Journal articles on the topic 'Delta doping'

To see the other types of publications on this topic, follow the link: Delta doping.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Delta doping.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gossmann, H. J., and E. F. Schubert. "Delta doping in silicon." Critical Reviews in Solid State and Materials Sciences 18, no. 1 (January 1993): 1–67. http://dx.doi.org/10.1080/10408439308243415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kulbachinskii, V. A., V. G. Kytin, R. A. Lunin, A. V. Golikov, V. G. Mokerov, A. S. Bugaev, A. P. Senichkin, R. T. F. van Schaijk, A. de Visser, and P. M. Koenraad. "Sn delta-doping in GaAs." Semiconductor Science and Technology 14, no. 12 (November 8, 1999): 1034–41. http://dx.doi.org/10.1088/0268-1242/14/12/304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bénière, François, René Chaplain, Marcel Gauneau, Viswanatha Reddy, and André Régrény. "Delta-doping in diffusion studies." Journal de Physique III 3, no. 12 (December 1993): 2165–71. http://dx.doi.org/10.1051/jp3:1993259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zeindl, H. P., E. Hammerl, W. Kiunke, and I. Eisele. "Delta doping superlattices in silicon." Journal of Electronic Materials 19, no. 10 (October 1990): 1119–22. http://dx.doi.org/10.1007/bf02651991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Jong-Hee, Gye Mo Yang, Sung Chul Choi, Ji Youn Choi, Hyun Kyung Cho, Kee Young Lim, and Hyung Jae Lee. "Si Delta Doped GaN Grown by Low-Pressure Metalorganic Chemical Vapor Deposition." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 305–9. http://dx.doi.org/10.1557/s1092578300002635.

Full text
Abstract:
Si delta-doping in the GaN layer has been successfully demonstrated by low-pressure metalorganic chemical vapor deposition at a growth temperature of 1040 . Si delta-doping concentration increases and then decreases with an increase in delta-doping time. This indicates that delta-doping concentration is limited by the desorption process owing to much higher thermal decomposition efficiency of silane at high growth temperatures of GaN. In addition, it was observed that the use of a post-purge step in the ammonia ambient reduces Si delta-doping concentration. From capacitance-voltage measurement, a sharp carrier concentration profile with a full-width at half maximum of 4.1 nm has been achieved with a high peak concentration of 9.8 1018 cm−3.
APA, Harvard, Vancouver, ISO, and other styles
6

Schubert, E. F., and R. F. Kopf. "Delta-Doping in III-V Semiconductors." Materials Science Forum 65-66 (January 1991): 53–66. http://dx.doi.org/10.4028/www.scientific.net/msf.65-66.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eisele, I. "Delta-type doping profiles in silicon." Applied Surface Science 36, no. 1-4 (January 1989): 39–51. http://dx.doi.org/10.1016/0169-4332(89)90897-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zagwijn, P. M., Y. N. Erokhin, W. F. J. Slijkerman, J. F. van der Veen, G. F. A. van de Walle, D. J. Gravesteijn, and A. A. van Gorkum. "Ga delta‐doping layers in silicon." Applied Physics Letters 59, no. 12 (September 16, 1991): 1461–63. http://dx.doi.org/10.1063/1.105288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zervos, Matthew. "Delta(δ)-doping of semiconductor nanowires." physica status solidi (RRL) - Rapid Research Letters 7, no. 9 (July 1, 2013): 651–54. http://dx.doi.org/10.1002/pssr.201307219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Butler, James E., Anatoly Vikharev, Alexei Gorbachev, Mikhail Lobaev, Anatoly Muchnikov, Dmitry Radischev, Vladimir Isaev, et al. "Nanometric diamond delta doping with boron." physica status solidi (RRL) - Rapid Research Letters 11, no. 1 (December 7, 2016): 1600329. http://dx.doi.org/10.1002/pssr.201600329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Wen-Chau, and Chung-Yih Sun. "Properties of Sawtooth-Doping Superlattice with Different Delta-Doping Densities." Japanese Journal of Applied Physics 30, Part 1, No. 4 (April 15, 1991): 635–36. http://dx.doi.org/10.1143/jjap.30.635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cai, Yan, and Jurgen Michel. "High n-Type Doping in Ge for Optical Gain and Lasing." Solid State Phenomena 205-206 (October 2013): 394–99. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.394.

Full text
Abstract:
We review two ex-situ doping methods to achieve high n-type doping up to mid-1019 cm-3 in Ge-on-Si thin films. For both, delta doping and ion implantation, rapid thermal annealing is used to diffuse phosphorus from a diffusion source into the single crystal Ge layer. The diffusion mechanism is studied and we find that dopant enhanced diffusion in in-situ doped Ge attributes to the high doping level. A band gap narrowing effect is observed in highly doped n-type Ge through photoluminescence measurements by determining the photoluminescence peak shift. An empirical linear expression of the direct band gap narrowing shift with carrier concentration is proposed.
APA, Harvard, Vancouver, ISO, and other styles
13

Yarn, K. F. "MOCVD-Grown InGa/GaAs Emitter Delta Doping Heterojunction Bipolar Transistors." Active and Passive Electronic Components 25, no. 3 (2002): 239–43. http://dx.doi.org/10.1080/08827510213499.

Full text
Abstract:
The influence of delta doping sheet at base-emitter (BE) junction for an InGaP/GaAs heterojunction bipolar transistor (HBT) with a 75Å undoped spacer layer is investigated. A common emitter current gain of 235, an offset voltage as small as 50mV and an Ic ideal factor of 1.01 are obtained, respectively. The use of delta doping sheet at BE junction results in a high gain and low offset voltage HBT. The improvement of current gain and offset voltage may be attributed to the reduction of BE potential spike by introducing a delta doping layer even without the BE junction passivation.
APA, Harvard, Vancouver, ISO, and other styles
14

Henry, Anne, L. Storasta, and Erik Janzén. "Nitrogen Delta Doping in 4H-SiC Epilayers." Materials Science Forum 433-436 (September 2003): 153–56. http://dx.doi.org/10.4028/www.scientific.net/msf.433-436.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hart, L., B. R. Davidson, J. M. Fernández, R. C. Newman, and C. C. Button. "Carbon Delta-Doping In GaAs and AlAs." Materials Science Forum 196-201 (November 1995): 409–14. http://dx.doi.org/10.4028/www.scientific.net/msf.196-201.409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tribuzy, C. V. B., S. M. Landi, M. P. Pires, R. Butendeich, P. L. Souza, A. C. Bittencourt, G. E. Marques, and A. B. Henriques. "nipi delta-doping superlattices for amplitude modulation." Brazilian Journal of Physics 32, no. 2a (June 2002): 269–74. http://dx.doi.org/10.1590/s0103-97332002000200006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tribuzy, C. V. B., P. L. Souza, S. M. Landi, M. P. Pires, R. Butendeich, A. C. Bittencourt, G. E. Marques, and A. B. Henriques. "Delta-doping superlattices in multiple quantum wells." Physica E: Low-dimensional Systems and Nanostructures 11, no. 2-3 (October 2001): 261–67. http://dx.doi.org/10.1016/s1386-9477(01)00215-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jorke, H., and H. Kibbel. "Boron delta doping in Si and Si0.8Ge0.2layers." Applied Physics Letters 57, no. 17 (October 22, 1990): 1763–65. http://dx.doi.org/10.1063/1.104060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Winking, L., M. Wenderoth, T. C. G. Reusch, R. G. Ulbrich, P. J. Wilbrandt, R. Kirchheim, S. Malzer, and G. Döhler. "Ideal delta doping of carbon in GaAs." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23, no. 1 (2005): 267. http://dx.doi.org/10.1116/1.1856465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cerniansky, M., D. W. E. Allsopp, and M. Hopkinson. "Delta-doping-enhanced InGaAs/InAlAs heterobarrier diodes." Electronics Letters 31, no. 6 (March 16, 1995): 493–94. http://dx.doi.org/10.1049/el:19950314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mattey, N. L., M. Hopkinson, R. F. Houghton, M. G. Dowsett, D. S. McPhail, T. E. Whall, E. H. C. Parker, G. R. Booker, and J. Whitehurst. "P-type delta doping in silicon MBE." Thin Solid Films 184, no. 1-2 (January 1990): 15–19. http://dx.doi.org/10.1016/0040-6090(90)90392-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kang, In Ho, Wook Bahng, Sang Cheol Kim, Sung Jae Joo, and Nam Kyun Kim. "Numerical Investigation of the DC and RF Performances for a 4H-SiC Double Delta-Doped Channel MESFET Having Various Delta-Doping Concentrations." Materials Science Forum 556-557 (September 2007): 823–26. http://dx.doi.org/10.4028/www.scientific.net/msf.556-557.823.

Full text
Abstract:
A double delta-doped channel 4H-SiC MESFET is proposed to kick out degradation of the DC and RF performances caused by the surface traps, by forming a quantum-well-like potential well and separating an effective channel from the surface. To obtain an optimum device structure, the DC and RF performances of double delta-doped channel MESFETs having various delta-doping concentrations but the same pinch-off voltage with that of conventional MESFET were also investigated. The SilvacoTM simulation results show that the double delta-doped channel MESFET achieved more improvement of the drain current, the cut-off frequency, and the maximum oscillation frequency for higher delta-doping concentration near the gate. In all cases, DC and RF performances for double delta-doped channel MESFETs are much improved than those of the conventional MESFET.
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Ke-Fan, Yongxian Gu, Xiaoguang Yang, Tao Yang, and Zhanguo Wang. "Si delta doping inside InAs/GaAs quantum dots with different doping densities." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 30, no. 4 (July 2012): 041808. http://dx.doi.org/10.1116/1.4732462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Khusyainov, D. I., C. Dekeyser, A. M. Buryakov, E. D. Mishina, G. B. Galiev, E. A. Klimov, S. S. Pushkarev, and A. N. Klochkov. "Ultrafast carrier dynamics in LT-GaAs doped with Si delta layers." International Journal of Modern Physics B 31, no. 27 (October 24, 2017): 1750195. http://dx.doi.org/10.1142/s0217979217501958.

Full text
Abstract:
We characterized the ultrafast properties of LT-GaAs doped with silicon [Formula: see text]-layers and introduced delta-doping ([Formula: see text]-doping) as efficient method for enhancing the properties of GaAs-based structures which can be useful for terahertz (THz) antenna, ultrafast switches and other high frequency applications. Low temperature grown GaAs (LT-GaAs) became one of the most promising materials for ultrafast optical and THz devices due to its short carrier lifetime and high carrier mobility. Low temperature growth leads to a large number of point defects and an excess of arsenic. Annealing of LT-GaAs creates high resistivity through the formation of As-clusters, which appear due to the excess of arsenic. High resistivity is very important for THz antennas so that voltage can be applied without the risk of breakdown. With [Formula: see text]-Si doping, control of As-clusters is possible, since after annealing, clusters align in the plane where the [Formula: see text]-doping occurs. In this paper, we compare the properties of LT-GaAs-based planar structures with and without [Formula: see text]-Si doping and subsequent annealing. We used pump-probe transient reflectivity as a probe for ultrafast carrier dynamics in LT-GaAs. The results of the experiment were interpreted using the Ortiz model and show that the [Formula: see text]-Si doping increases deep donor and acceptor concentrations and decreases the photoinduced carrier lifetime as compared with LT-GaAs with same growth and annealing temperatures, but without doping.
APA, Harvard, Vancouver, ISO, and other styles
25

Nikiforov, Alexander I., B. Z. Kanter, S. I. Stenin, and S. V. Rubanov. "Sb Delta-Type Doping in Si-MBE Superlattices." Materials Science Forum 69 (January 1991): 17–20. http://dx.doi.org/10.4028/www.scientific.net/msf.69.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Akhavan, Nima Dehdashti, Gilberto Armando Umana-Membreno, Renjie Gu, Jarek Antoszewski, and Lorenzo Faraone. "Delta Doping in HgCdTe-Based Unipolar Barrier Photodetectors." IEEE Transactions on Electron Devices 65, no. 10 (October 2018): 4340–45. http://dx.doi.org/10.1109/ted.2018.2861378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yokogawa, Toshiya, Kunimasa Takahashi, Takeshi Uenoyama, Osamu Kusumoto, Masao Uchida, and Makoto Kitabatake. "Nitrogen delta doping in 6H silicon carbide layers." Journal of Applied Physics 89, no. 3 (2001): 1794. http://dx.doi.org/10.1063/1.1337937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Cao, X. A., X. M. Li, S. Li, and L. Y. Liu. "Conductivity Enhancement in Organic Electronics by Delta Doping." IEEE Electron Device Letters 37, no. 12 (December 2016): 1628–31. http://dx.doi.org/10.1109/led.2016.2620184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Polly, Stephen J., David V. Forbes, Kristina Driscoll, Staffan Hellstrom, and Seth M. Hubbard. "Delta-Doping Effects on Quantum-Dot Solar Cells." IEEE Journal of Photovoltaics 4, no. 4 (July 2014): 1079–85. http://dx.doi.org/10.1109/jphotov.2014.2316677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Böer, K. W., and J. Piprek. "Inverse delta doping for improvement of solar cells." Journal of Applied Physics 75, no. 10 (May 15, 1994): 5095–101. http://dx.doi.org/10.1063/1.355753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Areiza, M. C. L., C. V. B. Tribuzy, S. M. Landi, M. P. Pires, and P. L. Souza. "Amplitude Modulators containing an nipi delta doping superlattice." IEEE Photonics Technology Letters 17, no. 10 (October 2005): 2071–73. http://dx.doi.org/10.1109/lpt.2005.854415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zagwijn, P. M., J. F. van der Veen, E. Vlieg, A. H. Reader, and D. J. Gravesteijn. "A solution of the doping problem for Ga delta‐doping layers in Si." Journal of Applied Physics 78, no. 8 (October 15, 1995): 4933–38. http://dx.doi.org/10.1063/1.359782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zehe, Alfred, Eusebio Torres Tapia, and Araceli Ramírez. "A METHOD OF MEASURING THERMAL STABILITY IN DELTA-DOPING." Revista de Investigación de Física 8, no. 02 (December 30, 2005): 19–25. http://dx.doi.org/10.15381/rif.v8i02.8550.

Full text
Abstract:
Se discute una superred novedosa, que permite la determinación de la estabilidad geométrica y precisión de capas delta-dopadas con respecto a efectos de difusión y migración, así como la evaluación tecnológica de la producción de dispositivos. Esta estructura nanométrica actúa como sonda interna en copamiento de superredes, semejante al caso conocido de los "pozos ensanchados" en superredes de composición. Se usa la luminiscencia entre pares donador-aceptor, la cual depende de la distancia de separación que refleja el arreglo geométrico de capas delta-dopadas vecinas, siempre que existan donadores y aceptores en las capas correspondientes.
APA, Harvard, Vancouver, ISO, and other styles
34

Zhao, Ying, Shengrui Xu, Hongchang Tao, Yachao Zhang, Chunfu Zhang, Lansheng Feng, Ruoshi Peng, et al. "Enhanced P-Type GaN Conductivity by Mg Delta Doped AlGaN/GaN Superlattice Structure." Materials 14, no. 1 (December 31, 2020): 144. http://dx.doi.org/10.3390/ma14010144.

Full text
Abstract:
A method of combining the AlGaN/GaN superlattices and Mg delta doping was proposed to achieve a high conductivity p-type GaN layer. The experimental results provided the evidence that the novel doping technique achieves superior p-conductivity. The Hall-effect measurement indicated that the hole concentration was increased by 2.06 times while the sheet resistivity was reduced by 48%. The fabricated green-yellow light-emitting diodes using the achieved high conductivity p-type GaN layer showed an 8- and 10-times enhancement of light output power and external quantum efficiency, respectively. The subsequent numerical calculation was conducted by using an Advanced Physical Model of Semiconductor Device to reveal the mechanism of enhanced device performance. This new doping technique offers an attractive solution to the p-type doping problems in wide-bandgap GaN or AlGaN materials.
APA, Harvard, Vancouver, ISO, and other styles
35

Henning, J. C. M., Y. A. R. R. Kessener, Paul M. Koenraad, M. R. Leys, W. C. van der Vleuten, J. H. Wolter, and A. M. Frens. "Luminescence of a Delta Doping Related Exciton in GaAs:Si." Materials Science Forum 143-147 (October 1993): 653–56. http://dx.doi.org/10.4028/www.scientific.net/msf.143-147.653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rosenberg, R. A., S. P. Frigo, Sunwoo Lee, and P. A. Dowben. "Selective area, synchrotron radiation induced, delta doping of silicon." Journal of Applied Physics 71, no. 10 (May 15, 1992): 4795–98. http://dx.doi.org/10.1063/1.350619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Joyce, T. B., T. J. Bullough, T. Farrell, B. R. Davidson, D. E. Sykes, and A. Chew. "Carbon delta doping in chemical beam epitaxy using CBr4." Journal of Crystal Growth 175-176 (May 1997): 377–82. http://dx.doi.org/10.1016/s0022-0248(96)00957-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Su, Yan Kuin, Ruey Lue Wang, and Yeong Her Wang. "Negative Differential Resistance in GaAs Delta-Doping Tunneling Diodes." Japanese Journal of Applied Physics 30, Part 2, No. 2B (February 15, 1991): L292—L294. http://dx.doi.org/10.1143/jjap.30.l292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bayram, C., J. L. Pau, R. McClintock, and M. Razeghi. "Delta-doping optimization for high quality p-type GaN." Journal of Applied Physics 104, no. 8 (October 15, 2008): 083512. http://dx.doi.org/10.1063/1.3000564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kozuka, Y., M. Kim, H. Ohta, Y. Hikita, C. Bell, and H. Y. Hwang. "Enhancing the electron mobility via delta-doping in SrTiO3." Applied Physics Letters 97, no. 22 (November 29, 2010): 222115. http://dx.doi.org/10.1063/1.3524198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kim, K. H., J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang. "III-nitride ultraviolet light-emitting diodes with delta doping." Applied Physics Letters 83, no. 3 (July 21, 2003): 566–68. http://dx.doi.org/10.1063/1.1593212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Young, P. G., R. A. Mena, S. A. Alterovitz, S. E. Schacham, and E. J. Haugland. "Temperature independent quantum well FET with delta channel doping." Electronics Letters 28, no. 14 (1992): 1352. http://dx.doi.org/10.1049/el:19920858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Muller, F., F. Koch, and A. Kohl. "IR detection using subband absorption in delta -doping layers." Semiconductor Science and Technology 6, no. 12C (December 1, 1991): C133—C136. http://dx.doi.org/10.1088/0268-1242/6/12c/028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ohno, Kenichi, F. Joseph Heremans, Lee C. Bassett, Bryan A. Myers, David M. Toyli, Ania C. Bleszynski Jayich, Christopher J. Palmstrøm, and David D. Awschalom. "Engineering shallow spins in diamond with nitrogen delta-doping." Applied Physics Letters 101, no. 8 (August 20, 2012): 082413. http://dx.doi.org/10.1063/1.4748280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yanagisawa, Kohei, Suguru Takeuchi, Hirosi Yoshitake, Koji Onomitsu, and Yosizi Horikoshi. "Enhanced magnetization by modulated Mn delta doping in GaAs." Journal of Crystal Growth 301-302 (April 2007): 634–37. http://dx.doi.org/10.1016/j.jcrysgro.2006.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Xiaohui, and Yijun Zhang. "Negative electron affinity GaN photocathode with Mg delta-doping." Optik 168 (September 2018): 278–81. http://dx.doi.org/10.1016/j.ijleo.2018.04.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Yanchao, Li Yue, Xiren Chen, Jun Shao, Xin Ou, and Shumin Wang. "Wavelength extension in GaSbBi quantum wells using delta-doping." Journal of Alloys and Compounds 744 (May 2018): 667–71. http://dx.doi.org/10.1016/j.jallcom.2018.02.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Yingda, Hualong Wu, Guanglong Yue, Zimin Chen, Zhiyuan Zheng, Zhisheng Wu, Gang Wang, and Hao Jiang. "Enhanced Mg Doping Efficiency in P-Type GaN by Indium-Surfactant-Assisted Delta Doping Method." Applied Physics Express 6, no. 4 (April 1, 2013): 041001. http://dx.doi.org/10.7567/apex.6.041001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Guo, S. P., W. Lin, X. Zhou, M. C. Tamargo, C. Tian, I. Kuskovsky, and G. F. Neumark. "Highp-type doping of ZnBeSe using a modified delta-doping technique with N and Te." Journal of Applied Physics 90, no. 4 (August 15, 2001): 1725–29. http://dx.doi.org/10.1063/1.1384863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Horsfall, Alton B., C. H. A. Prentice, Peter Tappin, Praneet Bhatnagar, Nicolas G. Wright, Konstantin Vassilevski, and Irina P. Nikitina. "Optimisation of 4H-SiC MOSFET Structures for Logic Applications." Materials Science Forum 527-529 (October 2006): 1325–28. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.1325.

Full text
Abstract:
Although Silicon Carbide has become the material of choice for high power applications in a range of extreme environments, the interest in creating active chemical sensors requires the development of transistors for additional control circuits to operate in these environments. Despite the recent advances in the quality of oxide layers on SiC, the mobility of inversion layers is still low and this will affect the maximum frequency of the operation for these devices. We present simulation results which indicate that a delta channel, in both n-channel and p-channel structures, is suitable for transistors used with these low level signals. By varying the doping levels of the device we have shown that the optimum delta doping for this application is 1.43x1019 cm-3 for both n and p channel devices. We then show the effects of high temperatures on the delta FET devices and make comparisons with standard SiC MOSFET devices.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography