Books on the topic 'Degenerate equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Degenerate equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Wakako, Hideaki. Exact WKB analysis for the degenerate third Painleve equation of type (Ds). Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2007.
Find full textLevendorskii, Serge. Degenerate Elliptic Equations. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1215-6.
Full textDiBenedetto, Emmanuele. Degenerate Parabolic Equations. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0895-2.
Full textLevendorskiĭ, Serge. Degenerate elliptic equations. Dordrecht: Kluwer, 1993.
Find full textDiBenedetto, Emmanuele. Degenerate parabolic equations. New York: Springer-Verlag, 1993.
Find full textFavini, Angelo, and Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.
Full textFavini, Angelo. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textA, Dzhuraev. Degenerate and other problems. Harlow, Essex, England: Longman Scientific and Technical, 1992.
Find full textAhmed, Zeriahi, ed. Degenerate complex Monge--Ampère equations. Zürich, Switzerland: European Mathematical Society Publishing House, 2017.
Find full textFavini, A. Degenerate differential equations in Banach spaces. New York: Marcel Dekker, 1999.
Find full text-M, Ni W., Peletier L. A, and Vazquez J. L, eds. Degenerate diffusions. New York: Springer-Verlag, 1993.
Find full textBell, Denis R. Degenerate stochastic differential equations and hypoellipticity. New York: Longman, 1995.
Find full textBell, Denis R. Degenerate stochastic differential equations and hypoellipticity. Harlow, Essex: Longman, 1995.
Find full textFragnelli, Genni, and Dimitri Mugnai. Control of Degenerate and Singular Parabolic Equations. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69349-7.
Full textTero, Kilpeläinen, and Martio O, eds. Nonlinear potential theory of degenerate elliptic equations. Oxford: Clarendon Press, 1993.
Find full textDiBenedetto, Emmanuele, Ugo Gianazza, and Vincenzo Vespri. Harnack's Inequality for Degenerate and Singular Parabolic Equations. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1584-8.
Full textUgo, Gianazza, Vespri Vincenzo, and SpringerLink (Online service), eds. Harnack's Inequality for Degenerate and Singular Parabolic Equations. New York, NY: Springer Science+Business Media, LLC, 2012.
Find full textGarrione, Maurizio, and Filippo Gazzola. Nonlinear Equations for Beams and Degenerate Plates with Piers. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30218-4.
Full textSviridyuk, G. A. Linear Sobolev type equations and degenerate semigroups of operators. Utrecht: VSP, 2003.
Find full textOn first and second order planar elliptic equations with degeneracies. Providence, R.I: American Mathematical Society, 2011.
Find full textArutyunov, Aram V. Optimality Conditions: Abnormal and Degenerate Problems. Dordrecht: Springer Netherlands, 2000.
Find full textColombo, Maria. Flows of Non-smooth Vector Fields and Degenerate Elliptic Equations. Pisa: Scuola Normale Superiore, 2017. http://dx.doi.org/10.1007/978-88-7642-607-0.
Full textPopivanov, Peter R. The degenerate oblique derivative problem for elliptic and parabolic equations. Berlin: Akademie Verlag, 1997.
Find full textElliptic, hyperbolic and mixed complex equations with parabolic degeneracy. Singapore: World Scientific, 2008.
Find full text1953-, Kenig Carlos E., ed. Degenerate diffusions: Initial value problems and local regularity theory. Zürich: European Mathematical Society, 2007.
Find full textThe method of intrinsic scaling: A systematic approach to regularity for degenerate and singular PDEs. Berlin: Springer, 2008.
Find full textWatling, Keith Duncan. Formulae for solutions to (possibly degenerate) diffusion equations exhibiting semi-classical and small time asymptotics. [s.l.]: typescript, 1986.
Find full textColombo, Maria. Flows of Non-smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems. Pisa: Scuola Normale Superiore, 2017.
Find full text1943-, Gossez J. P., and Bonheure Denis, eds. Nonlinear elliptic partial differential equations: Workshop in celebration of Jean-Pierre Gossez's 65th birthday, September 2-4, 2009, Université libre de Bruxelles, Belgium. Providence, R.I: American Mathematical Society, 2011.
Find full textBalackiy, Evgeniy, Natal'ya Ekimova, Aleksandr Rudnev, and Aleksandr Gusev. New approaches to modeling economic development. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1862597.
Full textDegenerate Nonlinear Diffusion Equations. Springer, 2012.
Find full textDegenerate Elliptic Equations. Springer, 2010.
Find full textLevendorskii, Serge. Degenerate Elliptic Equations. Springer, 2013.
Find full textDiBenedetto, Emmanuele. Degenerate Parabolic Equations. Springer, 2012.
Find full textSaha, Prasenjit, and Paul A. Taylor. Gravity versus Pressure. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816461.003.0005.
Full textDegenerate Differential Equations in Banach Spaces. Taylor & Francis Group, 1998.
Find full textFavini, Angelo, and Atsushi Yagi. Degenerate Differential Equations in Banach Spaces. Taylor & Francis Group, 1998.
Find full textBell, Denis. Degenerate Stochastic Differential Equations and Hypoellipticity. Taylor & Francis Group, 1996.
Find full textAttractors for Degenerate Parabolic Type Equations. American Mathematical Society, 2013.
Find full textNonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, 2006.
Find full textMartio, Olli, Juha Heinonen, and Tero Kipelainen. Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Incorporated, 2018.
Find full textKilpelainen, Tero, Olli Martio, and Juha Heinonen. Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Incorporated, 2012.
Find full textMartio, Olli, Juha Heinonen, and Tero Kipelainen. Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Incorporated, 2018.
Find full textDiBenedetto, Emmanuele, Ugo Gianazza, and Vincenzo Vespri. Harnack's Inequality for Degenerate and Singular Parabolic Equations. Springer New York, 2014.
Find full textStredulinsky, E. W. Weighted Inequalities and Degenerate Elliptic Partial Differential Equations. Springer London, Limited, 2006.
Find full textBorodin, Alexei, and Leonid Petrov. Integrable probability: stochastic vertex models and symmetric functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0002.
Full textThe Regularity Of General Parabolic Systems With Degenerate Diffusion. American Mathematical Society, 2013.
Find full textVeron, Laurent. Local and Global Aspects of Quasilinear Degenerate Elliptic Equations. World Scientific Publishing Co Pte Ltd, 2017.
Find full textSviridyuk, Georgy A., and Vladimir E. Fedorov. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. de Gruyter GmbH, Walter, 2012.
Find full textGazzola, Filippo, and Maurizio Garrione. Nonlinear Equations for Beams and Degenerate Plates with Piers. Springer, 2019.
Find full text