Academic literature on the topic 'Deformable models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deformable models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deformable models"
Terzopoulos, Demetri, and Kurt Fleischer. "Deformable models." Visual Computer 4, no. 6 (November 1988): 306–31. http://dx.doi.org/10.1007/bf01908877.
Full textTerzopoulos, Demetri, John Platt, Alan Barr, and Kurt Fleischer. "Elastically deformable models." ACM SIGGRAPH Computer Graphics 21, no. 4 (August 1987): 205–14. http://dx.doi.org/10.1145/37402.37427.
Full textDeCarlo, D., and D. Metaxas. "Blended deformable models." IEEE Transactions on Pattern Analysis and Machine Intelligence 18, no. 4 (April 1996): 443–48. http://dx.doi.org/10.1109/34.491626.
Full textMetaxas, D. N., and I. A. Kakadiaris. "Elastically adaptive deformable models." IEEE Transactions on Pattern Analysis and Machine Intelligence 24, no. 10 (October 2002): 1310–21. http://dx.doi.org/10.1109/tpami.2002.1039203.
Full textGüdükbay, Uğur, and Bülent Özgüç. "Animation of deformable models." Computer-Aided Design 26, no. 12 (December 1994): 868–75. http://dx.doi.org/10.1016/0010-4485(94)90051-5.
Full textJain, Anil K., Yu Zhong, and Marie-Pierre Dubuisson-Jolly. "Deformable template models: A review." Signal Processing 71, no. 2 (December 1998): 109–29. http://dx.doi.org/10.1016/s0165-1684(98)00139-x.
Full textTerzopoulos, Demetri, John Platt, and Kurt Fleischer. "Heating and melting deformable models." Journal of Visualization and Computer Animation 2, no. 2 (April 1991): 68–73. http://dx.doi.org/10.1002/vis.4340020208.
Full textPUJOL, ORIOL, and PETIA RADEVA. "TEXTURE SEGMENTATION BY STATISTICAL DEFORMABLE MODELS." International Journal of Image and Graphics 04, no. 03 (July 2004): 433–52. http://dx.doi.org/10.1142/s021946780400149x.
Full textRougon, Nicolas. "Directional adaptive deformable models for segmentation." Journal of Electronic Imaging 7, no. 1 (January 1, 1998): 231. http://dx.doi.org/10.1117/1.482641.
Full textHirabayashi, Manato, Shinpei Kato, Masato Edahiro, Kazuya Takeda, and Seiichi Mita. "Accelerated Deformable Part Models on GPUs." IEEE Transactions on Parallel and Distributed Systems 27, no. 6 (June 1, 2016): 1589–602. http://dx.doi.org/10.1109/tpds.2015.2453962.
Full textDissertations / Theses on the topic "Deformable models"
Antonakos, Epameinondas. "Robust statistical deformable models." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/56611.
Full textHauth, Michael. "Visual simulation of deformable models." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=97232125X.
Full textChen, Xiao Yu. "Feature matching of deformable models /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?MECH%202008%20CHENX.
Full textHills, Mark. "3D deformable models for face tracking." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442306.
Full textFerryman, James Michael. "Visual surveillance using 3D deformable models." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270279.
Full textCheng, Kun. "Deformable models for adaptive radiotherapy planning." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22893.
Full textXu, Jiaolong. "Domain adaptation of deformable part-based models." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/290266.
Full textLa detección de peatones es crucial para los sistemas de asistencia a la conducción (ADAS). Disponer de un clasificador preciso es fundamental para un detector de peatones basado en visión. Al entrenar un clasificador, se asume que las características de los datos de entrenamiento siguen la misma distribución de probabilidad que las de los datos de prueba. Sin embargo, en la práctica, esta asunción puede no cumplirse debido a diferentes causas. En estos casos, en la comunidad de visión por computador cada vez es más común utilizar técnicas que permiten adaptar los clasificadores existentes de su entorno de entrenamiento (dominio de origen) al nuevo entorno de prueba (dominio de destino). En esta tesis nos centramos en la adaptación de dominio de los detectores de peatones basados en modelos deformables basados en partes (DPMs). Como prueba de concepto, usamos como dominio de origen datos sintéticos (mundo virtual) y adaptamos el detector DPM entrenado en el mundo virtual para funcionar en diferentes escenarios reales. Comenzamos explotando al máximo las capacidades de detección del DPM entrenado en datos del mundo virtual pero, aun así, al aplicarlo a diferentes conjuntos del mundo real, el detector todavía pierde poder de discriminaci ón debido a las diferencias entre el mundo virtual y el real. Es por ello que nos centramos en la adaptación de dominio del DPM. Para comenzar, consideramos un único dominio de origen para adaptarlo a un único dominio de destino mediante dos métodos de aprendizaje por lotes, el A-SSVM y SA-SSVM. Después, lo ampliamos a trabajar con múltiples (sub-)dominios mediante una adaptación progresiva usando una jerarquía adaptativa basada en SSVM (HA-SSVM) en el proceso de optimización. Finalmente, extendimos HA-SSVM para conseguir un detector que se adapte de forma progresiva y sin intervención humana al dominio de destino. Cabe destacar que ninguno de los métodos propuestos en esta tesis requieren visitar los datos del dominio de origen. La evaluación de los resultados, realizadas con el sistema de evaluación de Caltech, muestran que el SA-SSVM mejora ligeramente respecto al A-SSVM y mejora en 15 puntos respecto al detector no adaptado. El modelo jerárquico entrenado mediante el HA-SSVM todavía mejora más los resultados de la adaptación de dominio. Finalmente, el método secuencial de adaptación de domino ha demostrado que puede obtener resultados comparables a la adaptación por lotes pero sin necesidad de etiquetar manualmente ningún ejemplo del dominio de destino. La adaptación de domino aplicada a la detección de peatones es de gran importancia y es un área que se encuentra relativamente sin explorar. Deseamos que esta tesis pueda sentar las bases del trabajo futuro en esta área.
On-board pedestrian detection is crucial for Advanced Driver Assistance Systems (ADAS). An accurate classi cation is fundamental for vision-based pedestrian detection. The underlying assumption for learning classi ers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classi ers. However, in practice, there are di erent reasons that can break this constancy assumption. Accordingly, reusing existing classi ers by adapting them from the previous training environment (source domain) to the new testing one (target domain) is an approach with increasing acceptance in the computer vision community. In this thesis we focus on the domain adaptation of deformable part-based models (DPMs) for pedestrian detection. As a prof of concept, we use a computer graphic based synthetic dataset, i.e. a virtual world, as the source domain, and adapt the virtual-world trained DPM detector to various real-world dataset. We start by exploiting the maximum detection accuracy of the virtual-world trained DPM. Even though, when operating in various real-world datasets, the virtualworld trained detector still su er from accuracy degradation due to the domain gap of virtual and real worlds. We then focus on domain adaptation of DPM. At the rst step, we consider single source and single target domain adaptation and propose two batch learning methods, namely A-SSVM and SA-SSVM. Later, we further consider leveraging multiple target (sub-)domains for progressive domain adaptation and propose a hierarchical adaptive structured SVM (HA-SSVM) for optimization. Finally, we extend HA-SSVM for the challenging online domain adaptation problem, aiming at making the detector to automatically adapt to the target domain online, without any human intervention. All of the proposed methods in this thesis do not require revisiting source domain data. The evaluations are done on the Caltech pedestrian detection benchmark. Results show that SA-SSVM slightly outperforms A-SSVM and avoids accuracy drops as high as 15 points when comparing with a non-adapted detector. The hierarchical model learned by HA-SSVM further boosts the domain adaptation performance. Finally, the online domain adaptation method has demonstrated that it can achieve comparable accuracy to the batch learned models while not requiring manually label target domain examples. Domain adaptation for pedestrian detection is of paramount importance and a relatively unexplored area. We humbly hope the work in this thesis could provide foundations for future work in this area.
Xiang, Guofu. "Automatic 3D facial modelling with deformable models." Thesis, Robert Gordon University, 2012. http://hdl.handle.net/10059/807.
Full textYeo, Si Yong. "Implicit deformable models for biomedical image segmentation." Thesis, Swansea University, 2011. https://cronfa.swan.ac.uk/Record/cronfa42416.
Full textHeap, Anthony James. "Learning deformable shape models for object tracking." Thesis, University of Leeds, 1997. http://etheses.whiterose.ac.uk/1275/.
Full textBooks on the topic "Deformable models"
Suri, Jasjit S., and Aly A. Farag. Deformable Models. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0.
Full textFarag, Aly A., and Jasjit S. Suri. Deformable Models. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68413-0.
Full textMetaxas, Dimitris N. Physics-Based Deformable Models. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6335-8.
Full textCai, Jianping, Feng Lin, and Hock Soon Seah. Graphical Simulation of Deformable Models. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51031-6.
Full textMcInerney, Timothy John. Topologically adaptable deformable models for medical image analysis. Toronto: University of Toronto, Dept. of Computer Science, 1997.
Find full textMcInerney, Timothy John. Finite element techniques for fitting deformable models to 3D data. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Find full textMcInerney, Timothy John. Finite element techniques for fitting deformable models to 3D data. Toronto: University of Toronto, Dept. of Computer Science, 1992.
Find full textWilliams, Christopher K. I. Combining deformable models and neural networks for handpainted digit recognition. Toronto: University of Toronto, Dept. of Computer Science, 1994.
Find full textPhysics-based deformable models: Applications to computer vision, graphics, and medical imaging. Boston: Kluwer Academic, 1997.
Find full textMetaxas, Dimitris N. Physics-Based Deformable Models: Applications to Computer Vision, Graphics and Medical Imaging. Boston, MA: Springer US, 1997.
Find full textBook chapters on the topic "Deformable models"
Suri, Jasjit S., Rodrigo L. S. Silva, Paulo S. S. Rodrigues, Gilson A. Giraldi, Antonio A. F. Oliveira, Edilberto Strauss, and Walter Jiménez. "T-Surfaces Framework For Offset Generation And Semiautomatic 3d Segmentation." In Deformable Models, 1–29. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_1.
Full textFenster, Aaron, Mingyue Ding, and Hanif Ladak. "Deformable Model-Based Segmentation Of The Prostate From Ultrasound Images." In Deformable Models, 325–69. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_10.
Full textZhu, Wanlin, Tianzi Jiang, and Xiaobo Li. "Segmentation Of Brain Mr Images Using J-Divergence Based Active Contour Models." In Deformable Models, 371–91. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_11.
Full textMohamed, Ashraf, and Christos Davatzikos. "Morphometric Analysis Of Normal And Pathologic Brain Structure Via High-Dimensional Shape Transformations." In Deformable Models, 393–445. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_12.
Full textCremers, Daniel, and Mikael Rousson. "Efficient Kernel Density Estimation Of Shape And Intensity Priors For Level Set Segmentation." In Deformable Models, 447–60. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_13.
Full textCasanova, Manuel F., H. Abd El Munim, Aly A. Farag, N. Youssry El-Zehiry, and Rachid Fahmi. "Volumetric Mri Analysis Of Dyslexic Subjects Using A Level Set Framework." In Deformable Models, 461–92. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_14.
Full textTustison, Nicholas J., and Amir A. Amini. "Analysis Of 4-D Cardiac Mr Data With Nurbs Deformable Models: Temporal Fitting Strategy And Nonrigid Registration." In Deformable Models, 493–534. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_15.
Full textFarag, Aly A., Rachid Fahmi, Manuel F. Casanova, Alaa E. Abdel-Hakim, Hossam Abd El-Munim, and Ayman El-Baz. "Robust Neuroimaging-Based Classification Techniques Of Autistic Vs. Typically Developing Brain." In Deformable Models, 535–66. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_16.
Full textDas, Bipul, and Swapna Banerjee. "Parametric Contour Model In Medical Image Segmentation." In Deformable Models, 31–74. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_2.
Full textYang, Lin, and David J. Foran. "Deformable Models And Their Application In Segmentation Of Imaged Pathology Specimens." In Deformable Models, 75–94. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68343-0_3.
Full textConference papers on the topic "Deformable models"
Terzopoulos, Demetri, John Platt, Alan Barr, and Kurt Fleischer. "Elastically deformable models." In the 14th annual conference. New York, New York, USA: ACM Press, 1987. http://dx.doi.org/10.1145/37401.37427.
Full textDeCarlo and Metaxas. "Blended deformable models." In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE Comput. Soc. Press, 1994. http://dx.doi.org/10.1109/cvpr.1994.323883.
Full textGreen, William D. K. "Spline-based deformable models." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Robert A. Melter, Angela Y. Wu, Fred L. Bookstein, and William D. K. Green. SPIE, 1995. http://dx.doi.org/10.1117/12.216421.
Full text"FACIAL EXPRESSION RECOGNITION USING LOG-EUCLIDEAN STATISTICAL SHAPE MODELS." In Special Session on Shape Analysis and Deformable Modeling. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0003867503510359.
Full textTrulls, Eduard, Stavros Tsogkas, Iasonas Kokkinos, Alberto Sanfeliu, and Francesc Moreno-Noguer. "Segmentation-Aware Deformable Part Models." In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014. http://dx.doi.org/10.1109/cvpr.2014.29.
Full textWhitaker, Ross T. "Volumetric deformable models: active blobs." In Visualization in Biomedical Computing 1994, edited by Richard A. Robb. SPIE, 1994. http://dx.doi.org/10.1117/12.185173.
Full textSongsri-in, Kritaphat, George Trigeorgis, and Stefanos Zafeiriou. "Deep and Deformable: Convolutional Mixtures of Deformable Part-Based Models." In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE, 2018. http://dx.doi.org/10.1109/fg.2018.00040.
Full textBoussaid, Haithem, Iasonas Kokkinos, and Nikos Paragios. "Discriminative learning of deformable contour models." In 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014). IEEE, 2014. http://dx.doi.org/10.1109/isbi.2014.6867948.
Full textHuang, Zhuan Q., and Zhuhan Jiang. "Deformable object tracking with statistical models." In 2008 2nd International Conference on Signal Processing and Communication Systems (ICSPCS 2008). IEEE, 2008. http://dx.doi.org/10.1109/icspcs.2008.4813679.
Full textXu, Weiwei, Jun Wang, KangKang Yin, Kun Zhou, Michiel van de Panne, Falai Chen, and Baining Guo. "Joint-aware manipulation of deformable models." In ACM SIGGRAPH 2009 papers. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1576246.1531341.
Full textReports on the topic "Deformable models"
Sethi, Saratendu, and Stan Sclaroff. Combinations of Non-Rigid Deformable Appearance Models. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada366984.
Full textMartinez, Mario J., and Charles Michael Stone. Considerations for developing models of multiphase flow in deformable porous media. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/940539.
Full textLesieutre, George A., and Jeffery L. Kauffman. Damping Models for Shear-Deformable Beam with Applications to Spacecraft Wiring Harness. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada613035.
Full textWray, W. O., and T. Aida. Deformable human body model development. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/672307.
Full textBodie, Mark, Michael Parker, Alexander Stott, and Bruce Elder. Snow-covered obstacles’ effect on vehicle mobility. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38839.
Full textLiu, Lifeng, and Stan Sclaroff. Region Segmentation via Deformable Model-Guided Split and Merge. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada451541.
Full textLiu, Lifeng, and Stan Sclaroff. Deformable Shape Detection and Description via Model-Based Region Grouping. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada367013.
Full textWeston, A. Model for high rate gas flows in deformable and reactive porous beds. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/6217714.
Full textReid, Alexander. Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada573959.
Full text