Academic literature on the topic 'Degenerate equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Degenerate equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Degenerate equation"
Trudinger, Neil S. "On degenerate fully nonlinear elliptic equations in balls." Bulletin of the Australian Mathematical Society 35, no. 2 (April 1987): 299–307. http://dx.doi.org/10.1017/s0004972700013253.
Full textPERTHAME, BENOÎT, and ALEXANDRE POULAIN. "Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility." European Journal of Applied Mathematics 32, no. 1 (March 24, 2020): 89–112. http://dx.doi.org/10.1017/s0956792520000054.
Full textAgosti, A. "Error analysis of a finite element approximation of a degenerate Cahn-Hilliard equation." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 3 (May 2018): 827–67. http://dx.doi.org/10.1051/m2an/2018018.
Full textIgisinov, S. Zh, L. D. Zhumaliyeva, A. O. Suleimbekova, and Ye N. Bayandiyev. "Estimates of singular numbers (s-numbers) for a class of degenerate elliptic operators." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 107, no. 3 (September 30, 2022): 51–58. http://dx.doi.org/10.31489/2022m3/51-58.
Full textNazarova, K. "ON ONE METHOD FOR OBTAINING UNIQUE SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR AN INTEGRO-DIFFERENTIAL EQUATION." Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy), no. 1 (March 15, 2022): 42–54. http://dx.doi.org/10.47526/2022-2/2524-0080.04.
Full textChristodoulou, Dimitris M., Eric Kehoe, and Qutaibeh D. Katatbeh. "Degenerate Canonical Forms of Ordinary Second-Order Linear Homogeneous Differential Equations." Axioms 10, no. 2 (May 19, 2021): 94. http://dx.doi.org/10.3390/axioms10020094.
Full textKoilyshov, U. K., K. A. Beisenbaeva, and S. D. Zhapparova. "A priori estimate of the solution of the Cauchy problem in the Sobolev classes for discontinuous coefficients of degenerate heat equations." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 107, no. 3 (September 30, 2022): 59–69. http://dx.doi.org/10.31489/2022m3/59-69.
Full textGutlyanskiĭ, V., O. Martio, T. Sugawa, and M. Vuorinen. "On the degenerate Beltrami equation." Transactions of the American Mathematical Society 357, no. 3 (October 19, 2004): 875–900. http://dx.doi.org/10.1090/s0002-9947-04-03708-0.
Full textHenriques, Eurica, and Vincenzo Vespri. "On the double degenerate equation." Nonlinear Analysis: Theory, Methods & Applications 75, no. 4 (March 2012): 2304–25. http://dx.doi.org/10.1016/j.na.2011.10.030.
Full textRubinstein, Yanir A., and Jake P. Solomon. "The degenerate special Lagrangian equation." Advances in Mathematics 310 (April 2017): 889–939. http://dx.doi.org/10.1016/j.aim.2017.02.008.
Full textDissertations / Theses on the topic "Degenerate equation"
Tepoyan, L. "The mixed problem for a degenerate operator equation." Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/3033/.
Full textBrinkschulte, Judith. "The Cauchy-Riemann equation with support conditions in domains with Levi degenerate boundaries." [S.l.] : [s.n.], 2002. http://dochost.rz.hu-berlin.de/dissertationen/brinkschulte-judith-2002-04-19.
Full textPicard, Sebastien. "A priori estimates of the degenerate Monge-Ampère equation on compact Kähler manifolds." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119756.
Full textLa question de la régularité des solutions de l'équation complexe Monge-Ampère dégénérée est étudiée. Premièrement, l'équation est considérée sur une variété compacte Kahler sans frontière. Une revue des concepts clés de la géométrie Kahler est présentée. Étant donné une solution de l'équation complexe Monge-Ampère dégénérée, il est démontré que la différence entre la borne supérieure et la borne inférieure de la solution est sous contrôle, et ainsi pour le gradient de la solution. Le Laplacien de la solution est également bornée. Cette borne du Laplacien est une amélioration de ce qui a été établi dans la littérature jusqu'à présent, mais par contre, l'argument tient seulement sous la condition que la variété a une courbure non-négative. Les résultats sont appliqués à un problème de Dirichlet dans l'espace complexe. L'existence et l'unicité d'une solution pluri-subharmonique de l'équation complexe Monge-Ampère dégénérée dans un domaine contenu dans l'espace complexe est démontré.
Brinkschulte, Judith. "The Cauchy-Riemann equation with support conditions on domains with Levi-degenerate boundaries." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14734.
Full textIn a first part, we consider a domain Omega with Lipschitz boundary, which is relatively compact in an n-dimensional Kaehler manifold and satisfies some "log delta-pseudoconvexity" condition. We show that the Cauchy-Riemann equation with exact support in Omega admits a solution in bidegrees (p,q), 1 < q < n. Moreover, the range of the Cauchy-Riemann operator acting on smooth (p,n-1)-forms with exact support in Omega is closed. Applications are given to the solvability of the tangential Cauchy-Riemann equations for smooth forms and currents for all intermediate bidegrees on boundaries of weakly pseudoconvex domains in Stein manifolds and to the solvability of the tangential Cauchy-Riemann equations for currents on Levi-flat CR manifolds of arbitrary codimension. In a second part, we study the Cauchy-Riemann equation with zero Cauchy data along a hypersurface with constant signature. Applications to the solvability of the tangential Cauchy-Riemann equations for smooth forms with compact support and currents on the hypersurface are given. We also prove that the Hartogs phenomenon holds in weakly 2-convex-concave hypersurfaces with constant signature of Stein manifolds.
Watling, K. D. "Formulae for solutions to (possibly degenerate) diffusion equations exhibiting semi-classical and small time asymptotics." Thesis, University of Warwick, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380277.
Full textROCCHETTI, DARIO. "Generation of analytic semigroups for a class of degenerate elliptic operators." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/749.
Full textThis thesis is composed by two chapters. The first one is devoted to the generation of analytic semigroups in the L^2 topology by second order elliptic operators in divergence form, that may degenerate at the boundary of the space domain. Our results, that hold in two space dimension, guarantee that the solutions of the corresponding evolution problems support integration by parts. So, this paper provides the basis for deriving Carleman type estimates for degenerate parabolic operators. In the second chapter we give null controllability results for some degenerate parabolic equations in non divergence form with a drift term in one space dimension. In particular, the coefficient of the second order term may degenerate at the extreme points of the space domain. For this purpose, we obtain an observability inequality for the adjoint problem using suitable Carleman estimates.
Rao, Arvind Satya. "Weak solutions to a Monge-Ampère type equation on Kähler surfaces." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/582.
Full textBoiger, Wolfgang Josef. "Stabilised finite element approximation for degenerate convex minimisation problems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16790.
Full textInfimising sequences of nonconvex variational problems often do not converge strongly in Sobolev spaces due to fine oscillations. These oscillations are physically meaningful; finite element approximations, however, fail to resolve them in general. Relaxation methods replace the nonconvex energy with its (semi)convex hull. This leads to a macroscopic model which is degenerate in the sense that it is not strictly convex and possibly admits multiple minimisers. The lack of control on the primal variable leads to difficulties in the a priori and a posteriori finite element error analysis, such as the reliability-efficiency gap and no strong convergence. To overcome these difficulties, stabilisation techniques add a discrete positive definite term to the relaxed energy. Bartels et al. (IFB, 2004) apply stabilisation to two-dimensional problems and thereby prove strong convergence of gradients. This result is restricted to smooth solutions and quasi-uniform meshes, which prohibit adaptive mesh refinements. This thesis concerns a modified stabilisation term and proves convergence of the stress and, for smooth solutions, strong convergence of gradients, even on unstructured meshes. Furthermore, the thesis derives the so-called flux error estimator and proves its reliability and efficiency. For interface problems with piecewise smooth solutions, a refined version of this error estimator is developed, which provides control of the error of the primal variable and its gradient and thus yields strong convergence of gradients. The refined error estimator converges faster than the flux error estimator and therefore narrows the reliability-efficiency gap. Numerical experiments with five benchmark examples from computational microstructure and topology optimisation complement and confirm the theoretical results.
Čakaitė, Inga. "Dalinių išvestinių sistemos su kvazireguliariuoju išsigimimu sprendimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2006. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2006~D_20060609_122917-49917.
Full textMumcu, Gokhan. "EM Characterization of Magnetic Photonic / Degenerate Band Edge Crystals and Related Antenna Realizations." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1221860344.
Full textBooks on the topic "Degenerate equation"
Wakako, Hideaki. Exact WKB analysis for the degenerate third Painleve equation of type (Ds). Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2007.
Find full textLevendorskii, Serge. Degenerate Elliptic Equations. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1215-6.
Full textDiBenedetto, Emmanuele. Degenerate Parabolic Equations. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0895-2.
Full textLevendorskiĭ, Serge. Degenerate elliptic equations. Dordrecht: Kluwer, 1993.
Find full textDiBenedetto, Emmanuele. Degenerate parabolic equations. New York: Springer-Verlag, 1993.
Find full textFavini, Angelo, and Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.
Full textFavini, Angelo. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textA, Dzhuraev. Degenerate and other problems. Harlow, Essex, England: Longman Scientific and Technical, 1992.
Find full textAhmed, Zeriahi, ed. Degenerate complex Monge--Ampère equations. Zürich, Switzerland: European Mathematical Society Publishing House, 2017.
Find full textFavini, A. Degenerate differential equations in Banach spaces. New York: Marcel Dekker, 1999.
Find full textBook chapters on the topic "Degenerate equation"
Arrieta, José M., Rosa Pardo, and Aníbal Rodríguez-Bernal. "A Degenerate Parabolic Logistic Equation." In Advances in Differential Equations and Applications, 3–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06953-1_1.
Full textGalaktionov, Victor A., and Sergey A. Posashkov. "On Some Monotonicity in Time Properties for a Quasilinear Parabolic Equation with Source." In Degenerate Diffusions, 77–93. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0885-3_5.
Full textEfendiev, Messoud. "Porous medium equation in homogeneous media: Long-time dynamics." In Attractors for Degenerate Parabolic Type Equations, 67–87. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/192/04.
Full textEfendiev, Messoud. "Porous medium equation in heterogeneous media: Long-time dynamics." In Attractors for Degenerate Parabolic Type Equations, 89–99. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/192/05.
Full textRodrigues, José Francisco, and Hugo Tavares. "Increasing Powers in a Degenerate Parabolic Logistic Equation." In Partial Differential Equations: Theory, Control and Approximation, 379–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41401-5_15.
Full textKrejčí, Pavel. "Boundedness of Solutions to a Degenerate Diffusion Equation." In Springer INdAM Series, 305–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64489-9_12.
Full textSlathia, Geetika, Rajneet Kaur, Kuldeep Singh, and Nareshpal Singh Saini. "Forced KdV Equation in Degenerate Relativistic Quantum Plasma." In Nonlinear Dynamics and Applications, 15–24. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99792-2_2.
Full textFragnelli, Genni, and Dimitri Mugnai. "The Case of an Interior Degenerate/Singular Parabolic Equation." In SpringerBriefs in Mathematics, 85–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69349-7_5.
Full textFragnelli, Genni, and Dimitri Mugnai. "The Case of a Boundary Degenerate/Singular Parabolic Equation." In SpringerBriefs in Mathematics, 71–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69349-7_4.
Full textRicciotti, Diego. "$$C^\infty $$ C ∞ Regularity for the Non-degenerate Equation." In SpringerBriefs in Mathematics, 43–61. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23790-9_4.
Full textConference papers on the topic "Degenerate equation"
Goncerzewicz, Jan. "On the initial-boundary value problems for a degenerate parabolic equation." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-13.
Full textBRESCH, DIDIER, and PIERRE-EMMANUEL JABIN. "QUANTITATIVE ESTIMATES FOR ADVECTIVE EQUATION WITH DEGENERATE ANELASTIC CONSTRAINT." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0134.
Full textButuzov, Valentin Fedorovich. "Singularly perturbed ODEs with multiple roots of the degenerate equation." In International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin. Moscow: Steklov Mathematical Institute, 2018. http://dx.doi.org/10.4213/proc22964.
Full text"Solvability of the quasilinear degenerate equation with Dzhrbashyan — Nersesyan derivative." In Уфимская осенняя математическая школа - 2022. 2 часть. Baskir State University, 2022. http://dx.doi.org/10.33184/mnkuomsh2t-2022-09-28.84.
Full textШуклина, Анна, and Марина Плеханова. "Mixed control of solutions to a degenerate nonlinear fractional equation." In International scientific conference "Ufa autumn mathematical school - 2021". Baskir State University, 2021. http://dx.doi.org/10.33184/mnkuomsh2t-2021-10-06.47.
Full textYuldashev, Tursun K. "On a Volterra type fractional integro-differential equation with degenerate kernel." In INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0057135.
Full textNikolov, Aleksey, and Nedyu Popivanov. "Singular solutions to Protter's problem for (3+1)-D degenerate wave equation." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12): Proceedings of the 38th International Conference Applications of Mathematics in Engineering and Economics. AIP, 2012. http://dx.doi.org/10.1063/1.4766790.
Full textMarinoschi, Gabriela. "Identification of a singular coefficient in a parabolic degenerate equation with transport." In ALEXANDRU MYLLER MATHEMATICAL SEMINAR CENTENNIAL CONFERENCE. AIP, 2011. http://dx.doi.org/10.1063/1.3546085.
Full textZhang, Wei, Feng-Xia Wang, and Hong-Bo Wen. "Studies on Codimension-3 Degenerate Bifurcations of the Flexible Beam." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21586.
Full textNikolov, Aleksey, and Nedyu Popivanov. "Riemann-Hadamard method for solving a (2+1)-D problem for degenerate hyperbolic equation." In 41ST INTERNATIONAL CONFERENCE “APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS” AMEE ’15. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4936708.
Full textReports on the topic "Degenerate equation"
Fujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190319.
Full textNohel, John A. A Class of One-Dimensional Degenerate Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, July 1985. http://dx.doi.org/10.21236/ada160962.
Full textGupta, V., B. H. J. McKellar, and D. D. Wu. The degeneracy of the free Dirac equation. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/6105369.
Full text