "Signalling initiation by blood dendritic cell antigen 2, a novel immunoglobulin receptor on plasmacytoid dendritic cells." Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/63862.
Full textSmits, Hermelijn Hélène. "Instruction of effector T cell programs by flexible dendritic cells." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2003. http://dare.uva.nl/document/86946.
Full textMahmood, Sajid. "Diverse regulation of natural killer cell functions by dendritic cells." Public Library of Science, 2012. http://hdl.handle.net/1993/23963.
Full textOctober 2014
Drakesmith, Alexander Hal. "Antigen processing and T cell priming by mouse dendritic cells." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300533.
Full textStuart, Lynda Maria. "Cell death, dendritic cells and downregulation of the immune response." Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/23214.
Full textKavikondala, Sushma. "Dendritic cell and B cell interactions in systemic lupus erythematosus." View the Table of Contents & Abstract, 2007. http://sunzi.lib.hku.hk/hkuto/record/B39711523.
Full textMann, Elizabeth R. "Tissue specific porperties of human dendritic cells and t-cells." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535005.
Full textHornig, Julia. "Induction of gut homing T cells by systemic dendritic cells." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9011.
Full textNie, Yingjie. "Defective dendritic cells and mesenchymal stromal cells in systemic lupus erythematosus and the potential of mesenchymal stromal cells as cell-therapy." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278681.
Full textPeng, Judy Chun-Ju. "Optimization of Dendritic cells for cancer immunotherapy /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18443.pdf.
Full textSalim, Sa'ad Yislam. "Mucosal dendritic cells in inflammatory bowel disease." Doctoral thesis, Linköpings universitet, Kirurgi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-52234.
Full textZangerle, Murray Tamsin Florencia Pamela. "Development of dendritic cells in the intestine." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7570/.
Full textMajor, James R. "Interactions of dendritic cells with vaccinia virus." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401096.
Full textPaterson, Alison M. "Tolerance induction by cytokine-modulated dendritic cells." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424869.
Full textEdwards, Alexander Daniel. "Recognition of microbial patterns by dendritic cells." Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407107.
Full textSoares, Sandra Clara Chaves. "Interactions between dendritic cells and Mycobacterium tuberculosis." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367559.
Full textMacdougal, Thomas Hugh James. "Interactions between dendritic cells and HIV-1." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392283.
Full textScott, Charlotte Louise. "Characterisation of dendritic cells in the intestine." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/4829/.
Full textEaton, Laura. "Skin dendritic cells : activation, maturation and migration." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/skin-dendritic-cells-activation-maturation-and-migration(0831ed5e-c580-406c-a404-4b1eb59b040d).html.
Full textWildenberg, Manon Elisabeth. "Monocytes and dendritic cells in Sjögren's syndrome." [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2008. http://hdl.handle.net/1765/12619.
Full textPinzon-Charry, Alberto. "Characterisation of blood dendritic cells in patients with cancer /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18933.pdf.
Full textRaïch, Regué Dàlia. "Generation of Tolerogenic Dendritic Cells for Cell Therapy in Multiple Sclerosis." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96710.
Full textMultiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system. Current treatments for relapsing-remitting multiple sclerosis (RR-MS) patients decrease the frequency of relapses and reduce inflammatory activity in a nonspecific manner, but their effect on disease progression is still unclear. Therefore, in order to modify the course of MS, new and more specific therapeutic approaches are necessary. Specific inhibition or deletion of autoreactive T cells represents an interesting goal for restoring peripheral tolerance in autoimmune diseases such as MS. The main goal of this work has been to generate and characterize tolerogenic dendritic cells (tolDCs) from RR-MS patients, loaded with myelin peptides as specific antigen, as a therapeutic tool to re-establish tolerance to myelin-antigens in these patients. Our results show that using different immunosuppressive drugs and different maturation stimulus led to the generation of clinical-grade tolDCs products with differences that are relevant to therapeutic applicability. We evaluated the viability, phenotype, cytokine profile, stability and functionality of these tolDCs. The comparison of different pharmacological grade tolerogenic agents (dexamethasone, rapamycin and vitamin-D3) led to the observation that dexamethasone-treated DCs showed a semi-mature phenotype and high IL-10 secretion; that rapamycin-treated DCs impaired IFN-γ in co-cultured T cells and expanded T regulatory cells; and finally that vitamin-D3-treated DCs presented a semi-mature phenotype, produced IL-10, and reduced IFN-γ in T cells. These features, along with their reproducibility among different samples, made consider vitamin-D3 as the most convenient of the three compared agents to generate tolDCs for MS therapy. Regarding the maturation of tolDCs, the cytokine cocktail (composed by TNF-α, IL-1β and PGE-2) was determined as the optimal maturation stimulus to generate tolDCs (induced by vitamin-D3 treatment), since these tolDCs were the unique exhibiting functional stability and capability to suppress an immune response in vitro. The generation and characterization of tolDCs from RR-MS patients (generated with vitD3 and maturated with the pro-inflammatory cytokine cocktail), showed no significant differences compared with tolDCs generated from healthy controls, both presenting a tolerogenic profile. Importantly, myelin peptide-loaded tolDCs from RR-MS patients induced antigen-specific and stable hyporesponsiveness in autologous myelin-reactive T cells in vitro. Altogether this work has conducted to the development of a protocol to generate clinical-grade tolDCs and set up the bases for their use as a therapeutic tool to re-establish tolerance in RR-MS patients.
Barroso, Herrera Osquel Miguel. "Manipulation of antigen-specific T cell responses by modified dendritic cells." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405941.
Full textWorsley, Alan G. F. "T-cell polarisation by dendritic cells : a role for Notch ligands?" Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3281.
Full textWilliams, Charlotte Anne. "The immunoregulatory role of dendritic cells in response to cell deaths." Thesis, University of the West of England, Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444498.
Full textWalwyn-Brown, Katherine. "Control of Th2 polarisation by dendritic cells and natural killer cells." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/control-of-th2-polarisation-by-dendritic-cells-and-natural-killer-cells(fd15f834-f926-40f1-88ff-217bf1fbf263).html.
Full textMiller, Jonathan. "Modulation of dendritic cells and autoimmunity by apoptotic and necrotic cells." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/modulation-of-dendritic-cells-and-autoimmunity-by-apoptotic-and-necrotic-cells(eab00223-e5a2-4fdd-8baf-aa5966c87ede).html.
Full textIzquierdo-Useros, Nuria. "Maturation of Dendritic Cells & HIV Transmission to CD4(+) T cells." Doctoral thesis, Universitat Autònoma de Barcelona, 2009. http://hdl.handle.net/10803/3822.
Full textLa maduración de las DCs puede aumentar la eficiencia de transmisión del VIH a los linfocitos T CD4+ a través de la trans-infección. Nuestro objetivo en este trabajo ha sido comparar el efecto de la maduración en las células dendríticas derivadas de monocitos (MDDCs) y en las células dendríticas mieloides derivadas de sangre durante el proceso de captura del VIH. Para analizar la captura y transmisión viral a las células diana competentes in vitro de un VIH pseudotipado con envuelta y el virus homólogo replicativo utilizamos las técnicas de detección de p24gag, actividad luciferasa y microscopía electrónica y confocal. Así, observamos que la maduración de las MDDCs o las DCs mieloides aumenta la captura activa del VIH de una forma independiente del receptor DC-SIGN o de la glicoproteína de la envuelta viral, incrementándose también el tiempo de retención del virus capturado. Además, verificamos que la mayor transmisión viral de las DCs maduras (mDCs) a los linfocitos T CD4+ es altamente dependiente de una captura viral activa, un proceso endocítico mediado a través de dominios de membrana enriquecidos en colesterol. Notablemente, mientras que las mDCs concentran el virus capturado en una única vesícula positiva para las tetraspaninas CD63 y CD81, las DCs inmaduras carecen de dichas estructuras, lo que sugiere un proceso de tráfico intracelular viral diferencial en cada tipo celular.
Los exosomas son vesículas celulares secretadas que pueden ser internalizadas por las DCs, contribuyendo a la activación específica de antígeno de los linfocitos naive T CD4+. En esta tesis demostramos que el VIH puede explotar esta ruta intrínseca a las mDCs que permite la diseminación de antígenos a través de los exosomas, permitiendo así la trans-infección de los linfocitos T CD4+. Tras la maduración de las DCs, la captura del VIH-1, las partículas pseudovirales VIH-1 Gag-eGFP (VLPs) y los exosomas aumenta significativamente, acumulándose dentro de un compartimento CD81+. La captura de estas partículas se inhibió preincubando las mDCs con las VLPs o los exosomas, lo que sugiere que la expresión de determinantes moleculares comunes en la superficie de las VLPs y los exosomas es necesaria para la internalización mediada por las mDCs. Así mismo, la captura mediada por las mDCs es insensible a un tratamiento proteolítico, pero puede bloquearse cuando los virus, las VLPs o los exosomas se producen en células tratadas con inhibidores de la biosíntesis de los esfingolípidos, que alteran la composición lipídica de las partículas que emergen.
Por último, las VLPs y los exosomas capturados por las mDCs se transmiten a los linfocitos T CD4+ de una forma independiente de la glicoproteína de la envuelta viral, resaltando la existencia de una nueva ruta de diseminación viral.
En general, estas observaciones ayudan a explicar la mayor capacidad de las mDCs para transmitir el VIH a los linfocitos T CD4+, un proceso que potencialmente puede contribuir a la diseminación viral en los nódulos linfáticos in vivo, donde la replicación viral tiene lugar de forma mayoritaria y hay una interacción continua entre las células T CD4+ susceptibles y las mDCs.
Dendritic cells (DCs) are specialized antigen-presenting cells. However, DCs exposed to human immunodeficiency virus (HIV) are also able to transmit a vigorous cytopathic infection to CD4+ T lymphocytes, a process that has been frequently related to the ability of DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) to bind HIV-1 envelope glycoproteins. Maturation of DCs can increase the efficiency of HIV transmission through trans-infection. We aimed to comparatively study the effect of maturation in monocyte derived dendritic cells (MDDCs) and blood-derived myeloid DCs during HIV capture process. In vitro capture and transmission of envelope pseudotyped HIV-1 and its homologous replication competent virus to susceptible target cells was assessed by p24gag detection, luciferase activity, and both confocal and electron microscopy. Maturation of MDDCs or myeloid DCs enhanced active capture of HIV in a DC-SIGN and viral envelope glycoprotein independent manner, increasing the lifespan of trapped virus. Moreover, higher viral transmission of mature DCs (mDCs) to CD4+ T lymphocytes was highly dependent on active viral capture, a process mediated through cholesterol-enriched domains. Mature DCs concentrated captured virus in a single large vesicle staining for CD81 and CD63 tetraspanins, while immature DCs lacked these structures, suggesting different intracellular trafficking processes.
Exosomes are secreted cellular vesicles that can be internalized by DCs contributing to antigen specific naive CD4+ T lymphocyte activation. Here, we demonstrate that HIV can exploit this exosome antigen-dissemination pathway intrinsic to mDCs for mediating trans-infection of CD4+ T lymphocytes. Capture of HIV-1, HIV-1 Gag-eGFP viral like particles (VLPs) and exosomes by DCs was upregulated upon maturation, resulting in localization within a CD81+ compartment. Uptake of VLPs or exosomes could be inhibited by a challenge with either particle, suggesting that the expression of common determinant(s) on VLP or exosome surface is necessary for internalization by mDCs. Capture by mDCs was insensitive to proteolysis, but blocked when virus, VLPs, or exosomes were produced from cells treated with sphingolipid biosynthesis inhibitors that modulate the lipid composition of the budding particles. Finally, VLPs and exosomes captured by mDCs were transmitted to CD4+ T lymphocytes in an envelope glycoprotein-independent manner, underscoring a new potential viral dissemination pathway.
Overall, these observations help explaining the greater ability of mDCs transferring HIV to CD4+ T lymphocytes, a process that can potentially contribute to the viral dissemination at lymph nodes in vivo, where viral replication takes place and there is a continuous interaction between susceptible T-cells and mDCs.
Wehner, Rebekka, Kristin Dietze, Michael Bachmann, and Marc Schmitz. "The Bidirectional Crosstalk between Human Dendritic Cells and Natural Killer Cells." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-137394.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Raveney, Ben J. E. "Interactions between CD8+ T cells and bone marrow-derived dendritic cells." Thesis, University of Bristol, 2006. http://hdl.handle.net/1983/dbbc656f-a103-4787-aeb9-f203c3f0082b.
Full textWehner, Rebekka, Kristin Dietze, Michael Bachmann, and Marc Schmitz. "The Bidirectional Crosstalk between Human Dendritic Cells and Natural Killer Cells." Karger, 2011. https://tud.qucosa.de/id/qucosa%3A27732.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Kawamura, Kazuko. "Virus-stimulated plasmacytoid dendritic cells induce CD4[+] cytotoxic regulatory T cells." Kyoto University, 2006. http://hdl.handle.net/2433/143873.
Full textTan, Ping, and 陳冰. "Migratory & functional properties of dendritic cells upon interactionswith dying cells & after triggering by inflammatory stimuli." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B45010961.
Full textTan, Ping. "Migratory & functional properties of dendritic cells upon interactions with dying cells & after triggering by inflammatory stimuli /." View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36434024.
Full textKalogeropoulos, Michail. "Novel mechanisms of dendritic cell regulation by leukocyte immunoglobulin-like receptor B1." Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=210082.
Full textSarris, Milka. "Dynamics of helper T cell and regulatory T cell interactions with dendritic cells." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611896.
Full textBurchell, Jennifer Theresa. "The role of regulatory T cells and dendritic cells in allergen-induced airways hyperresponsiveness." University of Western Australia. School of Paediatrics and Child Health, 2008. http://theses.library.uwa.edu.au/adt-WU2009.0006.
Full textHo, Christopher Siaw Kang. "Blood dendritic cells in surgery and breast cancer /." [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18162.pdf.
Full text