Dissertations / Theses on the topic 'Deep Recurrent Neural Network (DRNN)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Deep Recurrent Neural Network (DRNN).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tekin, Mim Kemal. "Vehicle Path Prediction Using Recurrent Neural Network." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166134.
Full textWang, Xutao. "Chinese Text Classification Based On Deep Learning." Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35322.
Full textWen, Tsung-Hsien. "Recurrent neural network language generation for dialogue systems." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275648.
Full textAyoub, Issa. "Multimodal Affective Computing Using Temporal Convolutional Neural Network and Deep Convolutional Neural Networks." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39337.
Full textJavid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique." Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.
Full textThe State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)
Parakkal, Sreenivasan Akshai. "Deep learning prediction of Quantmap clusters." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445909.
Full textPutchala, Manoj Kumar. "Deep Learning Approach for Intrusion Detection System (IDS) in the Internet of Things (IoT) Network using Gated Recurrent Neural Networks (GRU)." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1503680452498351.
Full textMohammadisohrabi, Ali. "Design and implementation of a Recurrent Neural Network for Remaining Useful Life prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textEngström, Isak. "Automated Gait Analysis : Using Deep Metric Learning." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178139.
Full textExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
Guan, Xing. "Predict Next Location of Users using Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263620.
Full textAtt förutspå vart en individ är på väg har varit intressant för både akademin och industrin. Tillämpningar såsom platsbaserad annonsering, trafikplanering, intelligent resursallokering samt rekommendationstjänster är några av de problem som många är intresserade av att lösa. Tillsammans med den tekniska utvecklingen och den omfattande användningen av elektroniska enheter har många platsbaserade data skapats. Idag har tekniken djupinlärning framgångsrikt överträffat många konventionella metoder i inlärningsuppgifter, bland annat inom områdena bild och röstigenkänning. En neural nätverksarkitektur som har visat lovande resultat med sekventiella data kallas återkommande neurala nätverk (RNN). Sedan skapandet av RNN har många alternativa arkitekturer skapats, bland de mest kända är Long Short Term Memory (LSTM) och Gated Recurrent Units (GRU). Den här studien använder en modifierad GRU där man bland annat lägger till attribut såsom tid och distans i nätverket för att prognostisera nästa plats. I det här examensarbetet har ett rumsligt temporalt neuralt nätverk (ST-GRU) föreslagits. Den består av två delar, nämligen ST och GRU. Den första delen är en extraktionsalgoritm som drar ut relevanta korrelationer mellan tid och plats som är inkorporerade i nätverket. Den andra delen, GRU, förutspår nästa plats med avseende på användarens aktuella plats. Studien visar att den föreslagna modellen ST-GRU ger bättre resultat jämfört med benchmarkmodellerna.
Mishra, Vishal Vijayshankar. "Sequence-to-Sequence Learning using Deep Learning for Optical Character Recognition (OCR)." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513273051760905.
Full textSantos, Claudio Filipi Gonçalves dos. "Optical character recognition using deep learning." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154100.
Full textRejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: Problema 01) Falta a FOLHA DE APROVAÇÃO (Obrigatório pela ABNT NBR14724) Problema 02) Corrigir a ordem das páginas pré-textuais; a ordem correta (capa, folha de rosto, dedicatória, agradecimentos, epígrafe, resumo na língua vernácula, resumo em língua estrangeira, listas de ilustrações, de tabelas, de abreviaturas, de siglas e de símbolos e sumário). Problema 03) Faltam as palavras-chave no resumo e no abstracts. Na página da Seção de pós-graduação, em Instruções para Qualificação e Defesas de Dissertação e Tese, você pode acessar o modelo das páginas pré-textuais. Lembramos que o arquivo depositado no repositório deve ser igual ao impresso, o rigor com o padrão da Universidade se deve ao fato de que o seu trabalho passará a ser visível mundialmente. Agradecemos a compreensão. on 2018-05-24T20:59:53Z (GMT)
Submitted by Claudio Filipi Gonçalves dos Santos (cfsantos85@gmail.com) on 2018-05-25T00:43:19Z No. of bitstreams: 1 optical-character-recognition-16052018.pdf: 11084990 bytes, checksum: 6f8d7431cd17efd931a31c0eade10c65 (MD5)
Rejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: Problema 01) Falta a FOLHA DE APROVAÇÃO (Obrigatório pela ABNT NBR14724) Problema 02) A paginação deve ser sequencial, iniciando a contagem na folha de rosto e mostrando o número a partir da introdução, a ficha catalográfica ficará após a folha de rosto e não deverá ser contada. Problema 03) Na descrição do item: Título em outro idioma – Se você colocou no título em inglês deve por neste campo o título em outro idioma (ex: português, espanhol, francês...) Estamos encaminhando via e-mail o template/modelo para que você possa fazer as correções. Lembramos que o arquivo depositado no repositório deve ser igual ao impresso, o rigor com o padrão da Universidade se deve ao fato de que o seu trabalho passará a ser visível mundialmente. Agradecemos a compreensão. on 2018-05-25T15:22:45Z (GMT)
Submitted by Claudio Filipi Gonçalves dos Santos (cfsantos85@gmail.com) on 2018-05-25T15:52:53Z No. of bitstreams: 1 optical-character-recognition-16052018.pdf: 11089966 bytes, checksum: d6c863077a995bd2519035b8a3e97c80 (MD5)
Rejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: Problema 01) Falta a FOLHA DE APROVAÇÃO (Obrigatório pela ABNT NBR14724) Agradecemos a compreensão. on 2018-05-25T18:03:19Z (GMT)
Submitted by Claudio Filipi Gonçalves dos Santos (cfsantos85@gmail.com) on 2018-05-25T18:08:09Z No. of bitstreams: 1 Claudio Filipi Gonçalves dos Santos Corrigido Biblioteca.pdf: 8257484 bytes, checksum: 3a61ebfa8e1d16c9d0c694f46b979c1f (MD5)
Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-05-25T18:51:24Z (GMT) No. of bitstreams: 1 santos_cfg_me_sjrp.pdf: 8257484 bytes, checksum: 3a61ebfa8e1d16c9d0c694f46b979c1f (MD5)
Made available in DSpace on 2018-05-25T18:51:24Z (GMT). No. of bitstreams: 1 santos_cfg_me_sjrp.pdf: 8257484 bytes, checksum: 3a61ebfa8e1d16c9d0c694f46b979c1f (MD5) Previous issue date: 2018-04-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Detectores óticos de caracteres, ou Optical Character Recognition (OCR) é o nome dado à técnologia de traduzir dados de imagens em arquivo de texto. O objetivo desse projeto é usar aprendizagem profunda, também conhecido por aprendizado hierárquico ou Deep Learning para o desenvolvimento de uma aplicação com a habilidade de detectar áreas candidatas, segmentar esses espaços dan imagem e gerar o texto contido na figura. Desde 2006, Deep Learning emergiu como uma nova área em aprendizagem de máquina. Em tempos recentes, as técnicas desenvolvidas em pesquisas com Deep Learning têm influenciado e expandido escopo, incluindo aspectos chaves nas área de inteligência artificial e aprendizagem de máquina. Um profundo estudo foi conduzido com a intenção de desenvolver um sistema OCR usando apenas arquiteturas de Deep Learning.A evolução dessas técnicas, alguns trabalhos passados e como esses trabalhos influenciaram o desenvolvimento dessa estrutura são explicados nesse texto. Essa tese demonstra com resultados como um classificador de caracteres foi desenvolvido. Em seguida é explicado como uma rede neural pode ser desenvolvida para ser usada como um detector de objetos e como ele pode ser transformado em um detector de texto. Logo após é demonstrado como duas técnicas diferentes de Deep Learning podem ser combinadas e usadas na tarefa de transformar segmentos de imagens em uma sequência de caracteres. Finalmente é demonstrado como o detector de texto e o sistema transformador de imagem em texto podem ser combinados para se desenvolver um sistema OCR completo que detecta regiões de texto nas imagens e o que está escrito nessa região. Esse estudo demonstra que a idéia de usar apenas estruturas de Deep Learning podem ter performance melhores do técnicas baseadas em outras áreas da computação como por exemplo o processamento de imagens. Para detecção de texto foi alcançado mais de 70% de precisão quando uma arquitetura mais complexa foi usada, por volta de 69% de traduções de imagens para texto corretas e por volta de 50% na tarefa ponta-à-ponta de detectar as áreas de texto e traduzi-las em sequência de caracteres.
Optical Character Recognition (OCR) is the name given to the technology used to translate image data into a text file. The objective of this project is to use Deep Learning techniques to develop a software with the ability to segment images, detecting candidate characters and generating textthatisinthepicture. Since2006,DeepLearningorhierarchicallearning, emerged as a new machine learning area. Over recent years, the techniques developed from deep learning research have influenced and expanded scope, including key aspects of artificial intelligence and machine learning. A thorough study was carried out in order to develop an OCR system using only Deep Learning architectures. It is explained the evolution of these techniques, some past works and how they influenced thisframework’sdevelopment. Inthisthesisitisdemonstratedwithresults how a single character classifier was developed. Then it is explained how a neural network can be developed to be an object detector and how to transform this object detector into a text detector. After that it shows how a set of two Deep Learning techniques can be combined and used in the taskoftransformingacroppedregionofanimageinastringofcharacters. Finally, it demonstrates how the text detector and the Image-to-Text systemswerecombinedinordertodevelopafullend-to-endOCRsystemthat detects the regions of a given image containing text and what is written in this region. It shows the idea of using only Deep Learning structures can outperform other techniques based on other areas like image processing. In text detection it reached over 70% of precision when a more complex architecture was used, around 69% of correct translation of image-to-text areasandaround50%onend-to-endtaskofdetectingareasandtranslating them into text.
1623685
Talevi, Luca, and Luca Talevi. "“Decodifica di intenzioni di movimento dalla corteccia parietale posteriore di macaco attraverso il paradigma Deep Learning”." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17846/.
Full textWang, Wei. "Event Detection and Extraction from News Articles." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82238.
Full textPh. D.
Odinsdottir, Gudny Björk, and Jesper Larsson. "Deep Learning Approach for Extracting Heart Rate Variability from a Photoplethysmographic Signal." Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-21368.
Full textHolm, Noah, and Emil Plynning. "Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.
Full textGustafsson, Anton, and Julian Sjödal. "Energy Predictions of Multiple Buildings using Bi-directional Long short-term Memory." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43552.
Full textSláma, Štěpán. "Pokročilá klasifikace poruch srdečního rytmu v EKG." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413024.
Full textSuta, Adin. "Multilabel text classification of public procurements using deep learning intent detection." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252558.
Full textData i form av text är en av de mest utbredda formerna av data och mängden tillgänglig textdata runt om i världen ökar i snabb takt. Text kan tolkas som en följd av bokstäver eller ord, där tolkning av text i form av ordföljder är absolut vanligast. Genombrott inom artificiell intelligens under de senaste åren har medfört att fler och fler arbetsuppgifter med koppling till text assisteras av automatisk textbearbetning. Modellerna som introduceras i denna uppsats är baserade på djupa artificiella neuronnät med sekventiell bearbetning av textdata, som med hjälp av regression förutspår tillhörande ämnesområde för den inmatade texten. Flera modeller och tillhörande hyperparametrar utreds och jämförs enligt prestanda. Datamängden som använts är tillhandahållet av e-Avrop, ett svenskt företag som erbjuder en webbtjänst för offentliggörande och budgivning av offentliga upphandlingar. Datamängden består av titlar, beskrivningar samt tillhörande ämneskategorier för offentliga upphandlingar inom Sverige, tagna från e-Avrops webtjänst. När texterna är märkta med ett flertal kategorier, föreslås en algoritm baserad på ett djupt artificiellt neuronnät med sekventiell bearbetning, där en mängd klassificeringsmodeller används. Varje sådan modell använder en av de märkta kategorierna tillsammans med den tillhörande texten, som skapar en mängd av text - kategori par. Målet är att utreda huruvida dessa klassificerare kan uppvisa olika former av uppsåt som teoretiskt sett borde vara medfört från de olika datamängderna modellerna mottagit.
Andersson, Aron, and Shabnam Mirkhani. "Portfolio Performance Optimization Using Multivariate Time Series Volatilities Processed With Deep Layering LSTM Neurons and Markowitz." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273617.
Full textAktiemarknaden är en icke-linjär marknad, men många av de mest kända portföljoptimerings algoritmerna är baserad på linjära modeller. Under de senaste åren har den snabba utvecklingen inom maskininlärning skapat flexibla modeller som kan extrahera information ur komplexa mönster. I det här examensarbetet föreslår vi två sätt att optimera en portfölj, ett där ett neuralt nätverk utvecklas med avseende på multivariata tidsserier och ett annat där vi använder den linjära Markowitz modellen, där vi även lägger ett exponentiellt rörligt medelvärde på prisdatan. Ingångsdatan till vårt neurala nätverk är de dagliga slutpriserna, volymerna och marknadsindikatorer som t.ex. volatilitetsindexet VIX. Utgångsvariablerna kommer vara de predikterade priserna för nästa dag, som sedan bearbetas ytterligare för att producera mätvärden såsom förväntad avkastning, volatilitet och Sharpe ratio. LSTM-modellen producerar en portfölj med avkastning och risk som ligger närmre de verkliga marknadsförhållandena, men däremot gav resultatet ett högt felvärde och det visar att vår LSTM-modell är otillräckligt för att använda som ensamt predikteringssverktyg. Med det sagt så gav det ändå en bättre prediktion när det gäller trender än vad vi antog den skulle göra. Vår slutsats är därför att man bör använda flera neurala nätverk som indikatorer, där var och en är ansvarig för någon specifikt aspekt man vill analysera, och baserat på dessa dra en slutsats. Vårt resultat tyder också på att inmatningsdatan bör övervägas mera noggrant, eftersom predikteringsnoggrannheten.
He, Fan. "Real-time Process Modelling Based on Big Data Stream Learning." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35823.
Full textPrencipe, Michele Pio. "Elaborazione del Linguaggio Naturale con Metodi Probabilistici e Reti Neurali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24312/.
Full textCîrstea, Bogdan-Ionut. "Contribution à la reconnaissance de l'écriture manuscrite en utilisant des réseaux de neurones profonds et le calcul quantique." Electronic Thesis or Diss., Paris, ENST, 2018. http://www.theses.fr/2018ENST0059.
Full textIn this thesis, we provide several contributions from the fields of deep learning and quantum computation to handwriting recognition. We begin by integrating some of the more recent deep learning techniques (such as dropout, batch normalization and different activation functions) into convolutional neural networks and show improved performance on the well-known MNIST dataset. We then propose Tied Spatial Transformer Networks (TSTNs), a variant of Spatial Transformer Networks (STNs) with shared weights, as well as different training variants of the TSTN. We show improved performance on a distorted variant of the MNIST dataset. In another work, we compare the performance of Associative Long Short-Term Memory (ALSTM), a recently introduced recurrent neural network (RNN) architecture, against Long Short-Term Memory (LSTM), on the Arabic handwriting recognition IFN-ENIT dataset. Finally, we propose a neural network architecture, which we name a hybrid classical-quantum neural network, which can integrate and take advantage of quantum computing. While our simulations are performed using classical computation (on a GPU), our results on the Fashion-MNIST dataset suggest that exponential improvements in computational requirements might be achievable, especially for recurrent neural networks trained for sequence classification
Nilsson, Mathias, and Corswant Sophie von. "How Certain Are You of Getting a Parking Space? : A deep learning approach to parking availability prediction." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166989.
Full textKeisala, Simon. "Using a Character-Based Language Model for Caption Generation." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163001.
Full textЧапалюк, Богдан Володимирович. "Системи автоматичної медичної комп’ютерної дiагностики з використанням методiв штучного iнтелекту." Doctoral thesis, Київ, 2020. https://ela.kpi.ua/handle/123456789/39677.
Full textLu, Tsai-Wei, and 盧采威. "Tikhonov regularization for deep recurrent neural network acoustic modeling." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/70636533678066549649.
Full text國立交通大學
電信工程研究所
102
Deep learning has been widely demonstrated to achieve high performance in many classification tasks. Deep neural network is now a new trend in the areas of automatic speech recognition. In this dissertation, we deal with the issue of model regularization in deep recurrent neural network and develop the deep acoustic models for speech recognition in noisy environments. Our idea is to compensate the variations of input speech data in the restricted Boltzmann machine (RBM) which is applied as a pre-training stage for feature learning and acoustic modeling. We implement the Tikhonov regularization in pre-training procedure and build the invariance properties in acoustic neural network model. The regularization based on weight decay is further combined with Tikhonov regularization to increase the mixing rate of the alternating Gibbs Markov chain so that the contrastive divergence training tends to approximate the maximum likelihood learning. In addition, the backpropagation through time (BPTT) algorithm is developed in modified truncated minibatch training for recurrent neural network. This algorithm is not implemented in the recurrent weights but also in the weights between previous layer and recurrent layer. In the experiments, we carry out the proposed methods using the open-source Kaldi toolkit. The experimental results using the speech corpora of Resource Management (RM) and Aurora4 show that the ideas of hybrid regularization and BPTT training do improve the performance of deep neural network acoustic model for robust speech recognition.
Yu, Kuo, and 俞果. "Complex-Valued Deep Recurrent Neural Network for Singing Voice Separation." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/4waab5.
Full text國立中央大學
資訊工程學系
105
Deep neural networks (DNN) have performed impressively in the processing of multimedia signals. Most DNN-based approaches were developed to handle real-valued data; very few have been designed for complex-valued data, despite their being essential for processing various types of multimedia signal. Accordingly, this work presents a complex-valued deep recurrent neural network (C-DRNN) for singing voice separation. The C-DRNN operates on the complex-valued short-time discrete Fourier transform (STFT) domain. A key aspect of the C-DRNN is that the activations and weights are complex-valued. The goal herein is to reconstruct the singing voice and the background music from a mixed signal. For error back-propagation, CR-calculus is utilized to calculate the complex-valued gradients of the objective function. To reinforce model regularity, two constraints are incorporated into the cost function of the C-DRNN. The first is an additional masking layer that ensures the sum of separated sources equals the input mixture. The second is a discriminative term that preserves the mutual difference between two separated sources. Finally, the proposed method is evaluated using the MIR-1K dataset and a singing voice separation task. Experimental results demonstrate that the proposed method outperforms the state-of-the-art DNN-based methods.
CHUANG, YI-TING, and 莊宜庭. "A PM2.5 Prediction Model Based on Deep Learning with Recurrent Neural Network." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/sfu623.
Full text東海大學
資訊管理學系
107
In recent years, many studies have verified that air pollution will seriously affect human health. In addition, the media reported many issues concerning air pollution, so people have begun to pay attention to its existence. This study analyzes the data of the Environmental Protection Administration air quality immediate pollution indicators in 2018. Five methods are used to deal with the missing values. The main correlation variables affecting the PM25 concentration are identified by principal component analysis and correlation coefficients (single factor: PM10, SO2, NOX, NO2, CO, two-factor: NOX+NO2+CO, SO2+PM10), and the Long-Short Term Memory Model (LSTM) of the Recurrent Neural Network (RNN) was used to model the PM25 concentration model for the next 8 hours. According to the research results, most of the errors between the predicted and true values of Fengyuan Station fall within the reasonable range of MAPE (0.2~0.5). In addition, the best way to deal with the missing value is linear interpolation.
Lopes, Ana Patrícia Ribeiro. "Study of Deep Neural Network architectures for medical image segmentation." Master's thesis, 2020. http://hdl.handle.net/1822/69850.
Full textMedical image segmentation plays a crucial role in the medical field, since it allows performing quantitative analyses used for screening, monitoring and planning the treatment of numerous pathologies. Manual segmentation is time-consuming and prone to inter-rater variability. Thus, several automatic approaches have been proposed for medical image segmentation and most are based on Deep Learning. These approaches became specially relevant after the development of the Fully Convolutional Network. In this method, the fully-connected layers were eliminated and upsampling layers were incorporated, allowing one image to be segmented at once. Nowadays, the developed architectures are based on the FCN, being U-Net one of the most popular. The aim of this dissertation is to study Deep Learning architectures for medical image segmentation. Two challenging and very distinct tasks were selected, namely, retinal vessel segmentation from retinal fundus images and brain tumor segmentation from MRI images. The architectures studied in this work are based on the U-Net, due to high performances obtained in multiple medical segmentation tasks. The models developed for retinal vessel and brain tumor segmentation were tested in publicly available databases, DRIVE and BRATS 2017, respectively. Several studies were performed for the first segmentation task, namely, comparison of downsampling operations, replacement of a downsampling step with dilated convolutions, incorporation of a RNN-based layer and application of test time data augmentation techniques. In the second segmentation task, three modifications were evaluated, specifically, the incorporation of long skip connections, the substitution of standard convolutions with dilated convolutions and the replacement of a downsampling step with dilated convolutions. Regarding retinal vessel segmentation, the final approach achieved accuracy, sensitivity and AUC of 0.9575, 0.7938 and 0.9804, respectively. This approach consists on a U-Net, containing one strided convolution as downsampling step and dilated convolutions with dilation rate of 3, followed by a test time data augmentation technique, performed by a ConvLSTM. Regarding brain tumor segmentation, the proposed approach achieved Dice of 0.8944, 0.8051 and 0.7353 and HD95 of 6.79, 8.34 and 4.76 for complete, core and enhanced regions, respectively. The final method consists on a DLA architecture with a long skip connection and dilated convolutions with dilation rate of 2. For both tasks, the proposed approach is competitive with state-of-the-art methods.
A segmentação de imagens médicas desempenha um papel fundamental na área médica, pois permite realizar análises quantitativas usadas no rastreio, monitorização e planeamento do tratamento de inúmeras patologias. A segmentação manual é demorada e varia consoante o técnico. Assim, diversas abordagens automáticas têm sido propostas para a segmentação de imagens médicas e a maioria é baseada em Deep Learning. Estas abordagens tornaram-se especialmente relevantes após o desenvolvimento da Fully Convolutional Network. Neste método, as camadas totalmente ligadas foram eliminadas e foram incorporadas camadas de upsampling, permitindo que uma imagem seja segmentada de uma só vez. Atualmente, as arquiteturas desenvolvidas baseiam-se na FCN, sendo a U-Net uma das mais populares. O objetivo desta dissertação é estudar arquiteturas de Deep Learning para a segmentação de imagens médicas. Foram selecionadas duas tarefas desafiantes e muito distintas, a segmentação de vasos retinianos a partir de imagens do fundo da retina e a segmentação de tumores cerebrais a partir de imagens de MRI. As arquiteturas estudadas neste trabalho são baseadas na U-Net, devido às elevadas performances que esta obteve em diversas tarefas de segmentação médica. Os modelos desenvolvidos para segmentação de vasos retinianos e de tumores cerebrais foram testados em bases de dados públicas, DRIVE and BRATS 2017, respetivamente. Vários estudos foram realizados para a primeira tarefa, nomeadamente, comparação de operações de downsampling, substituição de uma camada de downsampling por convoluções dilatadas, incorporação de uma camada composta por RNNs e aplicação de técnicas de aumento de dados na fase de teste. Na segunda tarefa, três modificações foram avaliadas, a incorporação de long skip connections, a substituição de convoluções standard por convoluções dilatadas e a substituição de uma camada de downsampling por convoluções dilatadas. Quanto à segmentação de vasos retinianos, a abordagem final obteve accuracy, sensibilidade e AUC de 0.9575, 0.7938 e 0.9804, respetivamente. Esta abordagem consiste numa U-Net, que contém uma convolução strided como operação de downsampling e convoluções dilatadas com dilation rate de 3, seguida de uma técnica de aumento de dados em fase de teste, executada por uma ConvLSTM. Em relação à segmentação de tumores cerebrais, a bordagem proposta obteve Dice de 0.8944, 0.8051 e 0.7353 e HD95 de 6.79, 8.34 e 4.76 para o tumor completo, região central e região contrastante, respetivamente. O método final consiste numa arquitetura DLA com uma long skip connection e convoluções dilatadas com dilation rate de 2. As duas abordagens são competitivas com os métodos do estado da arte.
Hong, Zih-Siang, and 洪梓翔. "Using Ensemble Learning and Deep Recurrent Neural Network to Construct an Internet Forum Conversation Prediction Model." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/s67dep.
Full text中原大學
資訊管理研究所
106
The study on natural language dialogue or conversation involves language understanding, reasoning, and basic common sense, therefore it is one of the most challenging artificial intelligence issues. To design a common and general conversation model is even more complicated and difficult. In the past, the studies on natural language processing and dialogue mainly focused on the rule-based and machine learning-based methods. Although these methods can solve part of the dialogue problems in the specific fields, but they have their own learning bottlenecks. Until recurrent neural networks (RNN) and sequence to sequence model is proposed, the research in this field has been further breakthrough. However, although deep learning can automatically extract the features of a large number of dialogue data, it has high requirements on the quantity and quality of data sets, and has the overfitting problem. Therefore, how to extract the useful features from the limited training dataset, and achieve model generalization ability in different situations, is the challenge of deep learning in the natural language dialogue problem. This project is titled “Conversation Model using Deep Recurrent Neural Networks with Ensemble Learning”. The advantage of the ensemble learning is that it enhances the generalization ability of the model to reinforce the prediction, and make the model suitable for the prediction of various contexts and scenarios. In this study, ensemble learning will be applied to the natural language dialogue and conversation model in various and complex contexts and scenarios. This method is a deep neural network conversation model, using the ensemble learning method to train the sub-prediction model of multiple different types, different parameters, and different training data sets. Then to obtain the prediction results by the specific designed ensemble strategy. Through a number of sub-models jointly predicted and judged to get a generalized conversation prediction model.
Ting, Tzu-hsuan, and 丁子軒. "Combining Deep De-noising Auto-encoder and Recurrent Neural Network in End-to-end Speech Recognition for Noise Robustness." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/nrcpz2.
Full text國立中山大學
資訊工程學系研究所
106
In this paper, we implement an end-to-end noise-robustness speech recognition system on Aurora 2.0 dataset through combining deep de-noising auto-encoders and recurrent neural networks. At front-end we use fully connected auto-encoder (FCDAE) to deal with noisy data. We propose two efficient methods to improve denoising performance when training FCDAE. The first method is to plus different weights for the loss value of distinct signal-to-noise ratio data. The second method is change the way of use on training data. Finally, we combine the two methods and get the best experimental results. For the back-end speech recognition, we use an end-to-end system based on bidirectional recurrent neural network which is trained via connectionist temporal classification criterion, and compared to a baseline backend based on hidden Markov models and Gaussian mixture models (HMM-GMM). With integrating FCDAE and recognition models, we get 94.20% word accuracy rate in clean condition, and 94.24% word accuracy rate in multi condition. The two results have a relative improvement rate of 65% and 20% compared with the baseline experiments, of which 94.20% is obtained by the FCDAE and HMM-GMM, and 94.24% is obtained by combining the FCDAE and bidirectional recurrent neural network.
Sha, Hao. "Solving Prediction Problems from Temporal Event Data on Networks." Thesis, 2021. http://dx.doi.org/10.7912/C2/46.
Full textMany complex processes can be viewed as sequential events on a network. In this thesis, we study the interplay between a network and the event sequences on it. We first focus on predicting events on a known network. Examples of such include: modeling retweet cascades, forecasting earthquakes, and tracing the source of a pandemic. In specific, given the network structure, we solve two types of problems - (1) forecasting future events based on the historical events, and (2) identifying the initial event(s) based on some later observations of the dynamics. The inverse problem of inferring the unknown network topology or links, based on the events, is also of great important. Examples along this line include: constructing influence networks among Twitter users from their tweets, soliciting new members to join an event based on their participation history, and recommending positions for job seekers according to their work experience. Following this direction, we study two types of problems - (1) recovering influence networks, and (2) predicting links between a node and a group of nodes, from event sequences.
Gao, Jun. "Omni SCADA intrusion detection." Thesis, 2020. http://hdl.handle.net/1828/11745.
Full textGraduate
Goyette, Kyle. "On two sequential problems : the load planning and sequencing problem and the non-normal recurrent neural network." Thesis, 2020. http://hdl.handle.net/1866/24314.
Full textLe travail de cette thèse est divisé en deux parties. La première partie traite du problème de planification et de séquencement des chargements de conteneurs sur des wagons, un problème opérationnel rencontré dans de nombreux terminaux ferroviaires intermodaux. Dans ce problème, les conteneurs doivent être affectés à une plate-forme sur laquelle un ou deux conteneurs seront chargés et l'ordre de chargement doit être déterminé. Ces décisions sont prises dans le but de minimiser les coûts associés à la manutention des conteneurs, ainsi que de minimiser le coût des conteneurs non chargés. La version déterministe du problème peut être formulé comme un problème de plus court chemin sur un graphe ordonné. Ce problème est difficile à résoudre en raison de la grande taille du graphe. Nous proposons une heuristique en deux étapes basée sur l'algorithme Iterative Deepening A* pour calculer des solutions au problème de planification et de séquencement de la charge dans un budget de cinq minutes. Ensuite, nous illustrons également comment un algorithme d'apprentissage Deep Q peut être utilisé pour résoudre heuristiquement le même problème. La deuxième partie de cette thèse examine les modèles séquentiels en apprentissage profond. Une stratégie récente pour contourner le problème de gradient qui explose et disparaît dans les réseaux de neurones récurrents (RNN) consiste à imposer des matrices de poids récurrentes orthogonales ou unitaires. Bien que cela assure une dynamique stable pendant l'entraînement, cela se fait au prix d'une expressivité réduite en raison de la variété limitée des transformations orthogonales. Nous proposons une paramétrisation des RNN, basée sur la décomposition de Schur, qui atténue les problèmes de gradient, tout en permettant des matrices de poids récurrentes non orthogonales dans le modèle.
"Sequencing Behavior in an Intelligent Pro-active Co-Driver System." Doctoral diss., 2020. http://hdl.handle.net/2286/R.I.57049.
Full textDissertation/Thesis
Doctoral Dissertation Computer Engineering 2020
(11048391), Hao Sha. "SOLVING PREDICTION PROBLEMS FROM TEMPORAL EVENT DATA ON NETWORKS." Thesis, 2021.
Find full textMany complex processes can be viewed as sequential events on a network. In this thesis, we study the interplay between a network and the event sequences on it. We first focus on predicting events on a known network. Examples of such include: modeling retweet cascades, forecasting earthquakes, and tracing the source of a pandemic. In specific, given the network structure, we solve two types of problems - (1) forecasting future events based on the historical events, and (2) identifying the initial event(s) based on some later observations of the dynamics. The inverse problem of inferring the unknown network topology or links, based on the events, is also of great important. Examples along this line include: constructing influence networks among Twitter users from their tweets, soliciting new members to join an event based on their participation history, and recommending positions for job seekers according to their work experience. Following this direction, we study two types of problems - (1) recovering influence networks, and (2) predicting links between a node and a group of nodes, from event sequences.