Dissertations / Theses on the topic 'Demand prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Demand prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
McElroy, Wade Allen. "Demand prediction modeling for utility vegetation management." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117973.
Full textThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 63-64).
This thesis proposes a demand prediction model for utility vegetation management (VM) organizations. The primary uses of the model is to aid in the technology adoption process of Light Detection and Ranging (LiDAR) inspections, and overall system planning efforts. Utility asset management ensures vegetation clearance of electrical overhead powerlines to meet state and federal regulations, all in an effort to create the safest and most reliable electrical system for their customers. To meet compliance, the utility inspects and then prunes and/or removes trees within their entire service area on an annual basis. In recent years LiDAR technology has become more widely implemented in utilities to quickly and accurately inspect their service territory. VM programs encounter the dilemma of wanting to pursue LiDAR as a technology to improve their operations, but find it prudent, especially in the high risk and critical regulatory environment, to test the technology. The biggest problem during, and after, the testing is having a baseline of the expected number of tree units worked each year due to the intrinsic variability of tree growth. As such, double inspection and/or long pilot projects are conducted before there is full adoption of the technology. This thesis will address the prediction of circuit-level tree work forecasting through the development a model using statistical methods. The outcome of this model will be a reduced timeframe for complete adoption of LiDAR technology for utility vegetation programs. Additionally, the modeling effort provides the utility with insight into annual planning improvements. Lastly for later usage, the model will be a baseline for future individual tree growth models that include and leverage LiDAR data to provide a superior level of safety and reliability for utility customers.
by Wade Allen McElroy.
M.B.A.
S.M.
Zhou, Yang. "Multi-Source Large Scale Bike Demand Prediction." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703413/.
Full textSun, Rui S. M. Massachusetts Institute of Technology. "Analytics for hotels : demand prediction and decision optimization." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111438.
Full textThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 69-71).
The thesis presents the work with a hotel company, as an example of how machine learning techniques can be applied to improve demand predictions and help a hotel property to make better decisions on its pricing and capacity allocation strategies. To solve the decision optimization problem, we first build a random forest model to predict demand under given prices, and then plug the predictions into a mixed integer program to optimize the prices and capacity allocation decisions. We present in the numerical results that our demand forecast model can provide accurate demand predictions, and with optimized decisions, the hotel is able to obtain a significant increase in revenue compared to its historical policies.
by Rui Sun.
S.M. in Transportation
S.M.
Svensk, Gustav. "TDNet : A Generative Model for Taxi Demand Prediction." Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158514.
Full textLu, Hongwei Marketing Australian School of Business UNSW. "Small area market demand prediction in the automobile industry." Publisher:University of New South Wales. Marketing, 2008. http://handle.unsw.edu.au/1959.4/43027.
Full textLönnbark, Carl. "On Risk Prediction." Doctoral thesis, Umeå universitet, Nationalekonomi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-22200.
Full textBernhardsson, Viktor, and Rasmus Ringdahl. "Real time highway traffic prediction based on dynamic demand modeling." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112094.
Full textJones, Simon Andrew. "Prediction of demand for emergency care in an acute hospital." Thesis, Kingston University, 2005. http://eprints.kingston.ac.uk/20739/.
Full textShen, Ni. "Prediction of International Flight Operations at U.S. Airports." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/35687.
Full textIn the forecast, a "top-down" methodology is applied in three steps. In the fist step, individual linear regression models are developed to forecast the total annual international passenger enplanements from the U.S. to each of nine World Regions. The resulting regression models are statistically valid and have parameters that are credible in terms of signs and magnitude. In the second step, the forecasted passenger enplanements are distributed among international airports in the U.S. using individual airport market share factors. The airport market share analysis conducted in this step concludes that the airline business is the critical factor explaining the changes associated with airport market share. In the third and final step, the international passenger enplanements at each airport are converted to flight operations required for transporting the passengers. In this process, average load factor and average seats per aircraft are used.
The model has been integrated into the Transportation Systems Analysis Model (TSAM), a comprehensive intercity transportation planning tool. Through a simple graphic user interface implemented in the TSAM model, the user can test different future scenarios by defining a series of scaling factors for GDP, load factor and average seats per aircraft. The default values for the latter two variables are predefined in the model using 2004 historical data derived from Department of Transportation T100 international segment data.
Master of Science
Paul, Udita. "Efficient access network selection and data demand prediction for 5G systems." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29729.
Full textLi, Yapeng. "Dynamic energy demand prediction and related control system for UK households." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2824.
Full textLindsey, Matthew Douglas. "Reliable Prediction Intervals and Bayesian Estimation for Demand Rates of Slow-Moving Inventory." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3946/.
Full textPan, Song. "On demand DBS for Parkinson's Disease : tremor prediction using artificial neural networks." Thesis, University of Reading, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.567590.
Full textLindsey, Matthew Douglas Pavur Robert J. "Reliable prediction intervals and Bayesian estimation for demand rates of slow-moving inventory." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3946.
Full textStojanovski, Filip. "Churn Prediction using Sequential Activity Patterns in an On-Demand Music Streaming Service." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228226.
Full textInom datadrivna företag används churn-analys i formv av maskininlärning och datautvinningsmetoder i syfte att bättre förstå kunder som väljer att terminera deras relation till företag. Det vanligaste angreppssättet är att ta fram ett antal attribut som kännetecknar användare, produkter, tjänster och handlingar, vilka sedan används för att generera kunskap med hjälp av maskinlärning och informationsutvinning. En aspekt som dock vanligtvis försummas är tid, då den visar sig vara svår att modellera och använda. Detta arbete presenterar modelleringen av användaraktivitet hos en musikstreamingtjänst i form av sekventiell temporärt beroende data, i syfte att utforska fördelarna med att detektera kunder som väljer att terminera sitt medlemskap med hjälp av long short-term recurrent neurala nätverk. Prestanda och komplexitet jämförs med icke-sekventiella modeller med samma data. Arbetets slutsats är att trots att recurrent neurala nätverk inte resulterar i en förbättrad churn-predikteringsmodul baserad på aktivitetsdata, så ger data presenterad i sekventiell form en förbättring.
Zhang, Huimin. "User Behavior Analysis and Prediction Methods for Large-scale Video-on- demand System." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-263261.
Full textSun, Wenzhe. "Bus Bunching Prediction and Transit Route Demand Estimation Using Automatic Vehicle Location Data." Kyoto University, 2020. http://hdl.handle.net/2433/253498.
Full textHast, Matteus. "Evaluation of machine learning algorithms for customer demand prediction of in-flight meals." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255020.
Full textSyftet med den här studien är att utvärdera ett flertal maskininlärningsalgoritmer för prediktering av konsumentefterfrågan för måltider under flygning. Undersökningen över tidigare arbeten utförda i liknande fält resulterade i att fyra maskininlärningsalgoritmer blev valda, nämligen linjär regression, stödvektormaskin för regression, Extreme Gradient Boosting och ett flerlagersperceptron-neuronnät. Studien utforskar vilken maskininlärningsalgoritm som är bäst anpassad för att prediktera problemet samt vilka egenskaper i datat som är mest inflytesrika när det handlar om att prediktera konsumentefterfrågan av måltider under flygning. Fokus ligger på att finna applicerbara maskininlärningsalgoritmer och på att utvärdera, jämföra samt på att justera parametrarna i syfte till att optimera modellerna. Den tillgängliga datan härstammar från ett enstaka flygbolag och består mestadels av korta och mediumlånga flyg.Resultatet påvisar att de fyra modellerna, linjär regression, en stödvektormaskin för regression, Extreme Gradient Boosting och ett flerlagersperceptron-neuronnät presterar utan någon signifikant skillnad gentemot varandra och är jämförbara i deras prestation i avseende till predikteringprecision med liknande resultat. I avseende till modellanpassningsoch predikteringstid underpresterar dock stödvektormaskinen avsevärt i jämförelse med de resterande tre modellerna. Resultatet visar även att den viktigaste egenskapen i datat för prediktering av konsumentefterfrågan av måltider under flygning är den schemalagda flygtiden.
Farzana, Fatema Hoque. "Estimation and Prediction of Mobility and Reliability Measures Using Different Modeling Techniques." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3880.
Full textEriksson, Niclas. "Predicting demand in districtheating systems : A neural network approach." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-175082.
Full textGhareeb, Ahmed. "Data mining for University of Dayton campus buildings to predict future demand." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1490472227466522.
Full textKerakos, Emil, Oscar Lindgren, and Vladislav Tolstoy. "Machine Learning for Ambulance Demand Prediction in Stockholm County : Towards efficient and equitableDynamic Deployment Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282420.
Full textDen prehospitala vården består av många aktörer och många faktorer som påverkar hälsoutfallen hos de behövande patienterna. En central faktor är ambulansens utryckningstid där ett föreslaget sätt att minska utryckningstiderna är via dynamisk positionering (eng: dynamic deployment). Dessa system kräver prediktioner om var och när ambulanser kommer behövas på hög detaljnivå geografiskt och tidsmässigt för att fungera effektivt. I denna studie utvärderar vi först så kallade oövervakade maskininlärningsalgoritmer för att dela in Stockholms Län i mindre områden och ser att områdena blir rimliga. Över dessa områden tränar vi logistisk regression för att göra sådana prediktioner i hög detaljnivå om det kommande behovet och jämför med en enkel model. Vi ser att även om logistisk regression ger högre prediktionskraft totalt än den enkla modellen är den sämre än den enkla modellen på att prediktera när behov faktiskt uppstår. Vi ser dock ändå att data om historiska utryckningar och riskterräng verkar vara användbara för att göra sådana prediktioner. Relaterat till detta analyserar och diskuterar vi även hur väl lämpade dagens prestationsmått är för att evaluera prehospitala vårdsystem som implementerar dynamisk positionering. Vi ser att dessa system troligen behöver justera sina huvudsakliga KPI:er för att mäta effektivitet och jämlikhet på ett bra sätt.
Xu, Yizheng. "Probabilistic estimation and prediction of the dynamic response of the demand at bulk supply points." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/probabilistic-estimation-and-prediction-of-the-dynamic-response-of-the-demand-at-bulk-supply-points(b9e427ec-7e5e-49a5-aec4-0f34032d71a9).html.
Full textKarlsson, Niclas, and Zandra Karlsson. "Detecting Disruption: : an Ex-ante Study in the Automotive Industry." Thesis, Blekinge Tekniska Högskola, Institutionen för industriell ekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12834.
Full textAhmed, Kishwar. "Energy Demand Response for High-Performance Computing Systems." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3569.
Full textШкола, Вікторія Юріївна, Виктория Юрьевна Школа, and Viktoriia Yuriivna Shkola. "Прогнозування попиту на інновації для формування стратегії розвитку держави." Thesis, Видавництво СумДУ, 2006. http://essuir.sumdu.edu.ua/handle/123456789/3811.
Full textZhou, Xuesong. "Dynamic origin-destination demand estimation and prediction for off-line and on-line dynamic traffic assignment operation." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1819.
Full textThesis research directed by: Civil Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Candela, Garza Eduardo. "Revenue optimization for a hotel property with different market segments : demand prediction, price selection and capacity allocation." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113433.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 53-55).
We present our work with a hotel company as an example of how machine learning techniques can be used to improve the demand predictions of a hotel property, as well as its pricing and capacity allocation decisions. First, we build a price-sensitive random forest model to predict the number of daily bookings for each customer market segment. We feed these predictions into a mixed integer linear program (MILP) to optimize prices and capacity allocations at the same time. We prove that the MILP can be equivalently solved as a linear program, and then show that it produces upper and lower bounds for the expected revenue maximization Dynamic Program (DP), and that the gap between the bounds depends on the probabilistic distribution of the demand. Thus, for high prediction accuracies, the optimal value of the DP can be closely approximated by the MILP solution. Finally, numerical results show that the optimized decisions are able to generate an increase in revenue compared to the historical policies, and that the fast running time achieved permits real time policy updates.
by Eduardo Candela Garza.
S.M.
Boulin, Juan Manuel. "Call center demand forecasting : improving sales calls prediction accuracy through the combination of statistical methods and judgmental forecast." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59159.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 79-81).
Call centers are important for developing and maintaining healthy relationships with customers. At Dell, call centers are also at the core of the company's renowned direct model. For sales call centers in particular, the impact of proper operations is reflected not only in long-term relationships with customers, but directly on sales and revenue. Adequate staffing and proper scheduling are key factors for providing an acceptable service level to customers. In order to staff call centers appropriately to satisfy demand while minimizing operating expenses, an accurate forecast of this demand (sales calls) is required. During fiscal year 2009, inaccuracies in consumer sales call volume forecasts translated into approximately $1.1M in unnecessary overtime expenses and $34.5M in lost revenue for Dell. This work evaluates different forecasting techniques and proposes a comprehensive model to predict sales call volume based on the combination of ARIMA models and judgmental forecasting. The proposed methodology improves the accuracy of weekly forecasted call volume from 23% to 46% and of daily volume from 27% to 41%. Further improvements are easily achievable through the adjustment and projection processes introduced herein that rely on contextual information and the expertise of the forecasting team.
by Juan Manuel Boulin.
S.M.
M.B.A.
Ghias, Nezhad Omran Nima. "Power grid planning for vehicular demand: forecasting and decentralized control." IEEE Transactions on Smart Grid, 2014. http://hdl.handle.net/1993/23891.
Full textOctober 2014
Martyr, Randall. "Optimal prediction games in local electricity markets." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/optimal-prediction-games-in-local-electricity-markets(976e566d-e942-444a-9ee0-df17f46188d4).html.
Full textSapp, James Christopher. "Electricity Demand Forecasting in a Changing Regional Context: The Application of the Multiple Perspective Concept to the Prediction Process." PDXScholar, 1987. https://pdxscholar.library.pdx.edu/open_access_etds/574.
Full textBorges, Viviana Marli Nogueira de Aquino. "Acoplamento de um modelo de previsão de demanda de água a um modelo simulador em tempo real - estudo de caso: sistema adutor metropolitano de São Paulo." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/3/3147/tde-17092004-101640/.
Full textThis work proposes a methodological evolution of a real time water distribution system operation applied to the Water Mains System of Metropolitan Region of Sao Paulo. It was settled a mathematical model in real time, to forecast hourly water consumptions, intending to increase operational performance. Several operational control procedures of water systems were described, since manual ones until total automatic ones. Sao Paulo system is classified into this concept. The possibility of development from the present status toward a more efficient control was analyzed, through the use of a water demand prediction model. State-of-art of water demand models is presented, through a specific literature review. An interface between a hydraulic network model and an existing water demand prediction model were developed both of them using operational data, obtained in real time by a telemetric system. The interface was tested in a case study of Sao Paulo Water Mains System. One concludes that through the use of the prediction model, it was possible to make more efficient operational schedules. This efficiency is demonstrated by the reduction in number of valve positions changes and in pump status changes, as well as a decrease in energy costs could be observed ( reducing pump operations in hours of more expensive costs). Benefits obtained by the conjunctive use of the hydraulic simulation model and the water demand prediction model can not be admitted as the global optimum. It would be necessary to make available an optimization model (automatic scheduler). However it was concluded that investment in these two models implementations is extremely attractive.
Delin, Sofia. "Site-specific nitrogen fertilization demand in relation to plant available soil nitrogen and water : potential for prediction based on soil characteristics /." Skara : Department of Soil Sciences, Swedish University of Agricultural Sciences, 2005. http://epsilon.slu.se/200506.pdf.
Full textKang, Ying. "Estimation and prediction of dynamic origin-destination (O-D) demand and system consistency control for real-time dynamic traffic assignment operation /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textGoutham, Mithun. "Machine learning based user activity prediction for smart homes." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595493258565743.
Full textVicente, Rosmeiry Vanzella. "Modelo de operação para centros de controle de sistemas de abastecimento de água: estudo de caso - Sistema Adutor Metropolitano de São Paulo." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/3/3147/tde-10042006-141721/.
Full textThis assignment considers an operation model supported by decision support systems to operates the water supply systems in real time, considering the hydraulical conditions while achieving some performance goals, in this case, reducing electricity costs (minimization of pumping costs) the attempt of the hydraulic constraints are evaluated by an hydraulical simulator previously calibrated. The set of results are analyzed by an optimization model which uses a linear programming. The operation conditions in real time requires automatic feeding operational information shortly at any time (less than an hour) for an optimized operation, previously analyzed by a hydraulic simulation model with creates condition criteria of consumption within following hours. These criteria are refined according to a demand prediction model that dynamically previews and checks the consumption results. This proposed model creates an interface between all these systems. This interface is tested and evaluated according to a study of the São Paulo´s metropolitan area, Sistema Alto Tietê. The efficiency of this proposed model is presented having reductions in the electric energy costs.
Faber, Andreas D. [Verfasser], Stefan [Gutachter] Spinler, and Arnd [Gutachter] Huchzermeier. "Data analytics in supply chain planning : applications in intermittent demand forecasting, partial defection prediction and price discrimination / Andreas D. Faber ; Gutachter: Stefan Spinler, Arnd Huchzermeier." Vallendar : WHU - Otto Beisheim School of Management, 2021. http://d-nb.info/1240764359/34.
Full textJonsson, Estrid, and Sara Fredrikson. "An Investigation of How Well Random Forest Regression Can Predict Demand : Is Random Forest Regression better at predicting the sell-through of close to date products at different discount levels than a basic linear model?" Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302025.
Full textAs the climate crisis continues to evolve many companies focus their development on becoming more sustainable. With greenhouse gases being highlighted as the main problem, food waste has obtained a great deal of attention after being named the third largest contributor to global emissions. One way retailers have attempted to improve is through offering close-to-date produce at discount, hence decreasing levels of food being thrown away. To minimize waste the level of discount must be optimized, and as the products can be seen as flawed the known price-to-demand relation of the products may be insufficient. The optimization process historically involves generalized linear regression models, however demand is a complex concept influenced by many factors. This report investigates whether a Machine Learning model, Random Forest Regression, is better at estimating the demand of close-to-date products at different discount levels than a basic linear regression model. The discussion also includes an analysis on whether discounts always increase the will to buy and whether this depends on product type. The results show that Random Forest to a greater extent considers the many factors influencing demand and is superior as a predictor in this case. Furthermore it was concluded that there is generally not a clear linear relation however this does depend on product type as certain categories showed some linearity.
Souza, Daniel Morais de. "Comparação de abordagens econométricas alternativas para modelagem da demanda anual de eletricidade no Brasil nos segmentos residencial, industrial e comercial." Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/6891.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-06-27T15:04:32Z (GMT) No. of bitstreams: 1 danielmoraisdesouza.pdf: 1277495 bytes, checksum: 7c2517a5b98a6f70aa787d954cd0c84a (MD5)
Made available in DSpace on 2018-06-27T15:04:32Z (GMT). No. of bitstreams: 1 danielmoraisdesouza.pdf: 1277495 bytes, checksum: 7c2517a5b98a6f70aa787d954cd0c84a (MD5) Previous issue date: 2018-02-19
Eletricidade é um insumo de uso generalizado nas economias modernas, penetrando nas mais variadas atividades produtivas e de consumo na sociedade. No entanto, as dificuldades de armazenamento em larga escala dessa forma de energia fazem com que a eletricidade seja muito sensível às condições de oferta, a ponto de que problemas de abastecimento rapidamente se convertem em apagões. Dentre vários dispositivos implementados na re-estrutuação do setor elétrico brasileiro (SEB) ao longo dos últimos 17 anos, estão sistemas de previsão de médio e longo-prazos usados por parte dos agentes públicos e privados do setor para reduzir as incertezas dos processos de abastecimento e expansão. A ANEEL chegou a recomendar na NT 292/2008-SER o uso de três metodologias multivariadas alternativas nesses sistemas de previsão, a saber: modelos VAR e VCE, modelos autorregressivos com defasagens distribuídas (ARDL) e modelos estruturais a espaço de estados. A literatura especializada, em que pese a presença de vários estudos propondo modelos de previsão do consumo de eletricidade para os três segmentos residencial, industrial e comercial, apresenta majoritariamente modelos de tipo VAR e VCE. Este estudo atualiza a literatura no que concerne ao uso de modelos VAR e VCE e ao mesmo tempo os compara em termos preditivos com os modelos ARDL e estruturais a espaço de estados. Os resultados encontrados na análise do desempenho preditivo dos modelos mostraram que para o segmento residencial, o modelo com melhor capacidade preditivo foi o modelo estrutural, enquanto que para o segmento comercial foi o modelo VCE e, para o segmento industrial, foi o modelo ARDL. Previsões de 2014 a 2025 foram feitas com o intuito de informar ao mercado brasileiro a demanda de energia para cada segmento. Foram usadas bases de dados disponíveis e atualizadas provenientes das mesmas fontes usadas nos estudos da literatura.
Electricity is an input of widespread use in modern economies, penetrating in the most varied productive and consumption activities in society. However, the difficulties of large-scale storage make electricity very sensitive to supply conditions, to the point that supply problems quickly turns into blackouts. Among several devices implemented in the re-structuring of the Brazilian electricity sector (SEB) over the last 17 years, medium and long-term forecasting systems are used by public and private sector agents to reduce the uncertainties of the supply processes and expansion. ANEEL recommend in NT 292/2008-SER the use of three alternative multivariate methodologies in these prediction systems, namely: VAR and VCE models, autoregressive models with distributed lags (ARDL), and state space structural models. The specialized literature, despite the presence of several studies proposing models of prediction of the consumption of electricity for the three residential, industrial and commercial segments, mainly presents models of type VAR and VCE. This study updates the literature regarding the use of VAR and VCE models and at the same time compares them in predictive terms with the ARDL and structural state space models. The results found in the predictive model analysis showed that for the residential segment, the model with the best predictive capacity was the structural model, while for the commercial segment it was the VCE model and, for the industrial segment, it was the ARDL model. Forecasts from 2014 to 2025 were made with the intention of informing the Brazilian market the energy demand for each segment. Available and updated databases from the same sources used in literature studies were used.
Drélichová, Stanislava. "Studie řízení průběhu zakázky firmou." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2007. http://www.nusl.cz/ntk/nusl-221414.
Full textSteen, Englund Jessika. "Prediction of Energy Use of a Swedish Secondary School Building : Building Energy Simulation, Validation, Occupancy Behaviour and Potential Energy-Efficiency Measures." Licentiate thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-33313.
Full textByggnadssektorn står för ungefär 40 % av den årliga energianvändningen i Europa. Många byggnader är i stort behov av renovering och en minskning av energibehovet inom den byggda miljön är av stor vikt i både Europa och Sverige. För att undersöka byggnaders energianvändning används ofta simuleringsverktyg, men det kan vara utmanande att skapa pålitliga simuleringsmodeller som tillräckligt noggrant predikterar den verkliga byggnadens energianvändning. Simulering av byggnaders energianvändning är alltid förknippat med osäkerheter och att simulera människors beteendemönster är en stor utmaning. Den här forskningen innefattar en fallstudie med en simuleringsmodell av en skolbyggnad, byggd under 1960 talet och belägen i Gävle, inkluderat ett exempel på en valideringsstrategi och en studie av energianvändning och potentiella energieffektiviseringsåtgärder i byggnaden. Resultaten visar att insamling av indata baserade på evidens, stegvis validering (obemannad och bemannad) och användande av en backcasting-metod (vilket predikterar varierande brukarbeteende och vädring) är en lämplig strategi för att skapa en pålitlig energisimuleringsmodell för den studerade skolbyggnaden. Flertalet fältmätningar genomfördes och data loggades i systemet för fastighetsautomation, för att samla indata och för validering av de predikterade resultaten. Genom den stegvisa valideringen kunde byggnadens tekniska och termiska prestanda valideras för en obemannad period. Backcasting-metoden visar en strategi för hur man kan prediktera varierande brukarbeteende och vädringsaktiviteter i skolbyggnaden, baserat på jämförelser av modellens prediktioner och data från fältmätningar. När backcasting-metoden tillämpats i energisimuleringsmodellen, kunde modellen valideras för en bemannad period. Den årliga predikterade specifika energianvändningen för uppvärmningen är 73 kWh/m2. Fördelningen av värmeförluster i byggnaden indikerar att de bästa potentiella energieffektiviseringsåtgärderna är byte till fönster med bättre U-värde, tilläggsisolering av ytterväggarna, bättre lufttäthet i byggnadsskalet och ny styrning av det mekaniska ventilationssystemet.
Sassi, Kamal M. "Optimal scheduling, design, operation and control of reverse osmosis desalination : prediction of RO membrane performance under different design and operating conditions, synthesis of RO networks using MINLP optimization framework involving fouling, boron removal, variable seawater temperature and variable fresh water demand." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5671.
Full textNeupane, Bijay. "Predictive Data Analytics for Energy Demand Flexibility." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-236309.
Full textDyer, Ross. "Predicting residential demand: applying random forest to predict housing demand in Cape Town." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29602.
Full textLin, Chuan-Heng, and 林泉亨. "MRT Demand Prediction through Social Media." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/08325576544480906430.
Full text國立臺灣大學
土木工程學研究所
103
With the technological improvements of mobile devices and the increasing number of social media posts, there are more and more data on human mobility based on which information could potentially be extracted. Current research related to social media are mostly focused on inter-person behaviors. Conversely, related topics on system level performances are rarely discussed. This thesis applies feature extraction methods on quantitative, textual, and image data to retrieve useful features from social media. In addition, a machine learning pipeline based on support vector machine, random forest and stochastic gradient boosting is constructed for a short-term transportation demand forecast. Furthermore, real-world datasets from Instagram together with the demand data of the Taipei Metro Rapid Transit system are demonstrated in this work. Validation results show that social media has the potential to enhance the forecasting accuracy.
LIANG, WAN YU, and 萬友良. "Prediction of Potential Demand on Mass Transportation." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/44g673.
Full text大葉大學
工業工程與科技管理學系
101
The object of this study is to set up logistics regression models to predict the probability that people shift to use mass-transportation by making use of major energy issues and the characteristics of mass-transportation as independent variables under the rise of gas price. First, the principal component analysis is employed to extract the major issues in energy. Secondly, canonical correlation analysis is applied to validate the relation between the major energy issues and the characteristics of mass-transportation. Finally, we surveyed the people around Tai-Chung area, and utilized logistic regression model to predict the probability that people shift to use mass-transportation. The results are followings:(1) People without driving license are more likely to use mass-transportation than the ones with it, while the gas price was risen up to 10%.(2)Males are more likely to use mass-transportation than females, while the gas price was risen up to 50%. (3) Singles are more likely to use mass-transportation than the married, while the gas price risen more than 100%. (4) Energy-saving and economical characteristics are the most important dependent variables which are the key words to increase the potential demand of mass-transportation, while convenience is not.
Cheng, Chih-Hsien, and 鄭志賢. "A Study on Domestic Water Demand Prediction." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/73008774254015920073.
Full text義守大學
資訊管理學系碩士班
96
Today, enterprises are forced to confront the challenges of global competition. They have had to grasp, and promptly make use of information ever since the Internet triggered more intensive competition in terms of time and space. Correctly anticipating client needs and quickly adapting to supply-demand trends are the foundation for enterprise''s sustainable development in the age of information explosion. In view of the nation’s self-awareness concerning raising economic, competitive advantages and the necessity of satisfying water resources demand, this research aims at constructing a prediction model of water demand and introducing: a water utilization pattern, a water consumption habit and an economic structure covering the next few years, in order to estimate water demand for water companies reference, and to benefit the nation, enterprises and people by managing water consumption effectively, resolving water shortage problems, and reducing the risk of domestic water use limitations or shortages. Although there are numerous models of water supply-demand, most researches have focused on supply-demand of annual water consumption. The Grey Prediction Model, of Grey''s theory, was used to predict the monthly water consumption in 12 branches of the Water Corporation, unlike the conventional prediction based on annual water consumption. The “uncertainty with little data” of Grey''s theory truly has more advantages, in terms of prediction, since the factors influencing water consumption were diversified and long-term historical statistics could not reflect current water consumption. The empirical results of the water consumption prediction model showed that according to average accuracy rate, the accuracy rate in using monthly water consumption data was above 95.7635% and the accuracy rate of five points rolling Grey Prediction Model reached up to 96.4274%, with more stable prediction results.
"A prediction model for short term electricity demand." Chinese University of Hong Kong, 1990. http://library.cuhk.edu.hk/record=b5886391.
Full textThesis (M.B.A.)--Chinese University of Hong Kong, 1990.
Bibliography: leaves 90-92.
ABSTRACT --- p.ii
ACKNOWLEDGMENTS --- p.iii
TABLE OF CONTENTS --- p.iv
LIST OF ILLUSTRATIONS --- p.vi
LIST OF TABLES --- p.vii
Chapter
Chapter I. --- INTRODUCTION --- p.1
Background --- p.1
Methodology Review --- p.6
Chapter II. --- DATA BASE AND VARIABLES --- p.8
The Data Base --- p.8
The Dependent Variables --- p.9
The Independent Variables --- p.14
Chapter III. --- METHODOLOGY --- p.24
Regression Analysis --- p.24
Selection of the Predictors --- p.25
Regression Studies Using Moving Data --- p.29
Programming Aids --- p.32
Chapter IV. --- RESULTS AND DISCUSSIONS --- p.35
Validity of the Assumptions for the Regression Model --- p.35
Prediction Power of the Model --- p.37
Utility of the Prediction Model --- p.39
A Practical View of the Model Prediction --- p.47
Representation of the Predictors --- p.48
Chapter V. --- CONCLUSION AND RECOMMENDATIONS --- p.51
Evaluation of the Prediction Model --- p.51
Extension of the Project --- p.53
APPENDICES --- p.55
REFERENCES --- p.90
Chen, Shu-Pei, and 陳淑佩. "Prediction of train demand using advanced booking data." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/56120042217828403297.
Full text國立成功大學
交通管理學系碩博士班
94
Booking curve is mostly used in Revenue management forecasting. Demand forecast is the core of revenue management. In literature review, improving 20% forecasting accuracy can increase 1% revenue. The objective of this research is to develop and test new models of train demand using advanced booking data. Train service offers several kinds of ticket sale including internet ticketing service, voice ticketing service, window ticketing service and instant ticketing sales. The research analyzes the way people book tickets in long trip. There are 73% tickets booked in advance but cancelled a lot. Many variables affect the pattern of booking curves including departure time, booking limit, day of week, holidays, and special days. Booking curves are different and the day of week affects the pattern of booking curves mostly. We use three kinds of data including unconstrained data, constrained data, and changed constrained data. In addition to the widely used models in revenue management including exponential smoothing model, mean of final bookings, simple linear regression, and pickup model, we develop several k-nearest neighbor models. According to the empirical analysis using Taiwan Railway Administration booking data, the proposed method provides promising results, e.g. the method improves the forecasting accuracy by 5% MAPE for the case of risk seeking.