Academic literature on the topic 'Degré algébrique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Degré algébrique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Degré algébrique"
Sylvain, Vermette, and Séguin Mathieu. "Une démarche algébrique surprenante." Revue de Mathématiques pour l’école 237 (May 20, 2022): 15–20. http://dx.doi.org/10.26034/vd.rm.2022.2218.
Full textLaurent, Michel, and Damien Roy. "Sur l'approximation algébrique en degré de transcendance un." Annales de l’institut Fourier 49, no. 1 (1999): 27–55. http://dx.doi.org/10.5802/aif.1668.
Full textDiop, El Hadji Cheikh Mbacké. "Degré d'une solution algébrique d'un tissu sur le plan projectif complexe." Comptes Rendus Mathematique 348, no. 3-4 (February 2010): 171–74. http://dx.doi.org/10.1016/j.crma.2010.01.004.
Full textLIANG, YONGQI. "Approximation faible pour les 0-cycles sur un produit de variétés rationnellement connexes." Mathematical Proceedings of the Cambridge Philosophical Society 164, no. 3 (March 20, 2017): 485–91. http://dx.doi.org/10.1017/s0305004117000330.
Full textLalonde, François. "Homologies de SHIH: Definition et Proprietes." Canadian Journal of Mathematics 39, no. 3 (June 1, 1987): 748–68. http://dx.doi.org/10.4153/cjm-1987-036-5.
Full textWaldschmidt, Michel. "Groupes algébriques et grands degrés de transcendance." Acta Mathematica 156 (1986): 253–302. http://dx.doi.org/10.1007/bf02399205.
Full textSall, Oumar. "Points algébriques de petit degré sur les courbes de Fermat." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, no. 2 (January 2000): 67–70. http://dx.doi.org/10.1016/s0764-4442(00)00123-3.
Full textBugeaud, Yann, and Olivier Teulié. "Approximation d'un nombre réel par des nombres algébriques de degré donné." Acta Arithmetica 93, no. 1 (2000): 77–86. http://dx.doi.org/10.4064/aa-93-1-77-86.
Full textBugeaud, Y. "Approximation par des Nombres Algébriques de Degré Borné et Dimension de Hausdorff." Journal of Number Theory 96, no. 1 (September 2002): 174–200. http://dx.doi.org/10.1016/s0022-314x(02)92778-2.
Full textSall, Oumar, Thiéyacine Top, and Moussa Fall. "Paramétrisation des points algébriques de degré donné sur la courbe d'équation affine." Comptes Rendus Mathematique 348, no. 21-22 (November 2010): 1147–50. http://dx.doi.org/10.1016/j.crma.2010.10.023.
Full textDissertations / Theses on the topic "Degré algébrique"
Moriceau, Sebastien. "Surfaces de degré 4 avec un point double non dégénéré dans l'espace projectif réel de dimension 3." Rennes 1, 2004. http://www.theses.fr/2004REN10130.
Full textCombot, Thierry. "Non-intégrabilité algébrique et méromorphe de problèmes de n corps et de potentiels homogènes de degré - 1." Paris 7, 2013. http://www.theses.fr/2013PA077076.
Full textWe are searching ail homogeneous potentials of degree — 1 meromorphically intégrable in the Liouville sense. Although a complete classification seems to be still out of reach, we already know several necessary conditions to integrability. Our goal is not only to apply these already existing criterions, but also to create new ones, stronger ones, which would help us to go towards our ultimate goal of complete classification. In this thesis, we are looking for not only rational potentials, but also algebraic potentials, which is necessary as we want our study to include the n body problem. First of all, we define properly what is the associated dynamical System to an algebraic potential in the complex domain, and its integrability. Then, we conclude that the usual criterion of Morales-Ramis-Simo for the meromorphic case still holds. Then we build second order integrability conditions, which are stronger than those already known. Indeed, the Morales-Ramis. Theorem gives us constraints on the second derivative of the potential at a Darboux points, and our criterion take also into account the third order derivatives. In the following, we continue to enhance these integrability criterions in the planar potential case. The integrability conditions at any order can then be computed for any family of potentials, but under a generic condition. Without this generic condition, we compute completely the integrability conditions up to third order, which is, hypothetically, enough to deal with any finite dimensional family of potentials. To conclude, we apply this type of results to the n body problem. The invariance by rotation of such problems lead also to questions about restricted integrability, and we then prove that the n body problem with equal masses is not integrable even in this restricted sense
Ait, Amrane Samir. "Sur le schéma de Hilbert des courbes gauches de degré d et genre g = (d-3)(d-4)/2." Paris 11, 1998. http://www.theses.fr/1998PA112375.
Full textEl-Siblani, Ali Abdulkarim. "Le degré de non analycité des fonctions semi-algébriques." Chambéry, 1999. http://www.theses.fr/1999CHAMS012.
Full textJehanne, Arnaud. "Réalisation sur Q de corps de degré 6 et 8." Bordeaux 1, 1993. http://www.theses.fr/1993BOR10631.
Full textDesideri, Bracco Anne. "Codes quasi-cycliques : constructions algébriques et représentations par treillis." Nice, 2003. http://www.theses.fr/2003NICE4062.
Full textQuasi-cyclic codes are block codes. They generalize cyclic codes and approximate convolutional codes. Moreover, quasi-cyclic codes are asymptotically good. Trellises are oriented labeled graphs, which represent block codes. Trellises could be conventional or tail-biting. We present two different algebraic approaches to quasi-cyclic codes. We associate the algebraic structure, which extends the cubic construction (a+x | b+x | a+b+x) into the quintic and the septic constructions, to the conventional trellises. The cyclic approach is associated to the tail-biting trellises. We introduce a graphical construction for quasi-cyclic codes; this construction is based on trellises. In the case of convolutional trellises, this construction is a generalization of the squared and cubing constructions proposed by G. D. Forney Jr. Some algebraic constructions of new self-dual binary codes are given. These new codes have parameters [70, 35, 12] or [72, 36, 12] or other. They are obtained with the cubic, the quintic or the septic construction and they are constructed with the computer language Magma
Dang, Nguyen-Bac. "Croissance des degrés d'applications rationnelles en dimension 3." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX044/document.
Full textThis thesis is divided into three independent chapters on the iterates of rational maps on projective varieties and more specifically on the study of the growth of the degree sequences of the iterates of such maps. In the first chapter, we give a construction of the fundamental invariants called dynamical degrees. Our method holds in a very general setting, without any conditions on the characteristic of the field or on the singularities of the ambient space.This construction is based on the study of positivity properties of algebraic cycles and gives an alternative approach to the analytical technics of Dinh and Sibony or to the algebraic arguments of Truong.The second chapter is taken from an article written in joint work with Jian Xiao. Our paper focuses on central objects in convex geometry called valuations. We transfer some positivity notions of algebraic cycles recently introduced by Lehmann and Xiao, this allows us to extend the convolution operation defined by Bernig and Fu to a subspace of sufficiently positive valuations.The third chapter is the core of this thesis and focuses on the dynamical degrees of the so-called tame automorphisms of an affine quadric threefold. Our arguments are of various nature and rely on the action of the tame group on a CAT(0), Gromov hyperbolic square complex recently introduced by Bisi, Furter and Lamy. Finally, we have collected in the last chapter a few perpectives directly inspired by this work
Bouvier, Clémence. "Cryptanalysis and design of symmetric primitives defined over large finite fields." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS367.
Full textIn recent years, new symmetric cryptographic primitives have been proposed for advanced protocols, like multi-party computation, in combination with a fully homomorphic encryption or in various systems of zero-knowledge proofs. Such protocols are parts of a context marked by the development of cloud and blockchain technologies, and must therefore respond to the growing security concerns of users. These protocols have put forward the need to minimize the number of multiplications performed by the primitive in large finite fields. Classical symmetric algorithms are then inappropriate in this context and the new cryptographic protocols must be combined with symmetric primitives (encryption or hash function) with particular properties. While the number of designs defined over large fields, called "arithmetisation-oriented", is increasing significantly, few cryptanalysis works have been proposed. The first aim of this manuscript is then to contribute to fill this gap, and hence to better understand the specificities of these new objects. We also propose a new vision to design such primitives, covering both aspects of cryptology, the cryptography and the cryptanalysis
Lapébie, Julie. "Sur la topologie des ensembles semi-algébriques : caractéristique d'Euler; degré topologique et indice radial." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4719/document.
Full textAfter the works of Zbigniew Szafraniec and Nicolas Dutertre, we are interested in computing Euler characteristics of some particular semialgebraic sets. In particular, the ones of the form : $ {(-1)^{varepsilon_1} G_1geq 0 }cap...cap{(-1)^{varepsilon_l} G_lgeq 0}cap W$, where $varepsilon=(varepsilon_1,...,varepsilon_l)in{0,1}^l$, $G=(G_1,...,G_l):R^nrightarrowR^l$ polynomial and $W:=F^{-1}(0)subsetR^n$ where $F:R^nrightarrowR^k$ and $k+lleq n$. Once the smooth case is treated, we intersect these sets with ${ fgeq 0}$ or ${ fleq 0}$, where $f$ is polynomial such that $f^{-1}(0)$ contains a finite number of singularities. Then we state a theorem that makes a link between these caracteristics and some degrees of mappings involving the functions $f$, $F$ and $G$. Finally, we study the case where $W$ has a compact singular set.In another part, I work with the radial index, an index defined for singular manifolds. I have a result making a link between the radial index of a vector field V and its opposite -V at a singularity. Finally, I relate that radial index to an intersection index
Chen, Gongliang. "Méthode de Baker pour les grands degrés de transcendance et relations de dépendance linéaire pour des logarithmes de nombres algébriques." Saint-Etienne, 1993. http://www.theses.fr/1993STET4023.
Full textBooks on the topic "Degré algébrique"
Félix, Yves. Topologie algébrique: Cours et exercices corrigés. Paris: Dunod, 2010.
Find full textFyen, Alfred. Algèbre: Notes sur la composition des facteurs en produits, sur la décomposition en facteurs des quantités algébriques et sur la discussion des problèmes du 1er degré. Québec: J.A. Langlais, 1995.
Find full textLes mathématiques, un monde sans limites module 3: Guide d'enseignement mpm2d partie 1 introduction aux fonctions du second degré, partie 2 compétences algébriques. Ottawa, Ont: Centre franco-ontarien des ressources pédagogiques, 2006.
Find full textTraité de la Résolution des Équations Numériques de Tous les Degrés: Avec des Notes Sur Plusieurs Points de la Théorie des Équations Algébriques. Creative Media Partners, LLC, 2022.
Find full textLagrange, Joseph-Louis. Traité de la Résolution des Équations Numériques de Tous les Degrés: Avec des Notes Sur Plusieurs Points de la Théorie des Équations Algébriques. Creative Media Partners, LLC, 2018.
Find full textBook chapters on the topic "Degré algébrique"
"Dimension et degré d'une variété algébrique." In Introduction à la résolution des systèmes polynomiaux, 49–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71647-1_3.
Full text