Journal articles on the topic 'Degenerate equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Degenerate equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Trudinger, Neil S. "On degenerate fully nonlinear elliptic equations in balls." Bulletin of the Australian Mathematical Society 35, no. 2 (April 1987): 299–307. http://dx.doi.org/10.1017/s0004972700013253.
Full textPERTHAME, BENOÎT, and ALEXANDRE POULAIN. "Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility." European Journal of Applied Mathematics 32, no. 1 (March 24, 2020): 89–112. http://dx.doi.org/10.1017/s0956792520000054.
Full textAgosti, A. "Error analysis of a finite element approximation of a degenerate Cahn-Hilliard equation." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 3 (May 2018): 827–67. http://dx.doi.org/10.1051/m2an/2018018.
Full textIgisinov, S. Zh, L. D. Zhumaliyeva, A. O. Suleimbekova, and Ye N. Bayandiyev. "Estimates of singular numbers (s-numbers) for a class of degenerate elliptic operators." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 107, no. 3 (September 30, 2022): 51–58. http://dx.doi.org/10.31489/2022m3/51-58.
Full textNazarova, K. "ON ONE METHOD FOR OBTAINING UNIQUE SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR AN INTEGRO-DIFFERENTIAL EQUATION." Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy), no. 1 (March 15, 2022): 42–54. http://dx.doi.org/10.47526/2022-2/2524-0080.04.
Full textChristodoulou, Dimitris M., Eric Kehoe, and Qutaibeh D. Katatbeh. "Degenerate Canonical Forms of Ordinary Second-Order Linear Homogeneous Differential Equations." Axioms 10, no. 2 (May 19, 2021): 94. http://dx.doi.org/10.3390/axioms10020094.
Full textKoilyshov, U. K., K. A. Beisenbaeva, and S. D. Zhapparova. "A priori estimate of the solution of the Cauchy problem in the Sobolev classes for discontinuous coefficients of degenerate heat equations." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 107, no. 3 (September 30, 2022): 59–69. http://dx.doi.org/10.31489/2022m3/59-69.
Full textGutlyanskiĭ, V., O. Martio, T. Sugawa, and M. Vuorinen. "On the degenerate Beltrami equation." Transactions of the American Mathematical Society 357, no. 3 (October 19, 2004): 875–900. http://dx.doi.org/10.1090/s0002-9947-04-03708-0.
Full textHenriques, Eurica, and Vincenzo Vespri. "On the double degenerate equation." Nonlinear Analysis: Theory, Methods & Applications 75, no. 4 (March 2012): 2304–25. http://dx.doi.org/10.1016/j.na.2011.10.030.
Full textRubinstein, Yanir A., and Jake P. Solomon. "The degenerate special Lagrangian equation." Advances in Mathematics 310 (April 2017): 889–939. http://dx.doi.org/10.1016/j.aim.2017.02.008.
Full textXu, Xiangsheng. "A nonlinear degenerate parabolic equation." Nonlinear Analysis: Theory, Methods & Applications 14, no. 2 (January 1990): 141–57. http://dx.doi.org/10.1016/0362-546x(90)90020-h.
Full textRyoo, Cheon-Seoung, and Jung-Yoog Kang. "Some Identities Involving Degenerate q-Hermite Polynomials Arising from Differential Equations and Distribution of Their Zeros." Symmetry 14, no. 4 (March 31, 2022): 706. http://dx.doi.org/10.3390/sym14040706.
Full textRocca, Elisabetta, and Riccarda Rossi. "A degenerating PDE system for phase transitions and damage." Mathematical Models and Methods in Applied Sciences 24, no. 07 (April 14, 2014): 1265–341. http://dx.doi.org/10.1142/s021820251450002x.
Full textBaleanu, Dumitru, Vladimir E. Fedorov, Dmitriy M. Gordievskikh, and Kenan Taş. "Approximate Controllability of Infinite-Dimensional Degenerate Fractional Order Systems in the Sectorial Case." Mathematics 7, no. 8 (August 12, 2019): 735. http://dx.doi.org/10.3390/math7080735.
Full textYimamu, Yilihamujiang. "Determining the Volatility in Option Pricing From Degenerate Parabolic Equation." WSEAS TRANSACTIONS ON MATHEMATICS 21 (September 13, 2022): 629–34. http://dx.doi.org/10.37394/23206.2022.21.73.
Full textSánchez-Garduño, Faustino, and Judith Pérez-Velázquez. "Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations." Scientific World Journal 2016 (2016): 1–21. http://dx.doi.org/10.1155/2016/5620839.
Full textAngelopoulos, Yannis, Stefanos Aretakis, and Dejan Gajic. "A Non-degenerate Scattering Theory for the Wave Equation on Extremal Reissner–Nordström." Communications in Mathematical Physics 380, no. 1 (September 23, 2020): 323–408. http://dx.doi.org/10.1007/s00220-020-03857-3.
Full textFUCHS, F., and F. POUPAUD. "ASYMPTOTICAL AND NUMERICAL ANALYSIS OF DEGENERACY EFFECTS ON THE DRIFT-DIFFUSION EQUATIONS FOR SEMICONDUCTORS." Mathematical Models and Methods in Applied Sciences 05, no. 08 (December 1995): 1093–111. http://dx.doi.org/10.1142/s0218202595000577.
Full textWu, Bin, Qun Chen, Tingchun Wang, and Zewen Wang. "Null controllability of a coupled degenerate system with the first and zero order terms by a single control." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 107. http://dx.doi.org/10.1051/cocv/2020042.
Full textZhan, Huashui. "On the Weak Characteristic Function Method for a Degenerate Parabolic Equation." Journal of Function Spaces 2019 (August 26, 2019): 1–11. http://dx.doi.org/10.1155/2019/9040284.
Full textGutlyanskii, Vladimir, Vladimir Ryazanov, Evgeny Sevost’yanov, and Eduard Yakubov. "BMO and Asymptotic Homogeneity." Axioms 11, no. 4 (April 12, 2022): 171. http://dx.doi.org/10.3390/axioms11040171.
Full textPOP, IULIU SORIN, and BEN SCHWEIZER. "REGULARIZATION SCHEMES FOR DEGENERATE RICHARDS EQUATIONS AND OUTFLOW CONDITIONS." Mathematical Models and Methods in Applied Sciences 21, no. 08 (August 2011): 1685–712. http://dx.doi.org/10.1142/s0218202511005532.
Full textLe, Nam Q. "On the Harnack inequality for degenerate and singular elliptic equations with unbounded lower order terms via sliding paraboloids." Communications in Contemporary Mathematics 20, no. 01 (October 23, 2017): 1750012. http://dx.doi.org/10.1142/s0219199717500122.
Full textBalkizov, G. A. "Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation." REPORTS ADYGE (CIRCASSIAN) INTERNATIONAL ACADEMY OF SCIENCES 20, no. 3 (2020): 6–13. http://dx.doi.org/10.47928/1726-9946-2020-20-3-6-13.
Full textABDELSALAM, U. M., and M. M. SELIM. "Ion-acoustic waves in a degenerate multicomponent magnetoplasma." Journal of Plasma Physics 79, no. 2 (September 4, 2012): 163–68. http://dx.doi.org/10.1017/s0022377812000803.
Full textKbiri Alaoui, Mohammed. "On Degenerate Parabolic Equations." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/506857.
Full textBandyopadhyay, Saugata, Bernard Dacorogna, and Olivier Kneuss. "The Pullback equation for degenerate forms." Discrete & Continuous Dynamical Systems - A 27, no. 2 (2010): 657–91. http://dx.doi.org/10.3934/dcds.2010.27.657.
Full textHirosawa, Fumihiko. "Degenerate Kirchhoff equation in ultradifferentiable class." Nonlinear Analysis: Theory, Methods & Applications 48, no. 1 (January 2002): 77–94. http://dx.doi.org/10.1016/s0362-546x(00)00174-7.
Full textAndreu, F., V. Caselles, and J. M. Mazón. "A strongly degenerate quasilinear elliptic equation." Nonlinear Analysis: Theory, Methods & Applications 61, no. 4 (May 2005): 637–69. http://dx.doi.org/10.1016/j.na.2004.11.020.
Full textXinhua, JI. "Möbius transformation and degenerate hyperbolic equation." Advances in Applied Clifford Algebras 11, S2 (June 2001): 155–75. http://dx.doi.org/10.1007/bf03219129.
Full textFujisaki, Masatoshi. "Degenerate Bellman equation and its applications." Stochastic Processes and their Applications 26 (1987): 195. http://dx.doi.org/10.1016/0304-4149(87)90089-5.
Full textBetancourt, F., R. Bürger, and K. H. Karlsen. "A strongly degenerate parabolic aggregation equation." Communications in Mathematical Sciences 9, no. 3 (2011): 711–42. http://dx.doi.org/10.4310/cms.2011.v9.n3.a4.
Full textSCHULZ, RAPHAEL. "Degenerate equations in a diffusion–precipitation model for clogging porous media." European Journal of Applied Mathematics 31, no. 6 (December 18, 2019): 1050–69. http://dx.doi.org/10.1017/s0956792519000391.
Full textFloridia, G., C. Nitsch, and C. Trombetti. "Multiplicative controllability for nonlinear degenerate parabolic equations between sign-changing states." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 18. http://dx.doi.org/10.1051/cocv/2019066.
Full textHolzegel, Gustav, Jonathan Luk, Jacques Smulevici, and Claude Warnick. "Asymptotic Properties of Linear Field Equations in Anti-de Sitter Space." Communications in Mathematical Physics 374, no. 2 (November 4, 2019): 1125–78. http://dx.doi.org/10.1007/s00220-019-03601-6.
Full textKrasovitskii, T. I. "Degenerate elliptic equations and nonuniqueness of solutions to the Kolmogorov equation." Доклады Академии наук 487, no. 4 (August 27, 2019): 361–64. http://dx.doi.org/10.31857/s0869-56524874361-364.
Full textPyo, Sung-Soo, Taekyun Kim, and Seog-Hoon Rim. "Degenerate Daehee Numbers of the Third Kind." Mathematics 6, no. 11 (November 6, 2018): 239. http://dx.doi.org/10.3390/math6110239.
Full textTanirbergen, Aisulu K. "A MIXED PROBLEM FOR A DEGENERATE MULTIDIMENSIONAL ELLIPTIC EQUATION." UNIVERSITY NEWS. NORTH-CAUCASIAN REGION. NATURAL SCIENCES SERIES, no. 3 (211) (September 30, 2021): 37–41. http://dx.doi.org/10.18522/1026-2237-2021-3-37-41.
Full textRani, Neelam, and Manikant Yadav. "The Nonlinear Magnetosonic Waves in Magnetized Dense Plasma for Quantum Effects of Degenerate Electrons." 4, no. 4 (December 10, 2021): 180–88. http://dx.doi.org/10.26565/2312-4334-2021-4-24.
Full textSarıaydın-Filibelioğlu, Ayşe, Bülent Karasözen, and Murat Uzunca. "Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn–Hilliard Equation." International Journal of Nonlinear Sciences and Numerical Simulation 18, no. 5 (July 26, 2017): 303–14. http://dx.doi.org/10.1515/ijnsns-2016-0024.
Full textChouaou, Fatiha, Chahira Aichi, and Abbes Benaissa. "Decay estimates for a degenerate wave equation with a dynamic fractional feedback acting on the degenerate boundary." Filomat 35, no. 10 (2021): 3219–39. http://dx.doi.org/10.2298/fil2110219c.
Full textXiao, Stanley Yao, and Shuntaro Yamagishi. "Zeroes of Polynomials With Prime Inputs and Schmidt’s -invariant." Canadian Journal of Mathematics 72, no. 3 (February 7, 2019): 805–33. http://dx.doi.org/10.4153/s0008414x19000026.
Full textCID, CARLOS, and PATRICIO FELMER. "ORBITAL STABILITY OF STANDING WAVES FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH POTENTIAL." Reviews in Mathematical Physics 13, no. 12 (December 2001): 1529–46. http://dx.doi.org/10.1142/s0129055x01001095.
Full textWang, Yulan, Xiaojun Song, and Chao Ye. "Fujita Exponent for a Nonlinear Degenerate Parabolic Equation with Localized Source." Advances in Mathematical Physics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/301747.
Full textMI, YONG-SHENG, CHUN-LAI MU, and DENG-MING LIU. "GLOBAL EXISTENCE AND BLOW-UP FOR A DOUBLY DEGENERATE PARABOLIC EQUATION SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS." Glasgow Mathematical Journal 54, no. 2 (December 12, 2011): 309–24. http://dx.doi.org/10.1017/s0017089511000619.
Full textSu, Ning, and Li Zhang. "Existence for Nonlinear Evolution Equations and Application to Degenerate Parabolic Equation." Journal of Applied Mathematics 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/567241.
Full textKrasovitskii, T. I. "Degenerate Elliptic Equations and Nonuniqueness of Solutions to the Kolmogorov Equation." Doklady Mathematics 100, no. 1 (July 2019): 354–57. http://dx.doi.org/10.1134/s1064562419040112.
Full textBenci, Vieri, and Donato Fortunato. "A strongly degenerate elliptic equation arising from the semilinear Maxwell equations." Comptes Rendus Mathematique 339, no. 12 (December 2004): 839–42. http://dx.doi.org/10.1016/j.crma.2004.07.029.
Full textSoldatova, Е. А., and A. V. Keller. "ALGORITHMS AND INFORMATION PROCESSING IN NUMERICAL RESEARCH OF THE BARENBLATT–ZHELTOV–KOCHINA STOCHASTIC MODEL." Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 13, no. 4 (2021): 29–36. http://dx.doi.org/10.14529/mmph210404.
Full textPlekhanova, Marina, and Guzel Baybulatova. "Multi-Term Fractional Degenerate Evolution Equations and Optimal Control Problems." Mathematics 8, no. 4 (April 1, 2020): 483. http://dx.doi.org/10.3390/math8040483.
Full text