Dissertations / Theses on the topic 'Defects classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Defects classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bengali, Umme Salma Yusuf. "Pixel classification of iris transillumination defects." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/3260.
Full textWang, Hui. "Software Defects Classification Prediction Based On Mining Software Repository." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-216554.
Full textWilson, Duncan John. "Classification of defects using uncertainty in industrial web inspection." Thesis, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286894.
Full textBalakrishnan, Harinarayanan. "FDICS : a vision-based system for identification and classification of fabric defects." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/8465.
Full textAllanqawi, Khaled Kh S. Kh. "A framework for the classification and detection of design defects and software quality assurance." Thesis, Kingston University, 2015. http://eprints.kingston.ac.uk/34534/.
Full textBond, Brian Jr. "Characterization of Wood Features Using Color, Shape, and Density Parameters." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30629.
Full textPh. D.
Nouri, Arash. "Correlation-Based Detection and Classification of Rail Wheel Defects using Air-coupled Ultrasonic Acoustic Emissions." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/78139.
Full textMaster of Science
Niewalda, Tobias. "Deep Learning Based Classification of Rail Defects Using On-board Monitoring in the Stockholm Underground." Thesis, KTH, Spårfordon, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273576.
Full textSquats uppkommer på rälsytor på grund av rullkontaktutmattning och kan ställa till stora problem om de inte upptäcks i tid. Att upptäcka fel i ett tidigt skede kan minska underhållskostnaderna. Syftet med det här examensarbetet är att studera om man med hjälp av ett neuralt nätverk kan detektera så kallade räls-squats med hjälp ett mätsystem som heter Quiet Track Measurement System (QTMS). Mätsystemet är installerat hos sju tåg på den gröna linjen i Stockholms tunnelbana. Systemet kan användas för att övervaka rälsslitage och kan därför effektivisera underhållet. Den här rapporten presenterar ett artificiellt neuralt nätverk för att kontinuerligt kunna analysera mätdata. Mätdata består av vertikal boggiacceleration och ljudmätningar, båda samplas med frekvensen 22 kHz.Frekvensdomänrepresentationen av uppmätta data i form av spektraltätheten i kombination med flerskikts- och helt anslutna neurala nätverk (FNN) visade sig vara lovande för korrekta förutsägelser. övervakad inlärning tillämpades enligt the one-verus-all principen, dvs antingen har man squats eller så har man inte squats. En artificiell neuron-modell med två dolda lager valdes till slut för att komplettera existerande mätsystem. Användningen av ett brett frekvens-område från nästan DC upp till 7 kHz möjliggör god förutsägelse med bara låga förutsägelser av falska squats. När man sammanlänkar alla sex mätkanaler till en enskild klassificeringsinput kan man uppnå en noggrannhet över 96%, som högst kan man uppnå 99.98%. Nätverket visade också hög stabilitet trots ganska starka parametervariationer och en obalans mellan tillgängliga data för de två klasserna.Eftersom bara några få underhållsprotokoll fanns tillgängliga krävs mer utvärdering, men korrekt identifiering av felklassificerade squats indikerar att den verkliga noggrannheten kan bli ännu bättre. Detta ger också förutsättningar för att snabbare kunna prediktera squats.
Partyka-Jankowska, Ewa, Bogdan Sepiol, Fritz Gröstlinger, Gero Vogl, Józef Korecki, Tomasz Ślęzak, Marcin Zając, and Aleksandr Chumakov. "Dynamic of defects in an iron monolayer on W (110)." Diffusion fundamentals 11 (2009) 51, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A12963.
Full textRust, Stephanus Marthinus. "Classification of timber from Pinus radiata trees exposed to forest fires." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/98097.
Full textENGLISH ABSTRACT: This study aimed to classify wood from trees that were exposed to forest fires with regards to their end use. Exposure to high temperatures over time is known to degrade wood in various ways. This degradation could limit the end use by altering mechanical, chemical and physical properties, leading to difficulty in processing or failing to meet required specifications for various grades. In this study wood from Pinus radiata trees that were exposed to forest fires of different levels of heat intensity was analysed with regards to its anatomical and physical changes. Trees were visually classified into three classes of burn severity. Moisture content measurements were taken from 135 standing trees, divided among the three classes. 30 trees, 10 from each of the three classes, were sampled and used for CT analysis. Samples were taken to include growth from before and after the fire. Two samples were taken from each tree, one from the charred and one from the uncharred side. The CT data was analysed and used to measure properties like growth ring width, cell wall thickness, lumen diameter and cell wall density. The data was used to compare properties from the charred and uncharred sides within a given year, as well as compare properties between years. The study showed that there were significant differences in the MC between the burnt and unburnt sides of trees from classes 2 and 3. The difference between the MC measurements on the burnt sides of three classes differed significantly from each other. Lightness measurements were taken on samples from classes 2 and 3. These samples showed no significant difference between the burnt and unburnt sides for either of the two classes. The samples from the less exposed class were lighter, but not significantly so. The macroscopic wood density was determined using core samples. A decrease in wood density was observed with an increase in fire exposure. The mean densities for all three classes however still fulfilled the requirements for structural timber set by the SABS. Growth ring width, cell wall thickness and lumen diameter analysis gave varied results, with some cases showing a decline in properties while others were seemingly unaffected. For many of the outcomes of this study, results found by previous studies could not be reproduced.
AFRIKAANSE OPSOMMING: Hierdie studie het gepoog om bome wat aan plantasiebrande blootgestel is volgens hul eindgebruik te klassifiseer. Dit is bekend dat blootstelling aan hoë tempreature hout in vele maniere afbreuk. Hierdie afbreuking kan die eindgebruik van die hout beperk deur die meganiese, fisiese en chemiese eienskappe sodanig te verander dat dit kan lei tot probleme met verwerking of ongeskiktheid vir sterktegrade. In hierdie studie is Pinus radiata bome wat aan plantasiebrande van verskillende grade blootgestel is ondersoek in terme van hul fisiese en anatomiese veranderinge. Bome is visueel in drie klasse van verskillende brandskade gegroepeer. Voglesings is op 135 staande bome, verdeel tussen die drie klasse, geneem. Monsters is van 30 bome, 10 uit elke klas, geneem vir CT analiese. Monsters is so geneem dat dit groei van voor en na die brand ingesluit het. Daar is twee monsters van elke boom geneem, een van die gebrande en een van die ongebrande kant. Die CT data is geanalieseer en gebruik om eienskappe soos jaarringwydte, selwanddikte, lumendiameter en selwand digtheid te meet. Die data is gebruik om eienskappe tussen die gebrande en ongebrande kante, sowel as tussen jare te vergelyk. Die studie het gewys dat daar noemenswaardige verskille is tussen die voginhoud van die gebrande en ongebrande kante van bome uit klasse 2 en 3. Die voginhoud van die gebrande kante van al drie klasse verkil ook noemenswaardig van mekaar. Ligtheidmetings is gedoen op monsters van klasse 2 en 3. Die monsters het nie ‘n noemenswaardige verskil tussen die gebrande en ongebrande kante getoon nie. Alhoewel die klas 2 monsters ligter vertoon het as die klas 3 monsters, was die verskil nie betekenisvol nie. Houtdigtheid is bepaal deur fisiese metings op die monsters wat vir die CT skandering gebruik is te doen. ‘n Daling in digtheid met ‘n toename in blootstelling aan die brand het duidelik na vore gekom. Die digtheid is egter nog hoog genoeg om aan die vereistes vir strukturele hout te voldoen, soos die die SABS bepaal. Jaarringwydte, selwanddikte en lumen diameter het wisselende resultate opgelewer, met sommige gevalle wat ‘n afname in eienskappe wys en ander wat ooglopend onveranderd was. Vir vele van hierdie uitkoms kon die resultate van vorige studies nie bevestig word nie.
Ghaffarian, Niasar Mohamad. "Partial Discharge Signatures of Defects in Insulation Systems Consisting of Oil and Oil-impregnated Paper." Licentiate thesis, KTH, Elektroteknisk teori och konstruktion, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105785.
Full textQC 20121129
Schmidt, Florian, Stefan Müller, Wenckstern Holger von, Gabriele Benndorf, Rainer Pickenhain, and Marius Grundmann. "Impact of strain on electronic defects in (Mg,Zn)O thin films." American Institute of Physics, 2014. https://ul.qucosa.de/id/qucosa%3A31192.
Full textFlorio, Claudia, R. Aveta, G. Calvanese, and B. Naviglio. "Advanced diagnostics and innovative solutions for leather defects - 78: the problem of yellowing." Verein für Gerberei-Chemie und -Technik e. V, 2019. https://slub.qucosa.de/id/qucosa%3A34231.
Full textBastin, Dirk. "Reassignment of oxygen-related defects in CdTe and CdSe." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-172319.
Full textRönnqvist, Johannes, and Johannes Sjölund. "A Deep Learning Approach to Detection and Classification of Small Defects on Painted Surfaces : A Study Made on Volvo GTO, Umeå." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160194.
Full textI den här rapporten visar vi att modeller av typen convolutional neural networks, tillsammans med phase-measuring deflektometri, kan hitta och klassificera defekter på målade ytor med hög precision, även jämfört med erfarna operatörer. Vidare visar vi vilka databehandlingsåtgärder som ökar modellernas prestanda. Vi ser att standardisering ökar modellernas klassificeringsförmåga. Vi visar att städning av data genom ommärkning och borttagning av felaktiga bilder förbättrar klassificeringsförmågan och särskilt modellernas förmåga att särskilja mellan olika typer av defekter. Vi visar att översampling kan vara en metod för att förbättra precisionen genom att öka och balansera datamängden genom att förändra och duplicera befintliga observationer. Slutligen finner vi att kombinera flera bilder med olika mönster ökar modellernas klassificeringsförmåga väsentligt. Vårt föreslagna tillvägagångssätt har visat sig fungera bra i realtid inom en produktionsmiljö. En automatiserad kvalitetskontroll av de målade ytorna på Volvos lastbilshytter kan ge stora fördelar med avseende på kostnad och kvalitet. Den automatiska kvalitetskontrollen kan ge data för en rotorsaksanalys och ett snabbt och effektivt alarmsystem. Detta kan väsentligt effektivisera produktionen och samtidigt minska kostnader och fel i produktionen. Korrigeringar och optimering av processerna kan göras i tidigare skeden och med högre precision än idag.
Rashetnikava, Alena, Alexander Germanov, Irina Valikova, and Andrei Nazarov. "Molecular dynamics simulation of atomic structure in the vicinity of point defects in FCC and BCC metals." Diffusion fundamentals 11 (2009) 52, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14014.
Full textReitemeier, Bernd, Michael Unger, Gert Richter, Barbara Ender, Ursula Range, and Jutta Markwardt. "Clinical Test of Masticatory Efficacy in Patients with Maxillary/Mandibular Defects Due to Tumors." Karger, 2012. https://tud.qucosa.de/id/qucosa%3A27602.
Full textHintergrund: Ziel der Untersuchung war die Prüfung der Kaueffektivität bei Patienten, die mit Resektionsprothesen nach Tumorentfernung im Kieferbereich versorgt worden waren. Diese Patienten klagten über eine Einschränkung der mastikatorischen Funktion. Patienten und Methoden: Unter klinisch xperimentellen Bedingungen erfolgte der Vergleich von 3 Patientengruppen. Unter standardisierten Bedingungen zerkleinerten die Patienten einheitliches Kaugut. Zur Bewertung der Kaueffektivität wurde ein Siebverfahren eingesetzt. Die Auswertung der ermittelten Partikelgrößen und Partikelmassen erfolgte computergestützt. Ergebnisse: Die Ergebnisse zeigten, dass im Vergleich der 3 Gruppen die Kaueffektivität der Patienten mit Resektionsprothesen am geringsten war. Die Zahl der vorhandenen Stützzonen des Restgebisses und die Defektlokalisation wurden als bedeutsame Einflussfaktoren ermittelt. Die Erfassung der Ernährungsgewohnheiten aller Patienten erfolgte mittels eines standardisierten Ernährungsfragebogens. Diese Daten wurden mit der zugehörigen Software der Deutschen Gesellschaft für Ernährung ausgewertet. Bei den Patienten mit Resektionsprothesen zeigte sich, dass diese auf Nahrungsmittel ausweichen, die kein Kauen erfordern. Schlussfolgerungen: Es wurde eine Ernährungsrichtlinie für Patienten mit Resektionsprothesen abgeleitet, die zum kostenfreien Herunterladen im Internet zur Verfügung steht.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Kutsche, Kerstin, Walter Werner, Oliver Bartsch, der Wense Axel von, Peter Meinecke, and Andreas Gal. "Microphthalmia with linear skin defects syndrome (MLS): a male with a mosaic paracentric inversion of Xp." Karger, 2002. https://tud.qucosa.de/id/qucosa%3A27747.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Bernhardt, Anne, Birgit Paul, and Michael Gelinsky. "Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234963.
Full textSomerson, Jeremy. "Mesenchymal Stem Cell Constructs for Repair of Focal Cartilage Defects in an Ovine Model." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-214417.
Full textBowes, David Hutchinson. "Factors affecting the performance of trainable models for software defect prediction." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/10978.
Full textMarkwardt, Jutta, Günther Pfeifer, Uwe Eckelt, and Bernd Reitemeier. "Analysis of Complications after Reconstruction of Bone Defects Involving Complete Mandibular Resection Using Finite Element Modelling." Karger, 2007. https://tud.qucosa.de/id/qucosa%3A27607.
Full textHintergrund: In einer retrospektiven Studie wurden Risikofaktoren für Komplikationen nach Überbrückung von Unterkieferdefekten mit Rekonstruktionsplatten geprüft. Insbesondere die Lockerungsvorgänge des Schrauben- Platten-Unterkiefer-Verbundes sollten mit einer Finite- Elemente-Modellierung analysiert werden, um in Zukunft eine Reduzierung der Plattenkomplikationen erreichen zu können. Patienten und Methoden: Es wurden 60 Patienten untersucht, welche im Zeitraum von 10 Jahren im Rahmen von Tumoroperationen mit Rekonstruktionsplatten versorgt wurden. Das Problem der Lockerung der Plattenschrauben wurde zusätzlich mittels einer Finite-Elemente-Studie überprüft und ein Modell für den Lockerungsvorgang erarbeitet. Ergebnisse: Die Nachuntersuchungen ergaben, dass bei 26 Patienten die Platte wegen Komplikationen vorzeitig entfernt werden musste. Die Komplikationen traten als orale und extraorale Plattenfreilage, als Schraubenlockerung ohne oder mit Plattendislokationen und als Plattenbrüche auf. Dabei konnte festgestellt werden, dass bestehende Stützzonen des körpereigenen Restgebisses, die Größe des Unterkieferdefektes und dessen Mittellinienüberschreitung Risikofaktoren für Plattenkomplikationen darstellen. Anhand der Finite-Elemente-Modellierung wurde eine veränderte Schraubenanordnung abgeleitet. Daraus resultiert eine neue Form der Resektionsplatte. Schlussfolgerungen: Durch die Verschiebung der Schraubenlöcher aus der Längsachse der Platte kann der Übergang von der Zugbelastung zur Drehmomentbelastung der Schrauben im Schrauben-Platten-Knochen-Verbund der Platte minimiert werden. Dadurch werden Schraubenlockerungen als Komplikationen wesentlich seltener auftreten.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Di, Pietro Riccardo, Tim Erdmann, Naixiang Wang, Xuhai Liu, David Gräfe, Johannes Lenz, Josef Brandt, et al. "The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyldiketopyrrolopyrrole- thieno[3,2-b]thiophene copolymers." Royal Society of Chemistry, 2016. https://tud.qucosa.de/id/qucosa%3A36273.
Full textKaden, Thomas. "Temperatur- und injektionsabhängige Photospannungsmessungen zur Defektcharakterisierung in kristallinem Silizium." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-150612.
Full textWilhelm, Maximilian Felix, Uwe Füssel, Thomas Richter, Matthias Riemer, and Martin Foerster. "Analysis of the shear-out failure mode for CFRP connections joined by forming." Sage, 2015. https://tud.qucosa.de/id/qucosa%3A35782.
Full textMüller, Rainer, Andreas Höhlein, Annette Wolf, Jutta Markwardt, Matthias C. Schulz, Ursula Range, and Bernd Reitemeier. "Evaluation of Selected Speech Parameters after Prosthesis Supply in Patients with Maxillary or Mandibular Defects." Karger, 2013. https://tud.qucosa.de/id/qucosa%3A71635.
Full textZobelli, Alberto. "Electron beam generation and structure of defects in carbon and boron nitride nanotubes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1197988167199-13274.
Full textBenda, Jan. "Klasifikace vad." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442537.
Full textBuchwald, Rajko. "Optoelektrische Magnetfelduntersuchungen an Solarsilizium." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2010. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-39445.
Full textWong, Boon Kwei. "Automatic surface defect recognition and classification." Thesis, University of Sunderland, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283762.
Full textJohnson, Jay Tillay. "Defect and thickness inspection system for cast thin films using machine vision and full-field transmission densitometry." Thesis, Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37234.
Full textNgendangenzwa, Blaise. "Defect detection and classification on painted specular surfaces." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-146063.
Full textVolvokoncernens hyttfabrik i Umeå är en av Norrlands största verkstadsindustrier.Hyttfabriken tillverkar bara hytter för lastbilar och tillhör en av världens modernaste produktionsanläggningar. Trots ett hög automatiserat och datoriserat system bland många processer så är kvalitetsinspektionen av målade hytter fortfarande utförd manuellt. En smart och automatiserad kvalitetskontroll kan leda till lägre kostnader, högre kvalitet samt högre produktions effektivitet. Den här studien är ett steg framåt mot en automatiserad kvalitetskontroll. Två slagsproblem undersöktes närmare i den här studien nämligen defekt inspektion och defekt klassificering. Dessa problem åtgärdades genom att förse fyra statistiskametoder, support vector machine, random forests, k-nearest neighbors och neuralnetworks, med extraherade HOG egenskaper från tagna bilder. Resultaten visade att support vector machine och random forests presterade bättre än dess konkurrenter i förhållande till förmågan att både inspektera och klassificera defekter.
Janošík, Zdeněk. "Klasifikace detekovaných vad." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221300.
Full textRønsted, Nina. "Towards a natural classification of Plantago : chemical and molecular systematics /." Cph. : Royal Danish School of Pharmacy, Department of Medicinal Chemistry, 2002. http://www.dfh.dk/phd/defences/Nina%20Ronsted.html.
Full textYang, Xuezhi, and 楊學志. "Discriminative fabric defect detection and classification using adaptive wavelet." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29913408.
Full textTurcu, Mircea Cassian. "Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys." Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A24342.
Full textHuang, Hsu-Yi, and 黃旭儀. "Automatic Classification of Color Filter Defects by Data Mining." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/03004494570636724713.
Full text中原大學
資訊工程研究所
101
Nowadays, life cycles of electronic products, such as televisions, tablet computers, and smart phones, have become shorter and shorter, due to the renewed and fast developed information technologies. Therefore, it is important to control the productivity and quality of these products. The industry of TFT LCD plays an important role in the supply chain of these IT products. Therefore, it is a challenge to keep high productivity and high quality of TFT LCD for the flat display industry. In the quality control process, the last checking of color filter (CF) of TFT LCD are still mainly performed manually. However, there are uncertain factors in the manual checking process, so it is needed to be replaced by an automatic checking process. In this research, we developed a method of automatic defect classification of CF by image processing and data mining techniques. In the stage of image processing, we processed the transparent-light images and reflective-light images, detecting the defect areas, extracting the image features, and then formed a feature vector of the defect. In the stage of automatic classification, based on data mining techniques, we discovered the feature vectors of the 16 defect classes from training images, then we calculated the similarity of the feature vectors of testing images to get the results of classification. Finally, we evaluated the method from the experiment results by calculating the precision and recall. The experiment results indicate that our method has average high precision and high recall.
Wu, Ching-Ming, and 吳璟旻. "A neural-network approach for wafer defects pattern classification." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/44586708557044604231.
Full text國立清華大學
工業工程與工程管理學系
93
Nowadays, the procedures of semiconductor manufacturing have become more and more sophisticated. Though highly automated facilities are used to process the complex manufacturing steps in the near particle free environment, the yield loss is still unavoidable. Manufacturers must develop a method that enables them to improve yield. Recognizing the existence of a systematic defect provides a clue to identifying the equipment or process abnormality responsible for the defect. However, the process of defect classification is time-consuming, monotonous and costly and causes fatigue and eye-strain, which in turn cause errors in classification. For these reasons, this research intends to propose a two-phases defect pattern recognition system. The first phase is to use the masks and thresholds to eliminate the wafers with random defects and identify the existence of the systematic defects. At the same time, the features extracted from systematic defects are the inputs for constructing the neural network in the second phase. After training three supervised learning neural networks, this research compares these two neural networks by MSE of training and testing samples, and selects the better neural network. The developed methodology is verified with industrial data from a famous semiconductor company. The existing neural-network approaches for recognizing the defect patterns on the wafer are limited by the size and the orientation of defect patterns. The experimental results demonstrate that the proposed methodology can not only solve this problem by extracting features, but also effectively identify the defect patterns on the wafer.
WU, CHEN-HAO, and 巫承昊. "The Recognition and Classification of Defects of Lace Fabrics." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/75011375293469599467.
Full text國立臺北科技大學
有機高分子研究所
90
The inspection of fabric defects is the most important process for ensuring the quality of final products. Traditionally, manual inspections are not only time wasted but also labour intensive. To solve these problems, lots of researches apply updated computer visual technologies to the “Automatic Inspection of Fabric Defects System”. However, most of those researches focus on the inspection of woven fabrics or nonwoven fabrics. The researches and applications for the inspections of lace fabrics, jacquard fabrics, print fabrics or others are rare. Therefore, this study concentrates on improving the classification and recognizing accuracy of lace fabric defects by employing an image processing technology with an artificial neural network theory to solve the defect-recognition difficulty of lace fabrics caused by a slightly shift or a rotation of fabrics during a dynamic inspection process. The approach of this study is to compare the defect-recognition results between theoretical lace fabric images and real lace fabric images. Firstly, Area-Scan CCD camera is applied to acquire theoretical and real images of lace fabrics defects. Secondly, the theoretical image of lace fabric is then shifted and rotated by the computer to simulate the variances of lace fabric images generated by a dynamic acquisition process. Then, the binary technology is employed to distinguish the differences between the images of lace fabrics and background. In order to tell the feature values of lace fabrics defects, this study utilizes the image processing analysis technologies of “moment invariants” and “total black pixel”. All the feature values of defect images are consisted into feature vectors as the input vectors of a neural network to classify the defects. Finally, the real images of lace fabrics can be acquired to verify the system. From the results, it tells that the accuracy of theoretical defect images classification of lace fabrics is 100% but the real defect images classification of lace fabrics is 93.33%. Therefore, it can be suggested that this application of acquiring features values of defect images is suitable for the “Automatic Inspection of Lace Fabric Defects System” to improve product quality and reduce the cost of lace fabric processing and inspection.
陳毅均. "Recognition and Classification of Fabric Defects by Fuzzy-Neural Systems." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/07126465283023212303.
Full text國立臺灣科技大學
纖維及高分子工程研究所
87
Due to rapid development and increasingly rigorous quality requirement in the textile industry, the automation is definitely prerequisite. However, human operators usually inspect fabric defects, which is subjective, tedious, and time—consuming. The inspection results are greatly influenced by the mental and physical condition of an inspector. In this study, fabric defects are detected and classified using fuzzy neural network based on their features. The conjunction of fuzzy logic and neural network algorithms can enhance the fabric defect recognition system to be more robust and adaptive. A total of forty-five samples, each defect with five samples, are obtained for training and testing, respectively. For each sample, the feature vector including the ratio of projection lengths of the defect area in the x and y axes, gray level mean, gray level standard deviation, and large number emphasis (LNE) based on Neighboring gray level dependence statistics (NGLDM) method. The feature vectors are normalized by fuzzification, and then back-propagation learning algorithm is used for training computations. The fabric defects include normal, broken end, broken pick, double ends, double picks, hole in fabric, light filling bar, cobweb, and oil stain. The test results show that the fabric defects can be identified with high accuracy. The mean squared errors are within 0.0001. We also find that fuzzy neural network is superior to conventional neural network.
Chen, Chia Fa, and 陳加發. "Using Neural Networks for Surface Defects Classification - A Pilot Study." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/50909392206083002781.
Full text中原大學
工業工程研究所
82
The machine vision system apply in the production line is the solution for the dificulty of the automatic production process. The merchandize of the machine vision system is used statistics paptern recognition as classifier method. For statistics and structure ayalysis method need a complex analysis for each pattern of data. So, in this study, we will use neural network to classify the defects of the oil-lid. In this study, image substraction, image matrix transfer and neural network are employed to model the machine vision system. Adaptive Resonance Theory(ART) and Back-Pagation(BP) network are used which learning and training through five defect patterns and a good one images, then used such neural networks to classify the oil-lid which is a good production or one of the five kind defect of production. The result of the experiment is: First, without any refined method: CGNN:65%, ART1: 80%, ART2:87.3%, BP:90.67%. Second, used one refined method: CGNN:75%, BP:95%. Through refined method, the BP network has been proved that machine vision system has a good result in the pattern recognition. The major dificulties in refining process of the classfication system. First, the choice of refining system methods depend on the result of the experiment. Second, it would not know the reason after the result of refined is bad. Third, it would not know to stop refining under the unknow refined value. In this study, it is fucus to solve the troubles of using refined methods, we can make a bettre result for neural network in the pattern recognition.
Chen, Ching, and 陳靚. "Applying Image Recognition on Solar Cell Defects Inspection and Classification." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/q628wv.
Full text正修科技大學
資訊管理研究所
107
The natural energy is so important so that the solar power industry and light-electricity conversion devices are developed fast during these days. For all products in this field, solar cell is the most important device which generates electricity by drawing sunlight and sometimes store the electricity to a normal battery. The faults on the surface of solar cell leads to the light-electric conversion efficiency decreased of the solar cell and to eventually shorten the battery life. Traditional manual detection in manufacturing solar cell consumes labor and manpower since it is applied by visible checking. There are some disadvantages of manual detection so that we developed a two-process model for automatic identification and classification to for checking the faults on the surface of solar cells in order to reduce the number of images necessary for manual detection. The first process of this model is responsible for identifying the obvious faulty image of the solar cell and the second one is responsible for classifying normal cell. Both processes will be trained by the classified training set of images. While the suitably classifying model of these two processes is established, the testing data set will be applied for verification of their classification accuracy. In the research, OpenCV's image processing function is applied to implement preprocess before classification on the image sets. SimpleBlobDetector, one of OpenCV's spot detection methods, is applied in this research to identify and classify the features in image sets. In order to improve the precision of the detection on faulty images, we used Genetic Algorithms to optimize the parameters for the image feature detection of SimpleBlobDetector. The first process can classify obvious faulty image entirely. The identification of the normal image through the second process achieve 96. We can conclude that this two-process model can classify most image correctly and leave only small amount of images necessary for manual detection,thus it reduced the consumption of manpower.
Wu, Tsung-Lin, and 吳昌林. "A Computer Vision System for Detection and Classification of Defects." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/66308090046378263068.
Full textWang, Yu-min, and 王裕民. "PCB Golden Finger Defects Classification Research Under Small Sample Size Situation." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/10196244075714032045.
Full text元智大學
工業工程研究所
87
PCB Golden Finger Defects Classification Research Under Small-Sample Size Situation Student:Yu-Min Wang Advisor:Dr.B.C.Jiang Department of Industrial Engineering YUAN-ZE University ABSTRACT Generally, using machine vision to inspect surface defects of manufacturing parts in industry, the classification of the defects can provide important information on how to improve quality in manufacturing processes. However, current available classification schemes are not able to handle small sample situation which is sometimes occurs in industry. It is proposed to use bootstrap technique to deal with the small sample classification problem. Then a tree analysis method is used to classify different PCB surface defects. In this research, there are 19 training samples and 25 test samples. Using the real 19 samples generates 2000 "bootstraped" samples and using the 25 test samples segmented into 470 test samples.The results showed that using bootstrap and tree-classifier to solve small sample size classification problem, it can achieve 97.87% accuracy rate. Keywords: Bootstrap, Machine Vision, Golden Finger, Defect inspect, classifier
Wang, Chien-Chih, and 王建智. "A Study of Defects Classification Based on Automatic Visual Inspection System." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/28916858456650309403.
Full text元智大學
工業工程研究所
89
This research is based an automatic visual system to develop a new classification model and to apply it to the printed circuit board (PCB) defects classification. The feature selection and classifier design are key factors for the classification. To address these two aspects, this research proposed a new algorithm and procedure, and using the solder joints for a PCB from a monitor manufacturer in Taiwan and a set of OCR data to verify these methods. Two new algorithms for feature selection were studied: (I) Single Feature Selection:The feature selection index (FSI) was designed to measure the overlapped region for two different groups of data. Under the normal distribution assumption, it was proved that the relationship between two different overlapped region and the FSI values, and it could used to select the optimal single feature variable. Furthermore, the-larger-the-better SN ratio was used to calculate the multiple groups’ FSI to get the optimal feature variable. (II) Multiple Features Selection:To integrate DOE and MANOVA techniques to select the optimal multiple feature variables. First, the single feature variable selection algorithm was adopted to eliminate poor discrimination feature variables. Then the Plackett-Burman (PB) resolution III design was constructed for the selection of remaining feature variables. Using MANOVA technique, calculate Pillai statistic as the response for the PB design of experiment. Finally, execute statistical analysis to obtain the optimal multiple feature variables for multiple groups. Two new algorithms of classification were studied: (I) Parametric Classification Algorithm:An adaptive Bayesian classification procedure was adopted to solve high classification error rate problem when utilizing the normal Bayesian classification method under non-normal distributed data. (II) Nonparametric Classification Algorithm:The tree classification procedure was modified and was proposed as a new classification algorithm which consider the overlapped region for various groups. The simulation results showed that the nonparametric classifier of the proposed method was better than the Bayesian classifier. According to the research, we integrated two-classification systems:(I) Combined the optimal single feature selection algorithm and the order tree classifier; (II) Combined the optimal multiple features selection algorithm and the adaptive Bayesian classifier. And, the developed classification system (I) was applied to the solder joints defects of a PCB. The confidence interval of classification correctness is (98.5%, 100%), which was better than those of the optimal Bayesian classifier and the discriminate function classifier. On the application of the system II, the average classification correctness rate reached 94%, which was better than those of the Bayesian classifier, the discriminate function classifier, and the Nearest Neighbor classifier. In addition, applied both system to a set of OCR data from literature, the classification correctness rate is higher than that reported in the literature.
Hsu, Yu-Nan, and 許友南. "Machine Vision Based Inspection and Classification for PCB Solder Joints Defects." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/66648719378723402615.
Full text元智大學
工業工程研究所
88
To inspect the quality of solder joints defects needs some special illumination arrangement, such as LED、structural light, or some special instrument, such as X-ray、ultrasonic images. Because these equipments are expensive and can’t inspect solder joints defects effectively, the application for these illumination techniques is limited. The focus of this study is to provide a solder joints inspection framework based on machine vision. After capturing images which need inspection by a CCD camera, it utilizes the image of copper region on the PCB bare board to apply a minimum-filter, and it can segment all solder joints regions. The selected features of solder joints are calculated for the region. Then the features are separated into two parts: part one is based on the binary images、part two is based on gray-value images. To classify solder joints is using classification tree. In this study, it defines three types of solder joints defects: Open、No solder、Short and regular solder joints. The experiment results showed that using classification tree determined by the distance between groups and box plots, the classification correctness reached 97.2%. And utilizing the method proposed by Clark and Pregibon(1992), the classified correctness of regular solder joints is 100%, but it would classify Short to regular solder joints.
Chuang, Fuji, and 莊富傑. "The Detection and Classification of Lead Frame Defects Using Neural Networks." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/44883327211863894990.
Full text中華大學
機械與航太工程研究所
87
As the pitch getting finer and the lead number getting higher, the inspection of IC lead frame using bare eyes becomes more difficult. To lessen the workload of human inspectors, an effective method for the detection and classification of defects is presented. First, the proposed method uses image-processing techniques such as image enhancement, image segmentation, edge detection, morphological operation, and labeling to locate defects. Next, feature extraction techniques are applied to measure such features as perimeter, moments, area, eccentricity, compactness, roughness, and standard deviation of gray level. Finally, by inputting the extracted features of each defect to a pre-trained feedforward backpropagation network, the defect can be classified into pinhole, scratch, or contamination. To automate the inspection process, image processing, feature extraction, artificial neural network, as well as stage and light source control techniques have been integrated into an effective defect detection and classification system. The experimental results show that on an average, the system can finish inspecting an image in 0.4 second and the recognition rate is 99.22%. In summary, the developed system not only can replace the convention inspection method, but also increase the accuracy and efficiency of lead frame inspection.
Fernandes, Pedro Miguel Pinto da Cunha. "Detection of production defects using Machine Learning based Image Classification Algorithms." Dissertação, 2020. https://hdl.handle.net/10216/129867.
Full textFernandes, Pedro Miguel Pinto da Cunha. "Detection of production defects using Machine Learning based Image Classification Algorithms." Master's thesis, 2020. https://hdl.handle.net/10216/129867.
Full textChang, Chih-Wei, and 張智崴. "Automatic optical inspection for classification on the defects of carbon nanofibers production." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/zd63qt.
Full text中原大學
電子工程研究所
106
In recent years, mechanical vision image detection has become more and more developed. With image analysis to make the product in the production line more clearly, quality management can be more smoothly and save more time. Therefore, in order to realize fully automated equipment in the factory, the development of product inspection machines has become an important indicator of quality control. In this paper, we use OpenCV as the development environment, and use carbon nanofiber products as the research object. In the production process, we aim to distinguish some of the defective classes, so that the production quality is regulated. Because the production of the carbon nanofiber is not perfect, if bad products are put into the end equipment, the production process will inevitably encounter unexpected errors and degrade products. We use image processing techniques (such as Gaussian Blur filter to remove noise from the captured image) to detect whether the carbon fiber in the image is a normal product or not; we aim to solve that detection problem by using computer algorithms instead of a human check. We define four undesirable conditions for quality management analysis: bifurcation defects, burr defects, large-width defects and small-width defects. These four categories are likely to cause unpredictable errors in the production process that hinder normal production. If these defects can be eliminated before the subsequent production stage, the production quality will be increased. With this detection algorithm for various kinds of defects, the current state of production quality can be under control.