Academic literature on the topic 'Defects, silicon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Defects, silicon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Defects, silicon"
Zhang, Dingyou, Sarasvathi Thangaraju, Daniel Smith, Himani Kamineni, Christian Klewer, Mark Scholefield, Ming Lei, et al. "A New Type of TSV Defect Caused by BMD in Silicon Substrate." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, DPC (January 1, 2014): 001506–22. http://dx.doi.org/10.4071/2014dpc-wp14.
Full textIvanova, Ekaterina V., and M. V. Zamoryanskaya. "Investigation of Point Defects Modification in Silicon Dioxide by Cathodoluminescence." Solid State Phenomena 205-206 (October 2013): 457–61. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.457.
Full textTersoff, J. "Carbon defects and defect reactions in silicon." Physical Review Letters 64, no. 15 (April 9, 1990): 1757–60. http://dx.doi.org/10.1103/physrevlett.64.1757.
Full textFowler, W. Beall, and Arthur H. Edwards. "Defects and defect processes in silicon dioxide." Radiation Effects and Defects in Solids 146, no. 1-4 (October 1998): 11–25. http://dx.doi.org/10.1080/10420159808220277.
Full textHens, Philip, Julian Müller, Günter Wagner, Rickard Liljedahl, Erdmann Spiecker, and Mikael Syväjärvi. "Defect Generation and Annihilation in 3C-SiC-(001) Homoepitaxial Growth by Sublimation." Materials Science Forum 740-742 (January 2013): 283–86. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.283.
Full textMacdonald, Daniel, Prakash N. K. Deenapanray, Andres Cuevas, S. Diez, and Stephan W. Glunz. "The Role of Silicon Interstitials in the Formation of Boron-Oxygen Defects in Crystalline Silicon." Solid State Phenomena 108-109 (December 2005): 497–502. http://dx.doi.org/10.4028/www.scientific.net/ssp.108-109.497.
Full textSchriefl, Andreas J., Sokratis Sgouridis, Werner Schustereder, and Werner Puff. "Defect Investigations via Positron Annihilation Spectroscopy on Proton Implanted Silicon." Solid State Phenomena 178-179 (August 2011): 319–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.319.
Full textVlaskina, S. I. "Nanostructures in lightly doped silicon carbide crystals with polytypic defects." Semiconductor Physics Quantum Electronics and Optoelectronics 17, no. 2 (June 30, 2014): 155–59. http://dx.doi.org/10.15407/spqeo17.02.155.
Full textGali, Adam, T. Hornos, M. Bockstedte, and Thomas Frauenheim. "Point Defects and their Aggregation in Silicon Carbide." Materials Science Forum 556-557 (September 2007): 439–44. http://dx.doi.org/10.4028/www.scientific.net/msf.556-557.439.
Full textGali, Adam. "Excitation Properties of Silicon Vacancy in Silicon Carbide." Materials Science Forum 717-720 (May 2012): 255–58. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.255.
Full textDissertations / Theses on the topic "Defects, silicon"
Pellegrino, Paolo. "Point Defects in Silicon and Silicon-Carbide." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3133.
Full textCameron, Adrian Ewan. "Evolution of defects in amorphized silicon." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014921.
Full textGabriel, Margaret A. "Electronic defects in amorphous silicon dioxide /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8553.
Full textNiewelt, Tim [Verfasser], Eicke [Akademischer Betreuer] Weber, and Stefan [Akademischer Betreuer] Glunz. "Lifetime-limiting defects in monocrystalline silicon." Freiburg : Universität, 2017. http://d-nb.info/1178321479/34.
Full textAdey, James. "Boron related point defects in silicon." Thesis, University of Exeter, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407270.
Full textGower, Joanne Elizabeth. "Photoluminescence of point defects in silicon." Thesis, King's College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300758.
Full textKortegaard, Nielsen Hanne. "Capacitance transient measurements on point defects in silicon and silicol carbide." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211.
Full textElectrically active point defects in semiconductor materials are important because they strongly affect material properties like effective doping concentration and charge carrier lifetimes. This thesis presents results on point defects introduced by ion implantation in silicon and silicon carbide. The defects have mainly been studied by deep level transient spectroscopy (DLTS) which is a quantitative, electrical characterization method highly suitable for point defect studies. The method is based on measurements of capacitance transients and both standard DLTS and new applications of the technique have been used.
In silicon, a fundamental understanding of diffusion phenomena, like room-temperature migration of point defects and transient enhanced diffusion (TED), is still incomplete. This thesis presents new results which brings this understanding a step closer. In the implantation-based experimental method used to measure point defect migration at room temperature, it has been difficult to separate the effects of defect migration and ion channeling. For various reasons, the effect of channeling has so far been disregarded in this type of experiments. Here, a very simple method to assess the amount of channeling is presented, and it is shown that channeling dominates in our experiments. It is therefore recommended that this simple test for channeling is included in all such experiments. This thesis also contains a detailed experimental study on the defect distributions of vacancy and interstitial related damage in ion implanted silicon. Experiments show that interstitial related damage is positioned deeper (0.4 um or more) than vacancy related damage. A physical model to explain this is presented. This study is important to the future modeling of transient enhanced diffusion.
Furthermore, the point defect evolution in low-fluence implanted 4H-SiC is investigated, and a large number of new defect levels has been observed. Many of these levels change or anneal out at temperatures below 300 C, which is not in accordance with the general belief that point defect diffusion in SiC requires high temperatures. This thesis also includes an extensive study on a metastable defect which we have observed for the first time and labeled the M-center. The defect is characterized with respect to DLTS signatures, reconfiguration barriers, kinetics and temperature interval for annealing, carrier capture cross sections, and charge state identification. A detailed configuration diagram for the M-center is presented.
Åberg, Denny. "Capacitance Spectroscopy of Point Defects in Silicon and Silicon Carbide." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3205.
Full textRurali, Riccardo. "Theoretical studies of defects in silicon carbide." Doctoral thesis, Universitat Autònoma de Barcelona, 2003. http://hdl.handle.net/10803/3355.
Full textEl proceso de transient enhanced diffusion del boro ha sido estudiado y se ha propuesto una descripción microscópica del mismo: el kick-out realizado por un auto-intersticial de silicio cercano ha resultado ser el responsable de la metaestabilidad del de otra forma altamente estable boro sustitucional.
El mecanismo de difusión de la vacante de carbono y de silicio ha sido discutido y caracterizado; se ha demostrado que la vacante de carbono migra solamente a través de un mecanismo de difusión a los segundos vecinos, mientras que la vacante de silicio es metaestable con respecto a la formación del par vacante-antisito y entonces el camino de difusión será mediado por la formación de dicha configuración.
El dopaje de tipo n en las condiciones de alta dosis obtenidas con nitrógeno y/o fósforo ha sido estudiado; se ha mostrado que la formación de complejos de nitrógenos eléctricamente inactivos hace que el fósforo sea la elección mas adecuada para obtener dopaje de tipo n bajo estas condiciones.
Electronic structure calculations have been used to study the structure, the diffusivity and the electrical activity of point defects in silicon carbide. Particularly, p-type and n-type impurities have been considered, namely boron, nitrogen and phosphorus, together with intrinsic defects, specifically vacancies of the host crystal.
The transient enhanced diffusion of boron have been approached and a microscopic picture of this process have been proposed; the kick-out operated by a nearby silicon self-interstitial have turned out to be the responsible of the induced metastability of the otherwise highly stable boron substitutional.
The diffusion mechanism of the carbon and the silicon vacancy have been discussed and characterised; it has been shown that the carbon vacancy can only migrate by means of a second neighbour diffusion mechanisms, while the silicon vacancy is metastable with respect to the formation of a vacancy-antisite pair, and therefore the diffusion path will be mediated by the formation of such configuration.
The n-type high-dose doping regime obtained with nitrogen and / or phosphorus have been studied; it has been demonstrated that the formation of electrically inactive nitrogen aggregate in the high-dose regime makes phosphorus the preferred choice to achieve n-type doping under such conditions.
Storasta, Liutauras. "Electrically active defects in 4H silicon carbide /." Linköping : Univ, 2003. http://www.bibl.liu.se/liupubl/disp/disp2003/tek801s.pdf.
Full textBooks on the topic "Defects, silicon"
Steger, Michael. Transition-Metal Defects in Silicon. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35079-5.
Full textSymposium, on Defects in Silicon (2nd 1991 Washington D. C. ). Proceedings of the Second Symposium on Defects in Silicon: Defects in silicon II. Pennington, NJ (10 S. Main St., Pennington 08534-2896): Electrochemical Society, 1991.
Find full textYoshida, Yutaka, and Guido Langouche, eds. Defects and Impurities in Silicon Materials. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55800-2.
Full textGraff, Klaus. Metal impurities in silicon device fabrication. Berlin: Springer-Verlag, 1995.
Find full textSymposium A on Defect in Silicon, Hydrogen of the E-MRS Spring Conference (1998 Strasbourg, France). Defects in silicon, hydrogen: Proceedings of Symposium A on Defects in Silicon, Hydrogen of the E-MRS Spring Conference, Strasbourg, France, 16-19 June, 1998. Amsterdam: Elsevier, 1999.
Find full textInternational Symposium on High Purity Silicon (9th 2006 Cancún, Mexico). High purity silicon 9. Edited by Claeys Cor L, Electrochemical Society. Electronics and Photonics Division., and Electrochemical Society Meeting. Pennington, NJ: Electrochemical Society, 2006.
Find full textInternational, Symposium on High Purity Silicon (9th 2006 Cancún Mexico). High purity silicon 9. Pennington, NJ: Electrochemical Society, 2006.
Find full textGraff, Klaus. Metal impurities in silicon-device fabrication. Berlin: Springer-Verlag, 1995.
Find full textPichler, Peter. Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0597-9.
Full textBook chapters on the topic "Defects, silicon"
Zulehner, W. "Defects in CZ Silicon." In Semiconductor Silicon, 127–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74723-6_10.
Full textKrimmel, E. F. "Defects, Diffusion, Ion Implantation, Recrystallization, and Dielectrics." In Silicon, 207–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09897-4_11.
Full textSchlüter, M. A. "Theory of Defects in Crystalline Silicon." In Semiconductor Silicon, 112–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74723-6_9.
Full textBechstedt, F., J. Furthmüller, U. Grossner, and C. Raffy. "Zero- and Two-Dimensional Native Defects." In Silicon Carbide, 3–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18870-1_1.
Full textKawasuso, A., M. Weidner, F. Redmann, T. Frank, P. Sperr, G. Kögel, M. Yoshikawa, et al. "Vacancy Defects Detected by Positron Annihilation." In Silicon Carbide, 563–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18870-1_23.
Full textAmmon, Wilfried. "Defects in Monocrystalline Silicon." In Springer Handbook of Electronic and Photonic Materials, 101–20. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29185-7_5.
Full textvon Ammon, Wilfried, Andreas Sattler, and Gudrun Kissinger. "Defects in Monocrystalline Silicon." In Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_5.
Full textInoue, N., K. Wada, and J. Osaka. "Oxygen in Silicon." In Defects and Properties of Semiconductors, 197–218. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4766-5_13.
Full textCerofolini, Gianfranco, and Laura Meda. "Equilibrium Defects." In Physical Chemistry of, in and on Silicon, 15–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73504-2_3.
Full textSon, N. T., Mt Wagner, C. G. Hemmingsson, L. Storasta, B. Magnusson, W. M. Chen, S. Greulich-Weber, J. M. Spaeth, and E. Janzén. "Electronic Structure of Deep Defects in SiC." In Silicon Carbide, 461–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18870-1_19.
Full textConference papers on the topic "Defects, silicon"
McMahon, T. J. "Defect equilibration in device quality a-Si:H and its relation to light-induced defects." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41018.
Full textFano, Vanesa, Alona Otaegi, Nekane Azkona, Eneko Cereceda, Lourdes Pérez, Pedro Rodríguez, Federico Recart, José Rubén Gutiérrez, and Juan Carlos Jimeno. "Defects detection in p-n junction isolation by electroluminescence." In SILICONPV 2018, THE 8TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS. Author(s), 2018. http://dx.doi.org/10.1063/1.5049245.
Full textSmyntyna, V., O. Kulinich, M. Glauberman, G. Chemeresuk, I. Yatsunskiy, and O. Sviridova. "Influence of Initial Silicon Defects on Processes of the Dioxide Silicon Defect Formation." In 2006 16th International Crimean Microwave and Telecommunication Technology. IEEE, 2006. http://dx.doi.org/10.1109/crmico.2006.256126.
Full textJellett, W., C. Zhang, H. Jin, P. J. Smith, and K. J. Weber. "Boron emitters: Defects at the silicon - silicon dioxide interface." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922847.
Full textLaVan, David A., B. L. Boyce, and T. E. Buchheit. "Size and Frequency of Defects in Silicon MEMS." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32393.
Full textSantos, P. V., W. B. Jackson, and R. A. Street. "Saturation of light-induced defects in a-Si:H." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41014.
Full textSchubert, Martin C., Holger Habenicht, and Wilhelm Warta. "Imaging of metastable defects in silicon." In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6185868.
Full textFortmann, C. M., and J. C. Tu. "Defects in amorphous silicon germanium alloys." In Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105675.
Full textLu, A. J. "Point defects in the silicon nanowire." In Eighth International Conference on Thin Film Physics and Applications (TFPA13), edited by Junhao Chu and Chunrui Wang. SPIE, 2013. http://dx.doi.org/10.1117/12.2052883.
Full textShirai, Koun, Ikutaro Hamada, and Hiroshi Katayama-Yoshida. "Dynamics of hydrogen in silicon." In INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS 2013: Proceedings of the 27th International Conference on Defects in Semiconductors, ICDS-2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865607.
Full textReports on the topic "Defects, silicon"
McHugo, S. A., A. C. Thompson, and H. Hieslmair. Interactions of structural defects with metallic impurities in multicrystalline silicon. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603693.
Full textMcHugo, S. A., and M. Imaizumi. Release of impurities from structural defects in polycrystalline silicon solar cells. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/515591.
Full textPatel, Jamshed R. Diffuse X-ray Streaks from Defects and Surface Features in Boron Implanted Silicon. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/10516.
Full textSopori, Bhushan L. Second Workshop: Role of Point Defects/Defect Complexes in Silicon Device Fabrication; Abstracts of Workshop Held 24-26 August 1992, Breckenridge, Colorado. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6909897.
Full textSopori, B. L., and T. Y. Tan. Role of Point Defects and Defect Complexes in Silicon Device Processing: Summary Report and Papers of the Second Workshop, 24-26 August 1992, Breckenridge, Colorado. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10179240.
Full textEstreicher, S. K. Research in Hydrogen Passivation of Defects and Impurities in Silicon: Final Report, 10 February 2000--10 March 2003. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/15004721.
Full textAshok, S. Research in Hydrogen Passivation of Defects and Impurities in Silicon: Final Report, 2 May 2000-2 July 2003. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/15011711.
Full textSchiff, E. A., H. Antoniadis, J. K. Lee, and Q. Wang. Research on defects and transport in amorphous silicon-based semiconductors. Annual subcontract report, 20 February 1991--19 February 1992. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10137883.
Full textAshok, S. Research in Hydrogen Passivation of Defects and Impurities in Silicon: Final Subcontract Report, 2 May 2000--2 July 2003. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/15007607.
Full textSchiff, E. A., H. Antoniadis, J. K. Lee, and Q. Wang. Research on Defects and Transport in Amorphous Silicon-Based Semiconductors, Annual Subcontract Report, 20 February 1991 - 19 February 1992. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5663038.
Full text