Academic literature on the topic 'Deformed materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deformed materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deformed materials"
Destrade, M. "Surface waves in deformed Bell materials." International Journal of Non-Linear Mechanics 38, no. 6 (September 2003): 809–14. http://dx.doi.org/10.1016/s0020-7462(01)00125-1.
Full textEmbury, J. D. "Micromechanical descriptions of heavily deformed materials." Scripta Metallurgica et Materialia 27, no. 8 (October 1992): 981–86. http://dx.doi.org/10.1016/0956-716x(92)90460-v.
Full textKlimanek, P., V. Klemm, A. E. Romanov, and M. Seefeldt. "Disclinations in Plastically Deformed Metallic Materials." Advanced Engineering Materials 3, no. 11 (November 2001): 877. http://dx.doi.org/10.1002/1527-2648(200111)3:11<877::aid-adem877>3.0.co;2-l.
Full textSauvage, Xavier, Amandine Duchaussoy, and Ghenwa Zaher. "Strain Induced Segregations in Severely Deformed Materials." MATERIALS TRANSACTIONS 60, no. 7 (July 1, 2019): 1151–58. http://dx.doi.org/10.2320/matertrans.mf201919.
Full textDelsanto, P. P., and A. V. Clark. "Rayleigh wave propagation in deformed orthotropic materials." Journal of the Acoustical Society of America 81, no. 4 (April 1987): 952–60. http://dx.doi.org/10.1121/1.394575.
Full textField, D. P. "Analysis of Grain Fragmentation in Deformed Materials." Microscopy and Microanalysis 9, S02 (July 28, 2003): 76–77. http://dx.doi.org/10.1017/s1431927603440993.
Full textIvlev, Y. "Vibrational compaction of hard deformed powder materials." Metal Powder Report 52, no. 7-8 (July 1997): 38. http://dx.doi.org/10.1016/s0026-0657(97)80176-2.
Full textIvlev, Y. "Vibrational compaction of hard deformed powder materials." Metal Powder Report 53, no. 7-8 (July 8, 1997): 38. http://dx.doi.org/10.1016/s0026-0657(97)84682-6.
Full textMerala, T. B., H. W. Chan, D. G. Howitt, P. V. Kelsey, G. E. Korth, and R. L. Williamson. "Dislocation microstructures in explosively deformed hard materials." Materials Science and Engineering: A 105-106 (November 1988): 293–98. http://dx.doi.org/10.1016/0025-5416(88)90510-1.
Full textBaranov, V. L., and A. V. Kanunnikov. "Response of deformed materials in dynamic contact." Russian Engineering Research 28, no. 11 (November 2008): 1058–62. http://dx.doi.org/10.3103/s1068798x08110075.
Full textDissertations / Theses on the topic "Deformed materials"
Rodrigues, Ferreira Elizabete. "Finite-amplitude waves in deformed elastic materials." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210464.
Full textAprès un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie.
Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen.
En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie.
Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche.
The context of this thesis is the non linear elasticity theory, also called "finite elasticity".
Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation.
After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited.
In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model.
In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux.
Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Divinski, Sergiy V., Jens Ribbe, Gerrit Reglitz, Yuri Estrin, and Gerhard Wilde. "Ultra-fast diffusion in severely deformed materials." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190057.
Full textDivinski, Sergiy V., Jens Ribbe, Gerrit Reglitz, Yuri Estrin, and Gerhard Wilde. "Ultra-fast diffusion in severely deformed materials." Diffusion fundamentals 11 (2009) 45, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14008.
Full textStojakovic, Dejan Doherty R. D. Kalidindi Surya. "Microstructure evolution in deformed and recrystallized electrical steel /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2728.
Full textDalai, Biswajit. "Material characterization of AA7075-T651 deformed at different temperatures and strain rates." Licentiate thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84325.
Full textZhai, Dawei. "Studies on Electron Dynamics in Deformed Graphene." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1540985604827894.
Full textVachhani, Shraddha J. "Stored energy maps in deformed metals using spherical nanoindentation." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51813.
Full textGuo, Shuo. "Evaluation of deformed MnS in different industrial steels by using electrolytic extraction." Thesis, KTH, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217880.
Full textPatra, Anirban. "Modeling the mechanical behavior and deformed microstructure of irradiated BCC materials using continuum crystal plasticity." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50366.
Full textWang, Lei. "Study of the microstructure and mechanical properties of TWIP steels deformed by ECAP." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/458883.
Full textEn la presente tesis, se sometió a dos aceros TWIP de composición diferente a procesos de Severa Deformación Plástica (SPD) por presión en canal angular de sección constante (ECAP), a 300oC. Para ello, se utilizó una matriz con un angulo interno Ф=90° y un arco exterior con un curvatura Ф=37°. Se llegó a aplicar una deformación alrededor de 4, correspodiente a 4 pases de ECAP, consiguiendo microestructuras de grano ultrafino. Además, se consiguió deformar a temperatura ambiente uno de los aceros mediante la aplicación de un pase de ECAP. Las microestructuras fueron caracterizadas mediante la aplicación de diferentes técnicas, más concretamente microscopía óptica (OM), difracción de electrones retrodispersados (EBSD) y microscopía electrónica de transmisión (TEM). Asmismo, las propiedades mecánicas previas y posteriores a la deformación por ECAP fueron determinadas por microdureza y ensayos de microtracción. Con el fin de comprender la interrelación entre las propiedades mecánicas, la microstructura y la capacidad de maclar del material, el comportamiento de endurecimiento por deformación se analizó en base a las microestructuras obtenidas por EBSD y TEM. La caracterización microestructural reveló que los dos aceros TWIP investigados presentaban una microestructura homogénea de granos equiáxicos en su condition de recocido. Tras la deformación por ECAP a 300ºC, ambos aceros presentaron granos alargados con un afino de grano pronunciado, sobretodo después del primer pase. La microestructura tras cada uno de los pases se caracteriza por la presencia de nuevos granos, subgranos y maclas. La fracción de los límites de macla se reduce con un aumento del número de pases, de la misma manera que la fracción de límites de grano de ángulo bajo, concluyéndose que los subgranos se transforman gradualmente en nuevos granos. It can be concluded that the subgrains gradually form the new grains. El espesor de la maclas también mostró una tendencia decreciente con el número de pases. Las micrografías por TEM demostraron la presencia de maclas para las probetas deformadas por ECAP, a pesar de la temperatura a la que se llevó a cabo el proceso. En particular, las probetas recocidas se detectaron dislocaciones rectas y sin enmarañamiento. Después de un pase, las maclas que aparecían eran relativamente anchas con poco maclado secundario. Tras dos pases, el maclado secundario aumenta, con una reducción del espesor de las maclas. Después de cuatro pases, se observan maclas extremadamente finas y gran formación de subgranos. La textura, caracterizada por EBSD mostró que en la condición de recocido ambos aceros mostraban componentes Brass y Goss dominantes. Tras la deformación por ECAP, el componente dominante se movió gradualmente de A1* a B. En lo relativo a las propiedades mecánicas, tanto la microdureza, como el límite elástico y resistencia máxica aumentaron con el número de pases, a la vez que la ductilidad y tenacidad disminuían. Por otro lado, el enduremiento por deformación era máximo para la condición de recocido, aunque dada la gran deformación aplicada en cada pase, el material seguía reteniendo capacidad de endurecer después de uno y dos pases de deformación por ECAP.
Books on the topic "Deformed materials"
Miyoshi, Kazuhisa. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Find full textKnorr, D. B. Proceedings From the Symposia Textures in Non-Metallic Materials and Microstructure and Texture Evolution During Annealing of Deformed Materials: A special ... Microstructures (Textures & Microstructures). Routledge, 1991.
Find full textBauser, M., G. Sauer, and K. Siegert, eds. Extrusion. Translated by A. F. Castle. 2nd ed. ASM International, 2006. http://dx.doi.org/10.31399/asm.tb.ex2.9781627083423.
Full textTransferencia del conocimiento e investigación educativa. Editorial Octaedro, 2022. http://dx.doi.org/10.36006/09503.
Full textBook chapters on the topic "Deformed materials"
Field, David P., and Hasso Weiland. "Characterization of Deformed Microstructures." In Electron Backscatter Diffraction in Materials Science, 199–212. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3205-4_17.
Full textFábián, Enikö Réka, and László Dévényi. "Hydrogen in the Plastic Deformed Steel." In Materials Science Forum, 33–40. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-426-x.33.
Full textLvov, Gennadiy, and Olga Kostromitskaya. "Residual Stresses in Plastic Deformed Composites." In Advanced Structured Materials, 75–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75890-5_5.
Full textKlöden, Burghardt, Werner Skrotzki, C. G. Oertel, and E. Rybacki. "Dynamic Recrystallization of Torsion Deformed NiAl." In Materials Science Forum, 743–48. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-975-x.743.
Full textPipkin, A. C., and R. S. Rivlin. "Electrical Conduction in Deformed Isotropic Materials." In Collected Papers of R.S. Rivlin, 2349–52. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2416-7_157.
Full textHayes, M., and R. S. Rivlin. "Surface Waves in Deformed Elastic Materials." In Collected Papers of R.S. Rivlin, 625–48. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2416-7_42.
Full textTsuzaki, Kaneaki, Andrey Belyakov, and Fu Xing Yin. "Texture Invariant Annealing in Severely Deformed Steel." In Materials Science Forum, 101–6. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.101.
Full textBernardi, Heide H., Hugo Ricardo Zschommler Sandim, Bert Verlinden, and Dierk Raabe. "Recrystallization of Niobium Single Crystals Deformed by ECAE." In Materials Science Forum, 125–30. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.125.
Full textPeng, Jian, Ding Fei Zhang, Pei Dao Ding, Fu Sheng Pan, and Xiang Yu. "Dynamic Analysis on Thermal Deformed AZ61B Magnesium Alloy." In Materials Science Forum, 551–54. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-968-7.551.
Full textKuśnierz, Jan, Marie Helene Mathon, Thierry Baudin, Zdzislaw Jasieński, and Richard Penelle. "Texture of Al-Cu Alloys Deformed by ECAP." In Materials Science Forum, 851–56. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-975-x.851.
Full textConference papers on the topic "Deformed materials"
Sim, H. S. "Resonances in deformed carbon nanotubes." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420100.
Full textPu, Xiao-Yun, and Wing-Kee Lee. "Lasing characteristics of a deformed pendant drop." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/nlo.2000.wb26.
Full textLászló, István. "Topological coordinates for deformed nanotubes." In MOLECULAR NANOSTRUCTURES: XVII International Winterschool Euroconference on Electronic Properties of Novel Materials. AIP, 2003. http://dx.doi.org/10.1063/1.1628063.
Full textOrekhov, Andrey V. "Criterion for estimation of stress-deformed state of SD-materials." In THE EIGHTH POLYAKHOV’S READING: Proceedings of the International Scientific Conference on Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5034703.
Full textSinyakin, M. P., D. V. Sergeev, and A. N. Anikeev. "Study of structure of dispersive-strengthened deformed workpieces." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002947.
Full textKubis, Michael, Jing Jin, Steven E. Steen, Johan Beckers, Fayaz Shaikh, and Bart van Schravendijk. "How to improve overlay of highly deformed 3D NAND wafers." In Advances in Patterning Materials and Processes XXXVII, edited by Roel Gronheid and Daniel P. Sanders. SPIE, 2020. http://dx.doi.org/10.1117/12.2552042.
Full textMasaki Orihashi, Yasutoshi Noda, and Kazuhiro Hasezaki. "Surface texture of Bi2Te3-based materials deformed under pressure-current heating." In 2007 26th International Conference on Thermoelectrics (ICT 2007). IEEE, 2007. http://dx.doi.org/10.1109/ict.2007.4569430.
Full textKuc, Dariusz, Jerzy Gawad, Francisco Chinesta, Yvan Chastel, and Mohamed El Mansori. "Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata." In INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552396.
Full textPerovskaya, M. V., G. V. Shlyakhova, S. A. Barannikova, and L. B. Zuev. "STRUCTURAL INVESTIGATIONS OF DEFORMED COPPER-NICKEL ALLOYS." In Physical Mesomechanics of Materials. Physical Principles of Multi-Layer Structure Forming and Mechanisms of Non-Linear Behavior. Novosibirsk State University, 2022. http://dx.doi.org/10.25205/978-5-4437-1353-3-111.
Full textBarzi, E., D. Turrioni, M. Alsharo'a, M. Field, S. Hong, J. Parrell, R. Yamada, et al. "EFFECT OF SUBELEMENT SPACING IN RRP Nb[sub 3]Sn DEFORMED STRANDS." In ADVANCES IN CRYOGENIC ENGINEERING MATERIALS: Transactions of the International Cryogenic Materials Conference - ICMC, Vol. 54. AIP, 2008. http://dx.doi.org/10.1063/1.2900360.
Full textReports on the topic "Deformed materials"
Sethna, James P. Deformed Materials: Towards a Theory of Materials Morphology Dynamics. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1366763.
Full textReal Fernández, Elena. ¿PUEDE HABER 5 FASES DE DEFORMACIÓN HERCÍNICA EN LA ZONA DE VALDEMORILLO (MADRID)? Ilustre Colegio Oficial de Geólogos, October 2020. http://dx.doi.org/10.21028/erf.2020.10.27.
Full textClaus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.
Full textTiku, Sanjay, Aaron Dinovitzer, Vlad Semiga, and Binoy John. PR-214-073510-Z01 FS Fatigue Testing Plain Dents+Dents Interacting with Welds and Metal Loss with Data. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2018. http://dx.doi.org/10.55274/r0011514.
Full textHart, James, Nasir Zulfiqar, and Carl Popelar. L52289 Use of Pipeline Geometry Monitoring to Assess Pipeline Condition. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2008. http://dx.doi.org/10.55274/r0010254.
Full text