Dissertations / Theses on the topic 'Deep supervised learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Deep supervised learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tran, Khanh-Hung. "Semi-supervised dictionary learning and Semi-supervised deep neural network." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASP014.
Full textSince the 2010's, machine learning (ML) has been one of the topics that attract a lot of attention from scientific researchers. Many ML models have been demonstrated their ability to produce excellent results in various fields such as Computer Vision, Natural Language Processing, Robotics... However, most of these models use supervised learning, which requires a massive annotation. Therefore, the objective of this thesis is to study and to propose semi-supervised learning approaches that have many advantages over supervised learning. Instead of directly applying a semi-supervised classifier on the original representation of data, we rather use models that integrate a representation learning stage before the classification stage, to better adapt to the non-linearity of the data. In the first step, we revisit tools that allow us to build our semi-supervised models. First, we present two types of model that possess representation learning in their architecture: dictionary learning and neural network, as well as the optimization methods for each type of model. Moreover, in the case of neural network, we specify the problem with adversarial examples. Then, we present the techniques that often accompany with semi-supervised learning such as variety learning and pseudo-labeling. In the second part, we work on dictionary learning. We synthesize generally three steps to build a semi-supervised model from a supervised model. Then, we propose our semi-supervised model to deal with the classification problem typically in the case of a low number of training samples (including both labelled and non-labelled samples). On the one hand, we apply the preservation of the data structure from the original space to the sparse code space (manifold learning), which is considered as regularization for sparse codes. On the other hand, we integrate a semi-supervised classifier in the sparse code space. In addition, we perform sparse coding for test samples by taking into account also the preservation of the data structure. This method provides an improvement on the accuracy rate compared to other existing methods. In the third step, we work on neural network models. We propose an approach called "manifold attack" which allows reinforcing manifold learning. This approach is inspired from adversarial learning : finding virtual points that disrupt the cost function on manifold learning (by maximizing it) while fixing the model parameters; then the model parameters are updated by minimizing this cost function while fixing these virtual points. We also provide criteria for limiting the space to which the virtual points belong and the method for initializing them. This approach provides not only an improvement on the accuracy rate but also a significant robustness to adversarial examples. Finally, we analyze the similarities and differences, as well as the advantages and disadvantages between dictionary learning and neural network models. We propose some perspectives on both two types of models. In the case of semi-supervised dictionary learning, we propose some techniques inspired by the neural network models. As for the neural network, we propose to integrate manifold attack on generative models
Roychowdhury, Soumali. "Supervised and Semi-Supervised Learning in Vision using Deep Neural Networks." Thesis, IMT Alti Studi Lucca, 2019. http://e-theses.imtlucca.it/273/1/Roychowdhury_phdthesis.pdf.
Full textGeiler, Louis. "Deep learning for churn prediction." Electronic Thesis or Diss., Université Paris Cité, 2022. http://www.theses.fr/2022UNIP7333.
Full textThe problem of churn prediction has been traditionally a field of study for marketing. However, in the wake of the technological advancements, more and more data can be collected to analyze the customers behaviors. This manuscript has been built in this frame, with a particular focus on machine learning. Thus, we first looked at the supervised learning problem. We have demonstrated that logistic regression, random forest and XGBoost taken as an ensemble offer the best results in terms of Area Under the Curve (AUC) among a wide range of traditional machine learning approaches. We also have showcased that the re-sampling approaches are solely efficient in a local setting and not a global one. Subsequently, we aimed at fine-tuning our prediction by relying on customer segmentation. Indeed,some customers can leave a service because of a cost that they deem to high, and other customers due to a problem with the customer’s service. Our approach was enriched with a novel deep neural network architecture, which operates with both the auto-encoders and the k-means approach. Going further, we focused on self-supervised learning in the tabular domain. More precisely, the proposed architecture was inspired by the work on the SimCLR approach, where we altered the architecture with the Mean-Teacher model from semi-supervised learning. We showcased through the win matrix the superiority of our approach with respect to the state of the art. Ultimately, we have proposed to apply what we have built in this manuscript in an industrial setting, the one of Brigad. We have alleviated the company churn problem with a random forest that we optimized through grid-search and threshold optimization. We also proposed to interpret the results with SHAP (SHapley Additive exPlanations)
Khan, Umair. "Self-supervised deep learning approaches to speaker recognition." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671496.
Full textLos avances recientes en Deep Learning (DL) para el reconocimiento del hablante están mejorado el rendimiento de los sistemas tradicionales basados en i-vectors. En el reconocimiento de locutor basado en i-vectors, la distancia coseno y el análisis discriminante lineal probabilístico (PLDA) son las dos técnicas más usadas de puntuación. La primera no es supervisada, pero la segunda necesita datos etiquetados por el hablante, que no son siempre fácilmente accesibles en la práctica. Esto crea una gran brecha de rendimiento entre estas dos técnicas de puntuación. La pregunta es: ¿cómo llenar esta brecha de rendimiento sin usar etiquetas del hablante en los datos de background? En esta tesis, el problema anterior se ha abordado utilizando técnicas de DL sin utilizar y/o limitar el uso de datos etiquetados. Se han realizado tres propuestas basadas en DL. En la primera, se propone una representación vectorial de voz basada en la máquina de Boltzmann restringida (RBM) para las tareas de agrupación de hablantes y seguimiento de hablantes en programas de televisión. Los experimentos en la base de datos AGORA, muestran que en agrupación de hablantes los vectores RBM suponen una mejora relativa del 12%. Y, por otro lado, en seguimiento del hablante, los vectores RBM,utilizados solo en la etapa de identificación del hablante, muestran una mejora relativa del 11% (coseno) y 7% (PLDA). En la segunda, se utiliza DL para aumentar el poder discriminativo de los i-vectors en la verificación del hablante. Se ha propuesto el uso del autocodificador de varias formas. En primer lugar, se utiliza un autocodificador como preentrenamiento de una red neuronal profunda (DNN) utilizando una gran cantidad de datos de background sin etiquetar, para posteriormente entrenar un clasificador DNN utilizando un conjunto reducido de datos etiquetados. En segundo lugar, se entrena un autocodificador para transformar i-vectors en una nueva representación para aumentar el poder discriminativo de los i-vectors. El entrenamiento se lleva a cabo en base a los i-vectors vecinos más cercanos, que se eligen de forma no supervisada. La evaluación se ha realizado con la base de datos VoxCeleb-1. Los resultados muestran que usando el primer sistema obtenemos una mejora relativa del 21% sobre i-vectors, mientras que usando el segundo sistema, se obtiene una mejora relativa del 42%. Además, si utilizamos los datos de background en la etapa de prueba, se obtiene una mejora relativa del 53%. En la tercera, entrenamos un sistema auto-supervisado de verificación de locutor de principio a fin. Utilizamos impostores junto con los vecinos más cercanos para formar pares cliente/impostor sin supervisión. La arquitectura se basa en un codificador de red neuronal convolucional (CNN) que se entrena como una red siamesa con dos ramas. Además, se entrena otra red con tres ramas utilizando la función de pérdida triplete para extraer embeddings de locutores. Los resultados muestran que tanto el sistema de principio a fin como los embeddings de locutores, a pesar de no estar supervisados, tienen un rendimiento comparable a una referencia supervisada. Cada uno de los enfoques propuestos tienen sus pros y sus contras. El mejor resultado se obtuvo utilizando el autocodificador con el vecino más cercano, con la desventaja de que necesita los i-vectors de background en el test. El uso del preentrenamiento del autocodificador para DNN no tiene este problema, pero es un enfoque semi-supervisado, es decir, requiere etiquetas de hablantes solo de una parte pequeña de los datos de background. La tercera propuesta no tienes estas dos limitaciones y funciona de manera razonable. Es un en
Zhang, Kun. "Supervised and Self-Supervised Learning for Video Object Segmentation in the Compressed Domain." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29361.
Full textLiu, Dongnan. "Supervised and Unsupervised Deep Learning-based Biomedical Image Segmentation." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24744.
Full textHan, Kun. "Supervised Speech Separation And Processing." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1407865723.
Full textNasrin, Mst Shamima. "Pathological Image Analysis with Supervised and Unsupervised Deep Learning Approaches." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1620052562772676.
Full textKarlsson, Erik, and Gilbert Nordhammar. "Naive semi-supervised deep learning med sammansättning av pseudo-klassificerare." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17177.
Full textÖrnberg, Oscar. "Semi-Supervised Methods for Classification of Hyperspectral Images with Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288726.
Full textHyperspektrala bilder (HSI) kan avslöja fler mönster än vanliga bilder. Dimensionaliteten är hög med ett bredare spektrum för varje pixel. Få dataset som är etiketter finns, medan rådata finns i överflöd. Detta gör att semi-vägledd inlärning är väl anpassad för HSI klassificering. Genom att utnyttja nya rön inom djupinlärning och semi-vägledda methods, två modeller kallade FixMatch och Mean Teacher adapterades för att mäta effektiviteten hos konsekvens regularisering metoder inom semi-vägledd inlärning på HSI klassifikation. Traditionella maskininlärnings metoder så som SVM, Random Forest och XGBoost jämfördes i samband med two semi-vägledda maskininlärnings metoder, TSVM och QN-S3VM, som basnivå. De semi-vägledda djupinlärnings metoderna testades med två olika nätverk, en 3D och 1D CNN. För att kunna använda konsekvens regularisering, flera nya data augmenterings metoder adapterades till HSI data. Nuvarande metoder är få och förlitar sig på att datan har etiketter, vilket inte är tillgängligt i detta scenariot. Data augmenterings metoderna som presenterades visade sig vara användbara och adapterades i ett automatiskt augmenteringssystem. Noggrannheten av basnivå och de semi-vägledda metoderna visade att SVM var bäst i alla fall. Ingen av de semi-vägledda metoderna visade konsekvent bättre resultat än deras vägledda motsvarigheter.
Bonechi, Simone. "Lack of Supervised Data: A Deep Learning Approach in Image Analysis." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1105761.
Full textRastgoufard, Rastin. "Multi-Label Latent Spaces with Semi-Supervised Deep Generative Models." ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/td/2486.
Full textHuang, Jiajun. "Learning to Detect Compressed Facial Animation Forgery Data with Contrastive Learning." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29183.
Full textFeng, Zeyu. "Learning Deep Representations from Unlabelled Data for Visual Recognition." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26876.
Full textSong, Shiping. "Study of Semi-supervised Deep Learning Methods on Human Activity Recognition Tasks." Thesis, KTH, Robotik, perception och lärande, RPL, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241366.
Full textDetta projekt fokuserar på halvövervakad Human Activity Recognition (HAR), där indata delvis är märkta tidsseriedata från sensorer som t.ex. accelerometrar, och utdata är fördefinierade mänskliga aktiviteter. De främsta arbetena inom HAR-området använder numera övervakade metoder, vilka bygger på fullt märkta dataset. Eftersom kostnaden för att märka de samlade instanserna ökar snabbt med den ökade omfattningen av data, föredras numera ofta halvövervakade metoder. I denna rapport föreslås två halvövervakade metoder och det undersöks hur bra de presterar på ett delvis märkt dataset jämfört med den moderna övervakade metoden. En av dessa metoder utformas baserat på en högkvalitativ övervakad metod, DeepConvLSTM, kombinerad med självutbildning. En annan metod baseras på en halvövervakad djupinlärningsmetod, LSTM, initierad av seq2seq autoencoder, som först införs för behandling av naturligt språk. Enligt experimenten på ett publicerat dataset (Opportunity Activity Recognition dataset) har båda dessa metoder bättre prestanda än de toppmoderna övervakade metoderna.
Meng, Zhaoxin. "A deep learning model for scene recognition." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36491.
Full textÁlvarez, Robles Enrique Josué. "Supervised Learning models with ice hockey data." Thesis, Linköpings universitet, Statistik och maskininlärning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167718.
Full textDabiri, Sina. "Semi-Supervised Deep Learning Approach for Transportation Mode Identification Using GPS Trajectory Data." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/86845.
Full textMaster of Science
Identifying users' transportation modes (e.g., bike, bus, train, and car) is a key step towards many transportation related problems including (but not limited to) transport planning, transit demand analysis, auto ownership, and transportation emissions analysis. Traditionally, the information for analyzing travelers' behavior for choosing transport mode(s) was obtained through travel surveys. High cost, low-response rate, time-consuming manual data collection, and misreporting are the main demerits of the survey-based approaches. With the rapid growth of ubiquitous GPS-enabled devices (e.g., smartphones), a constant stream of users' trajectory data can be recorded. A user's GPS trajectory is a sequence of GPS points, recorded by means of a GPS-enabled device, in which a GPS point contains the information of the device geographic location at a particular moment. In this research, users' GPS trajectories, rather than traditional resources, are harnessed to predict their transportation mode by means of statistical models. With respect to the statistical models, a wide range of studies have developed travel mode detection models using on hand-designed attributes and classical learning techniques. Nonetheless, hand-crafted features cause some main shortcomings including vulnerability to traffic uncertainties and biased engineering justification in generating effective features. A potential solution to address these issues is by leveraging deep learning frameworks that are capable of capturing abstract features from the raw input in an automated fashion. Thus, in this thesis, deep learning architectures are exploited in order to identify transport modes based on only raw GPS tracks. It is worth noting that a significant portion of trajectories in GPS data might not be annotated by a transport mode and the acquisition of labeled data is a more expensive and labor-intensive task in comparison with collecting unlabeled data. Thus, utilizing the unlabeled GPS trajectory (i.e., the GPS trajectories that have not been annotated by a transport mode) is a cost-effective approach for improving the prediction quality of the travel mode detection model. Therefore, the unlabeled GPS data are also leveraged by developing a novel deep-learning architecture that is capable of extracting information from both labeled and unlabeled data. The experimental results demonstrate the superiority of the proposed models over the state-of-the-art methods in literature with respect to several performance metrics.
Varshney, Varun. "Supervised and unsupervised learning for plant and crop row detection in precision agriculture." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35463.
Full textDepartment of Computing and Information Sciences
William H. Hsu
The goal of this research is to present a comparison between different clustering and segmentation techniques, both supervised and unsupervised, to detect plant and crop rows. Aerial images, taken by an Unmanned Aerial Vehicle (UAV), of a corn field at various stages of growth were acquired in RGB format through the Agronomy Department at the Kansas State University. Several segmentation and clustering approaches were applied to these images, namely K-Means clustering, Excessive Green (ExG) Index algorithm, Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and a deep learning approach based on Fully Convolutional Networks (FCN), to detect the plants present in the images. A Hough Transform (HT) approach was used to detect the orientation of the crop rows and rotate the images so that the rows became parallel to the x-axis. The result of applying different segmentation methods to the images was then used in estimating the location of crop rows in the images by using a template creation method based on Green Pixel Accumulation (GPA) that calculates the intensity profile of green pixels present in the images. Connected component analysis was then applied to find the centroids of the detected plants. Each centroid was associated with a crop row, and centroids lying outside the row templates were discarded as being weeds. A comparison between the various segmentation algorithms based on the Dice similarity index and average run-times is presented at the end of the work.
Sahasrabudhe, Mihir. "Unsupervised and weakly supervised deep learning methods for computer vision and medical imaging." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC010.
Full textThe first two contributions of this thesis (Chapter 2 and 3) are models for unsupervised 2D alignment and learning 3D object surfaces, called Deforming Autoencoders (DAE) and Lifting Autoencoders (LAE). These models are capable of identifying canonical space in order to represent different object properties, for example, appearance in a canonical space, deformation associated with this appearance that maps it to the image space, and for human faces, a 3D model for a face, its facial expression, and the angle of the camera. We further illustrate applications of models to other domains_ alignment of lung MRI images in medical image analysis, and alignment of satellite images for remote sensing imagery. In Chapter 4, we concentrate on a problem in medical image analysis_ diagnosis of lymphocytosis. We propose a convolutional network to encode images of blood smears obtained from a patient, followed by an aggregation operation to gather information from all images in order to represent them in one feature vector which is used to determine the diagnosis. Our results show that the performance of the proposed models is at-par with biologists and can therefore augment their diagnosis
Rönnberg, Axel. "Semi-Supervised Deep Learning using Consistency-Based Methods for Segmentation of Medical Images." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279579.
Full textInom radioterapi, en form av cancerbehandling, är precis lokalisering av anatomiska strukturer nödvändig för att begränsa påverkan på friska celler. Det automatiska arbetet att avbilda de här strukturerna och organen kallas för segmentering, där varje pixel i en bild är klassificerad och anvisad en etikett. Nyligen har djupa neurala nätverk visat sig vara effektiva för automatisk, medicinsk segmentering. Emellertid kräver djupinlärning stora mängder tränings- data. Det är ett begränsande drag, speciellt i det medicinska fältet, på grund av faktorer som patientsekretess. Trots det är den stora utmaningen inte bilddatan själv, utan bristen på högkvalitativa annoteringar. Det är därför intressant att undersöka metoder för semi-övervakad inlärning, där endast en delmängd av bilderna behöver annoteringar. Det höjer frågan om de här metoderna kan vara kliniskt acceptabla för organsegmentering, och om de resulterar i en ökad prestanda i jämförelse med övervakade modeller. En kategori av semi-övervakade metoder applicerar strategin att uppmuntra konsistens mellan prediktioner. Consistency Training och Mean Teacher är två metoder där nätverkets vikter är uppdaterade så att påverkan av rubbningar av input, som dataökningar, minimeras. Därtill tränar Mean Teacher två modeller, en Lärare och en Student. Läraren uppdateras som ett genomsnitt av konsekutiva Studentmodeller, användandes av Temporal Ensembling. För att lösa frågan huruvida semi-övervakad inlärning kan vara fördelaktig är de två nämnda metoderna undersökta. De används för att träna djupa neurala nät- verk med en U-net arkitektur för att segmentera blåsan och anorektum i 3D CT-bilder. Resultaten visade tecken på potential för Consistency Training och Mean Teacher, med förbättrad segmentering för nästan alla modellkonfigurationer. Resultaten visade även att metoderna medförde en reduktion i varians av prestanda, främst genom att begränsa dåliga segmenteringar. I och med de här resultaten borde användandet av semi-övervakad inlärning övervägas. Emellertid behöver mer forskning utföras, då förbättringen av segmenteringen inte upprepades i alla experiment.
Torcinovich, Alessandro <1992>. "Using Contextual Information In Weakly Supervised Learning: Toward the integration of contextual and deep learningapproaches, to address weakly supervised tasks." Doctoral thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/20596.
Full textBrunetti, Enrico. "Sperimentazione di Deep Metric Loss per Self-Supervised Information Retrieval Systems su CORD19." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24295/.
Full textREPETTO, MARCO. "Black-box supervised learning and empirical assessment: new perspectives in credit risk modeling." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402366.
Full textRecent highly performant Machine Learning algorithms are compelling but opaque, so it is often hard to understand how they arrive at their predictions giving rise to interpretability issues. Such issues are particularly relevant in supervised learning, where such black-box models are not easily understandable by the stakeholders involved. A growing body of work focuses on making Machine Learning, particularly Deep Learning models, more interpretable. The currently proposed approaches rely on post-hoc interpretation, using methods such as saliency mapping and partial dependencies. Despite the advances that have been made, interpretability is still an active area of research, and there is no silver bullet solution. Moreover, in high-stakes decision-making, post-hoc interpretability may be sub-optimal. An example is the field of enterprise credit risk modeling. In such fields, classification models discriminate between good and bad borrowers. As a result, lenders can use these models to deny loan requests. Loan denial can be especially harmful when the borrower cannot appeal or have the decision explained and grounded by fundamentals. Therefore in such cases, it is crucial to understand why these models produce a given output and steer the learning process toward predictions based on fundamentals. This dissertation focuses on the concept of Interpretable Machine Learning, with particular attention to the context of credit risk modeling. In particular, the dissertation revolves around three topics: model agnostic interpretability, post-hoc interpretation in credit risk, and interpretability-driven learning. More specifically, the first chapter is a guided introduction to the model-agnostic techniques shaping today’s landscape of Machine Learning and their implementations. The second chapter focuses on an empirical analysis of the credit risk of Italian Small and Medium Enterprises. It proposes an analytical pipeline in which post-hoc interpretability plays a crucial role in finding the relevant underpinnings that drive a firm into bankruptcy. The third and last paper proposes a novel multicriteria knowledge injection methodology. The methodology is based on double backpropagation and can improve model performance, especially in the case of scarce data. The essential advantage of such methodology is that it allows the decision maker to impose his previous knowledge at the beginning of the learning process, making predictions that align with the fundamentals.
Ramesh, Rohit. "Abnormality detection with deep learning." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/118542/1/Rohit_Ramesh_Thesis.pdf.
Full textKondamari, Pramod Sai, and Anudeep Itha. "A Deep Learning Application for Traffic Sign Recognition." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21890.
Full textBaier, Stephan [Verfasser], and Volker [Akademischer Betreuer] Tresp. "Learning representations for supervised information fusion using tensor decompositions and deep learning methods / Stephan Baier ; Betreuer: Volker Tresp." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1185979220/34.
Full textNovello, Paul. "Combining supervised deep learning and scientific computing : some contributions and application to computational fluid dynamics." Thesis, Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAX005.
Full textRecent innovations in mathematics, computer science, and engineering have enabled more and more sophisticated numerical simulations. However, some simulations remain computationally unaffordable, even for the most powerful supercomputers. Lately, machine learning has proven its ability to improve the state-of-the-art in many fields, notoriously computer vision, language understanding, or robotics. This thesis settles in the high-stakes emerging field of Scientific Machine Learning which studies the application of machine learning to scientific computing. More specifically, we consider the use of deep learning to accelerate numerical simulations.We focus on approximating some components of Partial Differential Equation (PDE) based simulation software by a neural network. This idea boils down to constructing a data set, selecting and training a neural network, and embedding it into the original code, resulting in a hybrid numerical simulation. Although this approach may seem trivial at first glance, the context of numerical simulations comes with several challenges. Since we aim at accelerating codes, the first challenge is to find a trade-off between neural networks’ accuracy and execution time. The second challenge stems from the data-driven process of the training, and more specifically, its lack of mathematical guarantees. Hence, we have to ensure that the hybrid simulation software still yields reliable predictions. To tackle these challenges, we thoroughly study each step of the deep learning methodology while considering the aforementioned constraints. By doing so, we emphasize interplays between numerical simulations and machine learning that can benefit each of these fields.We identify the main steps of the deep learning methodology as the construction of the training data set, the choice of the hyperparameters of the neural network, and its training. For the first step, we leverage the ability to sample training data with the original software to characterize a more efficient training distribution based on the local variation of the function to approximate. We generalize this approach to general machine learning problems by deriving a data weighting methodology called Variance Based Sample Weighting. For the second step, we introduce the use of sensitivity analysis, an approach widely used in scientific computing, to tackle neural network hyperparameter optimization. This approach is based on qualitatively assessing the effect of hyperparameters on the performances of a neural network using Hilbert-Schmidt Independence Criterion. We adapt it to the hyperparameter optimization context and build an interpretable methodology that yields competitive and cost-effective networks. For the third step, we formally define an analogy between the stochastic resolution of PDEs and the optimization process at play when training a neural network. This analogy leads to a PDE-based framework for training neural networks that opens up many possibilities for improving existing optimization algorithms. Finally, we apply these contributions to a computational fluid dynamics simulation coupled with a multi-species chemical equilibrium code. We demonstrate that we can achieve a time factor acceleration of 21 with controlled to no degradation from the initial prediction
Banville, Hubert. "Enabling real-world EEG applications with deep learning." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG005.
Full textOur understanding of the brain has improved considerably in the last decades, thanks to groundbreaking advances in the field of neuroimaging. Now, with the invention and wider availability of personal wearable neuroimaging devices, such as low-cost mobile EEG, we have entered an era in which neuroimaging is no longer constrained to traditional research labs or clinics. "Real-world'' EEG comes with its own set of challenges, though, ranging from a scarcity of labelled data to unpredictable signal quality and limited spatial resolution. In this thesis, we draw on the field of deep learning to help transform this century-old brain imaging modality from a purely clinical- and research-focused tool, to a practical technology that can benefit individuals in their day-to-day life. First, we study how unlabelled EEG data can be utilized to gain insights and improve performance on common clinical learning tasks using self-supervised learning. We present three such self-supervised approaches that rely on the temporal structure of the data itself, rather than onerously collected labels, to learn clinically-relevant representations. Through experiments on large-scale datasets of sleep and neurological screening recordings, we demonstrate the significance of the learned representations, and show how unlabelled data can help boost performance in a semi-supervised scenario. Next, we explore ways to ensure neural networks are robust to the strong sources of noise often found in out-of-the-lab EEG recordings. Specifically, we present Dynamic Spatial Filtering, an attention mechanism module that allows a network to dynamically focus its processing on the most informative EEG channels while de-emphasizing any corrupted ones. Experiments on large-scale datasets and real-world data demonstrate that, on sparse EEG, the proposed attention block handles strong corruption better than an automated noise handling approach, and that the predicted attention maps can be interpreted to inspect the functioning of the neural network. Finally, we investigate how weak labels can be used to develop a biomarker of neurophysiological health from real-world EEG. We translate the brain age framework, originally developed using lab and clinic-based magnetic resonance imaging, to real-world EEG data. Using recordings from more than a thousand individuals performing a focused attention exercise or sleeping overnight, we show not only that age can be predicted from wearable EEG, but also that age predictions encode information contained in well-known brain health biomarkers, but not in chronological age. Overall, this thesis brings us a step closer to harnessing EEG for neurophysiological monitoring outside of traditional research and clinical contexts, and opens the door to new and more flexible applications of this technology
GONZALEZ, JONAS PIERRE GUSTAVO. "Self-supervised solutions for developmental learning with the humanoid robot iCub." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1047609.
Full textChen, Zhiang. "Deep-learning Approaches to Object Recognition from 3D Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1496303868914492.
Full textYu, Lu. "Semantic representation: from color to deep embeddings." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669458.
Full textUno de los problemas fundamentales de la visión por computador es representar imágenes con descripciones compactas semánticamente relevantes. Estas descripciones podrían utilizarse en una amplia variedad de aplicaciones, como la comparación de imágenes, la detección de objetos y la búsqueda de vídeos. El objetivo principal de esta tesis es estudiar las representaciones de imágenes desde dos aspectos: las descripciones de color y las descripciones profundas con redes neuronales. En la primera parte de la tesis partimos de descripciones de color modeladas a mano. Existen nombres comunes en varias lenguas para los colores básicos, y proponemos un método para extender los nombres de colores adicionales de acuerdo con su naturaleza complementaria a los básicos. Esto nos permite calcular representaciones de nombres de colores de longitud arbitraria con un alto poder discriminatorio. Los experimentos psicofísicos confirman que el método propuesto supera a los marcos de referencia existentes. En segundo lugar, al agregar estrategias de atención, aprendemos descripciones de colores profundos con redes neuronales a partir de datos con anotaciones para la imagen en vez de para cada uno de los píxeles. La estrategia de atención logra identificar correctamente las regiones relevantes para cada clase que queremos evaluar. La ventaja del enfoque propuesto es que los nombres de colores a usar se pueden aprender específicamente para dominios de los que no existen anotaciones a nivel de píxel. En la segunda parte de la tesis, nos centramos en las descripciones profundas con redes neuronales. En primer lugar, abordamos el problema de comprimir grandes redes de descriptores en redes más pequeñas, manteniendo un rendimiento similar. Proponemos destilar las métricas de una red maestro a una red estudiante. Se introducen dos nuevas funciones de coste para modelar la comunicación de la red maestro a una red estudiante más pequeña: una basada en un maestro absoluto, donde el estudiante pretende producir los mismos descriptores que el maestro, y otra basada en un maestro relativo, donde las distancias entre pares de puntos de datos son comunicadas del maestro al alumno. Además, se han investigado diversos aspectos de la destilación para las representaciones, incluidas las capas de atención, el aprendizaje semi-supervisado y la destilación de calidad cruzada. Finalmente, se estudia otro aspecto del aprendizaje por métrica profundo, el aprendizaje continuado. Observamos que se produce una variación del conocimiento aprendido durante el entrenamiento de nuevas tareas. En esta tesis se presenta un método para estimar la variación semántica en función de la variación que experimentan los datos de la tarea actual durante su aprendizaje. Teniendo en cuenta esta estimación, las tareas anteriores pueden ser compensadas, mejorando así su rendimiento. Además, mostramos que las redes de descripciones profundas sufren significativamente menos olvidos catastróficos en comparación con las redes de clasificación cuando aprenden nuevas tareas.
One of the fundamental problems of computer vision is to represent images with compact semantically relevant embeddings. These embeddings could then be used in a wide variety of applications, such as image retrieval, object detection, and video search. The main objective of this thesis is to study image embeddings from two aspects: color embeddings and deep embeddings. In the first part of the thesis we start from hand-crafted color embeddings. We propose a method to order the additional color names according to their complementary nature with the basic eleven color names. This allows us to compute color name representations with high discriminative power of arbitrary length. Psychophysical experiments confirm that our proposed method outperforms baseline approaches. Secondly, we learn deep color embeddings from weakly labeled data by adding an attention strategy. The attention branch is able to correctly identify the relevant regions for each class. The advantage of our approach is that it can learn color names for specific domains for which no pixel-wise labels exists. In the second part of the thesis, we focus on deep embeddings. Firstly, we address the problem of compressing large embedding networks into small networks, while maintaining similar performance. We propose to distillate the metrics from a teacher network to a student network. Two new losses are introduced to model the communication of a deep teacher network to a small student network: one based on an absolute teacher, where the student aims to produce the same embeddings as the teacher, and one based on a relative teacher, where the distances between pairs of data points is communicated from the teacher to the student. In addition, various aspects of distillation have been investigated for embeddings, including hint and attention layers, semi-supervised learning and cross quality distillation. Finally, another aspect of deep metric learning, namely lifelong learning, is studied. We observed some drift occurs during training of new tasks for metric learning. A method to estimate the semantic drift based on the drift which is experienced by data of the current task during its training is introduced. Having this estimation, previous tasks can be compensated for this drift, thereby improving their performance. Furthermore, we show that embedding networks suffer significantly less from catastrophic forgetting compared to classification networks when learning new tasks.
Chen, Mickaël. "Learning with weak supervision using deep generative networks." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS024.
Full textMany successes of deep learning rely on the availability of massive annotated datasets that can be exploited by supervised algorithms. Obtaining those labels at a large scale, however, can be difficult, or even impossible in many situations. Designing methods that are less dependent on annotations is therefore a major research topic, and many semi-supervised and weakly supervised methods have been proposed. Meanwhile, the recent introduction of deep generative networks provided deep learning methods with the ability to manipulate complex distributions, allowing for breakthroughs in tasks such as image edition and domain adaptation. In this thesis, we explore how these new tools can be useful to further alleviate the need for annotations. Firstly, we tackle the task of performing stochastic predictions. It consists in designing systems for structured prediction that take into account the variability in possible outputs. We propose, in this context, two models. The first one performs predictions on multi-view data with missing views, and the second one predicts possible futures of a video sequence. Then, we study adversarial methods to learn a factorized latent space, in a setting with two explanatory factors but only one of them is annotated. We propose models that aim to uncover semantically consistent latent representations for those factors. One model is applied to the conditional generation of motion capture data, and another one to multi-view data. Finally, we focus on the task of image segmentation, which is of crucial importance in computer vision. Building on previously explored ideas, we propose a model for object segmentation that is entirely unsupervised
Hellström, Erik. "Feature learning with deep neural networks for keystroke biometrics : A study of supervised pre-training and autoencoders." Thesis, Luleå tekniska universitet, Datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-67206.
Full textRossi, Alex. "Self-supervised information retrieval: a novel approach based on Deep Metric Learning and Neural Language Models." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textGranström, Daria, and Johan Abrahamsson. "Loan Default Prediction using Supervised Machine Learning Algorithms." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252312.
Full textDet är nödvändigt för en bank att ha en bra uppskattning på hur stor risk den bär med avseende på kunders fallissemang. Olika statistiska metoder har använts för att estimera denna risk, men med den nuvarande utvecklingen inom maskininlärningsområdet har det väckt ett intesse att utforska om maskininlärningsmetoder kan förbättra kvaliteten på riskuppskattningen. Syftet med denna avhandling är att undersöka vilken metod av de implementerade maskininlärningsmetoderna presterar bäst för modellering av fallissemangprediktion med avseende på valda modelvaldieringsparametrar. De implementerade metoderna var Logistisk Regression, Random Forest, Decision Tree, AdaBoost, XGBoost, Artificiella neurala nätverk och Stödvektormaskin. En översamplingsteknik, SMOTE, användes för att behandla obalansen i klassfördelningen för svarsvariabeln. Resultatet blev följande: XGBoost utan implementering av SMOTE visade bäst resultat med avseende på den valda metriken.
Berlin, Daniel. "Multi-class Supervised Classification Techniques for High-dimensional Data: Applications to Vehicle Maintenance at Scania." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209257.
Full textMånga gånger i samband med fordonsreparationer är felsökningen mer tidskrävande än själva reparationen. Således skulle en systematisk metod för att noggrant prediktera felkällan vara ett värdefullt verktyg för att diagnostisera reparationsåtgärder. I denna uppsats undersöks möjligheten att använda Diagnostic Trouble Codes (DTC:er), som genereras av de elektroniska systemen i Scanias fordon, som indikatorer för att peka ut felorsaken. Till grund för analysen användes ca 18800 observationer av fordon där både DTC:er samt utbytta delar kunnat identifieras under perioden mars 2016 - mars 2017. Två olika strategier för att generera klasser har utvärderats. Till många av klasserna fanns det endast ett fåtal observationer, och för att ge de prediktiva modellerna bra förutsättningar så användes endast klasser med tillräckligt många observationer i träningsdata. Efter bearbetning kunde data innehålla 1547 observationer 4168 attribut, vilket demonstrerar problemets höga dimensionalitet och gör det omöjligt att applicera standard metoder för statistisk analys på stora datamängder. Två metoder för övervakad statistisk inlärning, lämpliga för högdimensionell data med multipla klasser, Södvectormaskiner (SVM) samt Neurala Nätverk (NN) implementeras och deras resultat utvärderas. Analysen visade att på data med 1547 observationer av 4168 attribut (unika DTC:er) och 7 klasser kunde SVM prediktera observationer till klasserna med 79.4% noggrannhet jämfört med 75.4% för NN. De slutsatser som kunde dras av analysen var att DTC:er tycks ha potential att användas för att indikera felorsaker med en prediktiv modell, men att den data som ligger till grund för analysen bör förbättras för att öka noggrannheten i de prediktiva modellerna. Framtida forskningsmöjligheter för att ytterligare förbättra samt utveckla modellen, tillsammans med förslag för hur övervakade klassificerings modeller kan användas på Scnaia har identifierats.
Viebke, André. "Accelerated Deep Learning using Intel Xeon Phi." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-45491.
Full textChandra, Nagasai. "Node Classification on Relational Graphs using Deep-RGCNs." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2265.
Full textBaradel, Fabien. "Structured deep learning for video analysis." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI045.
Full textWith the massive increase of video content on Internet and beyond, the automatic understanding of visual content could impact many different application fields such as robotics, health care, content search or filtering. The goal of this thesis is to provide methodological contributions in Computer Vision and Machine Learning for automatic content understanding from videos. We emphasis on problems, namely fine-grained human action recognition and visual reasoning from object-level interactions. In the first part of this manuscript, we tackle the problem of fine-grained human action recognition. We introduce two different trained attention mechanisms on the visual content from articulated human pose. The first method is able to automatically draw attention to important pre-selected points of the video conditioned on learned features extracted from the articulated human pose. We show that such mechanism improves performance on the final task and provides a good way to visualize the most discriminative parts of the visual content. The second method goes beyond pose-based human action recognition. We develop a method able to automatically identify unstructured feature clouds of interest in the video using contextual information. Furthermore, we introduce a learned distributed system for aggregating the features in a recurrent manner and taking decisions in a distributed way. We demonstrate that we can achieve a better performance than obtained previously, without using articulated pose information at test time. In the second part of this thesis, we investigate video representations from an object-level perspective. Given a set of detected persons and objects in the scene, we develop a method which learns to infer the important object interactions through space and time using the video-level annotation only. That allows to identify important objects and object interactions for a given action, as well as potential dataset bias. Finally, in a third part, we go beyond the task of classification and supervised learning from visual content by tackling causality in interactions, in particular the problem of counterfactual learning. We introduce a new benchmark, namely CoPhy, where, after watching a video, the task is to predict the outcome after modifying the initial stage of the video. We develop a method based on object- level interactions able to infer object properties without supervision as well as future object locations after the intervention
Zhao, Yan. "Deep learning methods for reverberant and noisy speech enhancement." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1593462119759348.
Full textDhyani, Dushyanta Dhyani. "Boosting Supervised Neural Relation Extraction with Distant Supervision." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524095334803486.
Full textMa, Yufeng. "Going Deeper with Images and Natural Language." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/99993.
Full textDoctor of Philosophy
Chen, Jitong. "On Generalization of Supervised Speech Separation." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492038295603502.
Full textTovedal, Sofiea. "On The Effectiveness of Multi-TaskLearningAn evaluation of Multi-Task Learning techniques in deep learning models." Thesis, Umeå universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172257.
Full textArvidsson, Simon, and Marcus Gullstrand. "Predicting forest strata from point clouds using geometric deep learning." Thesis, Jönköping University, JTH, Avdelningen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-54155.
Full textHrabovszki, Dávid. "Classification of brain tumors in weakly annotated histopathology images with deep learning." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177271.
Full textEvangelisti, Davide. "RL-UniBOt: Applicazione di tecniche di Reinforcement Learning al gioco Rocket League." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textNoman, Md Kislu. "Deep learning-based seagrass detection and classification from underwater digital images." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2023. https://ro.ecu.edu.au/theses/2648.
Full textJacobzon, Gustaf. "Multi-site Organ Detection in CT Images using Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279290.
Full textVid optimering av en kontrollerad dos inom strålbehandling krävs det information om friska organ, så kallade riskorgan, i närheten av de maligna cellerna för att minimera strålningen i dessa organ. Denna information kan tillhandahållas av djupa volymetriskta segmenteringsnätverk, till exempel 3D U-Net. Begränsningar i minnesstorleken hos moderna grafikkort gör att det inte är möjligt att träna ett volymetriskt segmenteringsnätverk på hela bildvolymen utan att först nedsampla volymen. Detta leder dock till en lågupplöst segmentering av organen som inte är tillräckligt precis för att kunna användas vid optimeringen. Ett alternativ är att endast behandla en intresseregion som innesluter ett eller ett fåtal organ från bildvolymen och träna ett regionspecifikt nätverk på denna mindre volym. Detta tillvägagångssätt kräver dock information om vilket område i bildvolymen som ska skickas till det regionspecifika segmenteringsnätverket. Denna information kan tillhandahållas av ett 3Dobjektdetekteringsnätverk. I regel är även detta nätverk regionsspecifikt, till exempel thorax-regionen, och kräver mänsklig assistans för att välja rätt nätverk för en viss region i kroppen. Vi föreslår istället ett multiregions-detekteringsnätverk baserat påYOLOv3 som kan detektera 43 olika organ och fungerar på godtyckligt valda axiella fönster i kroppen. Vår modell identifierar närvarande organ (hela eller trunkerade) i bilden och kan automatiskt ge information om vilken region som ska behandlas av varje regionsspecifikt segmenteringsnätverk. Vi tränar vår modell på fyra små (så lågt som 20 bilder) platsspecifika datamängder med svag övervakning för att hantera den delvis icke-annoterade egenskapen hos datamängderna. Vår modell genererar en organ-specifik intresseregion för 92 % av organen som finns i testmängden.