Academic literature on the topic 'Defects classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Defects classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Defects classification"
Huh, Sang Moo, and Woo-Je Kim. "The Derivation of Defect Priorities and Core Defects through Impact Relationship Analysis between Embedded Software Defects." Applied Sciences 10, no. 19 (October 4, 2020): 6946. http://dx.doi.org/10.3390/app10196946.
Full textNurlaelah, Azis, and Usman Sudjadi. "The Classification of Residential Defects (Case Study: Citra Garden Residence in Indonesia)." Applied Mechanics and Materials 507 (January 2014): 97–106. http://dx.doi.org/10.4028/www.scientific.net/amm.507.97.
Full textPond, R. C. "TEM studies of line defects in interfaces." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 586–87. http://dx.doi.org/10.1017/s0424820100104996.
Full textCho, Du Hyung, and Seok Lyong Lee. "Defect Identification and Classification for Plasma Display Panels." Advanced Materials Research 694-697 (May 2013): 1197–201. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.1197.
Full textKumaresh, Sakthi, and R. Baskaran. "Software Defect Prevention through Orthogonal Defect Classification (ODC)." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 11, no. 3 (October 15, 2013): 2393–400. http://dx.doi.org/10.24297/ijct.v11i3.1166.
Full textStoll, Claude, Denis Duboule, Lewis B. Holmes, and J�rgen Spranger. "Classification of limb defects." American Journal of Medical Genetics 77, no. 5 (June 5, 1998): 439–41. http://dx.doi.org/10.1002/(sici)1096-8628(19980605)77:5<439::aid-ajmg16>3.0.co;2-j.
Full textDanilov, E. O. "Legal Classification of Defects in Medical Care." Actual Problems of Russian Law 16, no. 5 (June 9, 2021): 123–38. http://dx.doi.org/10.17803/1994-1471.2021.126.5.123-138.
Full textCho, Du Hyung, and Seok Lyong Lee. "Defect Classification Using Machine Learning Techniques for Flat Display Panels." Applied Mechanics and Materials 365-366 (August 2013): 720–24. http://dx.doi.org/10.4028/www.scientific.net/amm.365-366.720.
Full textAgnelo, João, Nuno Laranjeiro, and Jorge Bernardino. "Using Orthogonal Defect Classification to characterize NoSQL database defects." Journal of Systems and Software 159 (January 2020): 110451. http://dx.doi.org/10.1016/j.jss.2019.110451.
Full textPham, D. T., and S. Sagiroglu. "Neural network classification of defects in veneer boards." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 214, no. 3 (March 1, 2000): 255–58. http://dx.doi.org/10.1243/0954405001517649.
Full textDissertations / Theses on the topic "Defects classification"
Bengali, Umme Salma Yusuf. "Pixel classification of iris transillumination defects." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/3260.
Full textWang, Hui. "Software Defects Classification Prediction Based On Mining Software Repository." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-216554.
Full textWilson, Duncan John. "Classification of defects using uncertainty in industrial web inspection." Thesis, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286894.
Full textBalakrishnan, Harinarayanan. "FDICS : a vision-based system for identification and classification of fabric defects." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/8465.
Full textAllanqawi, Khaled Kh S. Kh. "A framework for the classification and detection of design defects and software quality assurance." Thesis, Kingston University, 2015. http://eprints.kingston.ac.uk/34534/.
Full textBond, Brian Jr. "Characterization of Wood Features Using Color, Shape, and Density Parameters." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30629.
Full textPh. D.
Nouri, Arash. "Correlation-Based Detection and Classification of Rail Wheel Defects using Air-coupled Ultrasonic Acoustic Emissions." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/78139.
Full textMaster of Science
Niewalda, Tobias. "Deep Learning Based Classification of Rail Defects Using On-board Monitoring in the Stockholm Underground." Thesis, KTH, Spårfordon, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273576.
Full textSquats uppkommer på rälsytor på grund av rullkontaktutmattning och kan ställa till stora problem om de inte upptäcks i tid. Att upptäcka fel i ett tidigt skede kan minska underhållskostnaderna. Syftet med det här examensarbetet är att studera om man med hjälp av ett neuralt nätverk kan detektera så kallade räls-squats med hjälp ett mätsystem som heter Quiet Track Measurement System (QTMS). Mätsystemet är installerat hos sju tåg på den gröna linjen i Stockholms tunnelbana. Systemet kan användas för att övervaka rälsslitage och kan därför effektivisera underhållet. Den här rapporten presenterar ett artificiellt neuralt nätverk för att kontinuerligt kunna analysera mätdata. Mätdata består av vertikal boggiacceleration och ljudmätningar, båda samplas med frekvensen 22 kHz.Frekvensdomänrepresentationen av uppmätta data i form av spektraltätheten i kombination med flerskikts- och helt anslutna neurala nätverk (FNN) visade sig vara lovande för korrekta förutsägelser. övervakad inlärning tillämpades enligt the one-verus-all principen, dvs antingen har man squats eller så har man inte squats. En artificiell neuron-modell med två dolda lager valdes till slut för att komplettera existerande mätsystem. Användningen av ett brett frekvens-område från nästan DC upp till 7 kHz möjliggör god förutsägelse med bara låga förutsägelser av falska squats. När man sammanlänkar alla sex mätkanaler till en enskild klassificeringsinput kan man uppnå en noggrannhet över 96%, som högst kan man uppnå 99.98%. Nätverket visade också hög stabilitet trots ganska starka parametervariationer och en obalans mellan tillgängliga data för de två klasserna.Eftersom bara några få underhållsprotokoll fanns tillgängliga krävs mer utvärdering, men korrekt identifiering av felklassificerade squats indikerar att den verkliga noggrannheten kan bli ännu bättre. Detta ger också förutsättningar för att snabbare kunna prediktera squats.
Partyka-Jankowska, Ewa, Bogdan Sepiol, Fritz Gröstlinger, Gero Vogl, Józef Korecki, Tomasz Ślęzak, Marcin Zając, and Aleksandr Chumakov. "Dynamic of defects in an iron monolayer on W (110)." Diffusion fundamentals 11 (2009) 51, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A12963.
Full textRust, Stephanus Marthinus. "Classification of timber from Pinus radiata trees exposed to forest fires." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/98097.
Full textENGLISH ABSTRACT: This study aimed to classify wood from trees that were exposed to forest fires with regards to their end use. Exposure to high temperatures over time is known to degrade wood in various ways. This degradation could limit the end use by altering mechanical, chemical and physical properties, leading to difficulty in processing or failing to meet required specifications for various grades. In this study wood from Pinus radiata trees that were exposed to forest fires of different levels of heat intensity was analysed with regards to its anatomical and physical changes. Trees were visually classified into three classes of burn severity. Moisture content measurements were taken from 135 standing trees, divided among the three classes. 30 trees, 10 from each of the three classes, were sampled and used for CT analysis. Samples were taken to include growth from before and after the fire. Two samples were taken from each tree, one from the charred and one from the uncharred side. The CT data was analysed and used to measure properties like growth ring width, cell wall thickness, lumen diameter and cell wall density. The data was used to compare properties from the charred and uncharred sides within a given year, as well as compare properties between years. The study showed that there were significant differences in the MC between the burnt and unburnt sides of trees from classes 2 and 3. The difference between the MC measurements on the burnt sides of three classes differed significantly from each other. Lightness measurements were taken on samples from classes 2 and 3. These samples showed no significant difference between the burnt and unburnt sides for either of the two classes. The samples from the less exposed class were lighter, but not significantly so. The macroscopic wood density was determined using core samples. A decrease in wood density was observed with an increase in fire exposure. The mean densities for all three classes however still fulfilled the requirements for structural timber set by the SABS. Growth ring width, cell wall thickness and lumen diameter analysis gave varied results, with some cases showing a decline in properties while others were seemingly unaffected. For many of the outcomes of this study, results found by previous studies could not be reproduced.
AFRIKAANSE OPSOMMING: Hierdie studie het gepoog om bome wat aan plantasiebrande blootgestel is volgens hul eindgebruik te klassifiseer. Dit is bekend dat blootstelling aan hoë tempreature hout in vele maniere afbreuk. Hierdie afbreuking kan die eindgebruik van die hout beperk deur die meganiese, fisiese en chemiese eienskappe sodanig te verander dat dit kan lei tot probleme met verwerking of ongeskiktheid vir sterktegrade. In hierdie studie is Pinus radiata bome wat aan plantasiebrande van verskillende grade blootgestel is ondersoek in terme van hul fisiese en anatomiese veranderinge. Bome is visueel in drie klasse van verskillende brandskade gegroepeer. Voglesings is op 135 staande bome, verdeel tussen die drie klasse, geneem. Monsters is van 30 bome, 10 uit elke klas, geneem vir CT analiese. Monsters is so geneem dat dit groei van voor en na die brand ingesluit het. Daar is twee monsters van elke boom geneem, een van die gebrande en een van die ongebrande kant. Die CT data is geanalieseer en gebruik om eienskappe soos jaarringwydte, selwanddikte, lumendiameter en selwand digtheid te meet. Die data is gebruik om eienskappe tussen die gebrande en ongebrande kante, sowel as tussen jare te vergelyk. Die studie het gewys dat daar noemenswaardige verskille is tussen die voginhoud van die gebrande en ongebrande kante van bome uit klasse 2 en 3. Die voginhoud van die gebrande kante van al drie klasse verkil ook noemenswaardig van mekaar. Ligtheidmetings is gedoen op monsters van klasse 2 en 3. Die monsters het nie ‘n noemenswaardige verskil tussen die gebrande en ongebrande kante getoon nie. Alhoewel die klas 2 monsters ligter vertoon het as die klas 3 monsters, was die verskil nie betekenisvol nie. Houtdigtheid is bepaal deur fisiese metings op die monsters wat vir die CT skandering gebruik is te doen. ‘n Daling in digtheid met ‘n toename in blootstelling aan die brand het duidelik na vore gekom. Die digtheid is egter nog hoog genoeg om aan die vereistes vir strukturele hout te voldoen, soos die die SABS bepaal. Jaarringwydte, selwanddikte en lumen diameter het wisselende resultate opgelewer, met sommige gevalle wat ‘n afname in eienskappe wys en ander wat ooglopend onveranderd was. Vir vele van hierdie uitkoms kon die resultate van vorige studies nie bevestig word nie.
Books on the topic "Defects classification"
Papaelias, Mayorkinos, and Fausto Pedro Garca Mrquez. Fault Detection: Classification, Techniques and Role in Industrial Systems. Nova Science Publishers, Incorporated, 2014.
Find full textLamari, Foudil, and Jean-Marie Saudubray. Disorders of Complex Lipids Synthesis and Remodeling. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0066.
Full textUffman, Joshua C. Neuronal Ceroid Lipofuscinoses (Batten Disease). Edited by Kirk Lalwani, Ira Todd Cohen, Ellen Y. Choi, and Vidya T. Raman. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190685157.003.0042.
Full textKuwabara, Satoshi. Neuromuscular junction disorders. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199658602.003.0014.
Full textKarapapa, Stavroula. Defences to Copyright Infringement. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198795636.001.0001.
Full textFederico, Antonio, and Silvia Palmeri. Oligosaccharidoses. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0057.
Full textSprague, Stuart M., and James M. Pullman. Spectrum of bone pathologies in chronic kidney disease. Edited by David J. Goldsmith. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0122.
Full textBook chapters on the topic "Defects classification"
Engh, Gerard A. "Classification of Bone Defects." In Surgical Techniques in Total Knee Arthroplasty, 401–8. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/0-387-21714-2_53.
Full textKrautkrämer, Josef, and Herbert Krautkrämer. "Detection and Classification of Defects." In Ultrasonic Testing of Materials, 312–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10680-8_20.
Full textKleman, Maurice. "The Topological Classification of Defects." In Formation and Interactions of Topological Defects, 27–61. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1883-9_2.
Full textCordeiro, Peter G. "Classification System for Mandibulectomy Defects." In Atlas of Mandibular and Maxillary Reconstruction with the Fibula Flap, 3–5. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10684-3_1.
Full textCordeiro, Peter G. "Classification System for Maxillectomy Defects." In Atlas of Mandibular and Maxillary Reconstruction with the Fibula Flap, 7–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10684-3_2.
Full textAnderson, R. H., and F. J. Macartney now deceased. "Classification and Nomenclature of Congenital Heart Defects." In Surgery for Congenital Heart Defects, 1–10. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470093188.ch1.
Full textBéland, M. J., R. C. Franklin, V. D. Aiello, L. Houyel, P. M. Weinberg, and R. H. Anderson. "Nomenclature and Classification of Cardiac Defects." In Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care, 1–21. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-4999-6_251-1.
Full textBéland, M. J., R. C. Franklin, V. D. Aiello, L. Houyel, P. M. Weinberg, and R. H. Anderson. "Nomenclature and Classification of Cardiac Defects." In Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care, 1–23. London: Springer London, 2020. http://dx.doi.org/10.1007/978-1-4471-4999-6_251-2.
Full textTrebin, H. R. "Classification of Defects in Liquid Crystals." In Defects in Liquid Crystals: Computer Simulations, Theory and Experiments, 1–16. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0512-8_1.
Full textEngh, Gerard A. "Classification of Bone Defects Femur and Tibia." In Knee Arthroplasty Handbook, 116–32. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/0-387-33531-5_9.
Full textConference papers on the topic "Defects classification"
Bień, Jan, and Małgorzata Gładysz-Bień. "Multi-level Classification of Bridge Defects in Asset Management." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1100.
Full textWolfe, Scott, and Steve McGarvey. "Scanning electron microscope automatic defect classification of process induced defects." In SPIE Advanced Lithography, edited by Martha I. Sanchez and Vladimir A. Ukraintsev. SPIE, 2017. http://dx.doi.org/10.1117/12.2258122.
Full textNelson, Jeffrey E., Wing Chiu Tam, and R. D. Blanton. "Automatic classification of bridge defects." In 2010 IEEE International Test Conference (ITC). IEEE, 2010. http://dx.doi.org/10.1109/test.2010.5699231.
Full textMurino, V., M. Bicego, and I. A. Rossi. "Statistical classification of raw textile defects." In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1333765.
Full textJeong, Daun, Dongyeop Kang, and Sangchul Won. "Feature selection for steel defects classification." In 2010 International Conference on Control, Automation and Systems (ICCAS 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccas.2010.5670192.
Full textBoettiger, Tom, Peter Buck, Sankaranarayanan Paninjath, Mark Pereira, Rob Ronald, Dan Rost, and Bhamidipati Samir. "Automatic classification of blank substrate defects." In SPIE Photomask Technology, edited by Paul W. Ackmann and Naoya Hayashi. SPIE, 2014. http://dx.doi.org/10.1117/12.2069678.
Full textRigaill, Denis M., Henry Roussel-Dupre, Michel Tissier, and Yann Guerin. "Automatic defects classification for photolithographics reticles." In 13th Annual BACUS Symposium on Photomask Technology and Management, edited by Edward C. Grady and Jack P. Moneta. SPIE, 1994. http://dx.doi.org/10.1117/12.167264.
Full textWu, Mingtao, Vir V. Phoha, Young B. Moon, and Amith K. Belman. "Detecting Malicious Defects in 3D Printing Process Using Machine Learning and Image Classification." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67641.
Full textChen, Zhao-he. "New Classification Assessment Rule for Defects Fitness." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45147.
Full textJakubec, Jaroslav. "Role of defects in rock mass classification." In Seventh International Symposium on Ground Support in Mining and Underground Construction. Australian Centre for Geomechanics, Perth, 2013. http://dx.doi.org/10.36487/acg_rep/1304_21_jakubec.
Full textReports on the topic "Defects classification"
Dr. Gabe V. Garcia. Automated Diagnosis and Classification of Steam Generator Tube Defects. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/833464.
Full textGabe V. Garcia. Eddy Current Signature Classification of Steam Generator Tube Defects Using A Learning Vector Quantization Neural Network. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/836575.
Full textGleason, S., and A. Kulkarni. Semiconductor yield improvements through automatic defect classification. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/508162.
Full text