Academic literature on the topic 'Deep Recurrent Neural Network (DRNN)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep Recurrent Neural Network (DRNN).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep Recurrent Neural Network (DRNN)"
Wei, Chih-Chiang, and Ju-Yueh Cheng. "Nearshore two-step typhoon wind-wave prediction using deep recurrent neural networks." Journal of Hydroinformatics 22, no. 2 (October 24, 2019): 346–67. http://dx.doi.org/10.2166/hydro.2019.084.
Full textSharma, Sameer Dev, Sonal Sharma, Rajesh Singh, Anita Gehlot, Neeraj Priyadarshi, and Bhekisipho Twala. "Deep Recurrent Neural Network Assisted Stress Detection System for Working Professionals." Applied Sciences 12, no. 17 (August 30, 2022): 8678. http://dx.doi.org/10.3390/app12178678.
Full textYe, Kai-Qiang, Hong Gao, Ping Xiao, and Pei-Cheng Shi. "DRNN-based shift decision for automatic transmission." Advances in Mechanical Engineering 12, no. 11 (November 2020): 168781402097529. http://dx.doi.org/10.1177/1687814020975291.
Full textFan, J., Q. Li, J. Hou, X. Feng, H. Karimian, and S. Lin. "A Spatiotemporal Prediction Framework for Air Pollution Based on Deep RNN." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W2 (October 19, 2017): 15–22. http://dx.doi.org/10.5194/isprs-annals-iv-4-w2-15-2017.
Full textSun, Xinyao, Anup Basu, and Irene Cheng. "Multi-Sensor Motion Fusion Using Deep Neural Network Learning." International Journal of Multimedia Data Engineering and Management 8, no. 4 (October 2017): 1–18. http://dx.doi.org/10.4018/ijmdem.2017100101.
Full textPopoola, Segun I., Bamidele Adebisi, Ruth Ande, Mohammad Hammoudeh, Kelvin Anoh, and Aderemi A. Atayero. "SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks." Sensors 21, no. 9 (April 24, 2021): 2985. http://dx.doi.org/10.3390/s21092985.
Full textKim, Beom-Hun, and Jae-Young Pyun. "ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks." Sensors 20, no. 11 (May 29, 2020): 3069. http://dx.doi.org/10.3390/s20113069.
Full textSharma, Sameer Dev, Sonal Sharma, Rajesh Singh, Anita Gehlot, Neeraj Priyadarshi, and Bhekisipho Twala. "Stress Detection System for Working Pregnant Women Using an Improved Deep Recurrent Neural Network." Electronics 11, no. 18 (September 9, 2022): 2862. http://dx.doi.org/10.3390/electronics11182862.
Full textWei, Chih-Chiang. "Development of Stacked Long Short-Term Memory Neural Networks with Numerical Solutions for Wind Velocity Predictions." Advances in Meteorology 2020 (July 23, 2020): 1–18. http://dx.doi.org/10.1155/2020/5462040.
Full textAnezi, Faisal Yousif Al. "Arabic Hate Speech Detection Using Deep Recurrent Neural Networks." Applied Sciences 12, no. 12 (June 13, 2022): 6010. http://dx.doi.org/10.3390/app12126010.
Full textDissertations / Theses on the topic "Deep Recurrent Neural Network (DRNN)"
Tekin, Mim Kemal. "Vehicle Path Prediction Using Recurrent Neural Network." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166134.
Full textWang, Xutao. "Chinese Text Classification Based On Deep Learning." Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35322.
Full textWen, Tsung-Hsien. "Recurrent neural network language generation for dialogue systems." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275648.
Full textAyoub, Issa. "Multimodal Affective Computing Using Temporal Convolutional Neural Network and Deep Convolutional Neural Networks." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39337.
Full textJavid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique." Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.
Full textThe State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)
Parakkal, Sreenivasan Akshai. "Deep learning prediction of Quantmap clusters." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445909.
Full textPutchala, Manoj Kumar. "Deep Learning Approach for Intrusion Detection System (IDS) in the Internet of Things (IoT) Network using Gated Recurrent Neural Networks (GRU)." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1503680452498351.
Full textMohammadisohrabi, Ali. "Design and implementation of a Recurrent Neural Network for Remaining Useful Life prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textEngström, Isak. "Automated Gait Analysis : Using Deep Metric Learning." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178139.
Full textExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
Guan, Xing. "Predict Next Location of Users using Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263620.
Full textAtt förutspå vart en individ är på väg har varit intressant för både akademin och industrin. Tillämpningar såsom platsbaserad annonsering, trafikplanering, intelligent resursallokering samt rekommendationstjänster är några av de problem som många är intresserade av att lösa. Tillsammans med den tekniska utvecklingen och den omfattande användningen av elektroniska enheter har många platsbaserade data skapats. Idag har tekniken djupinlärning framgångsrikt överträffat många konventionella metoder i inlärningsuppgifter, bland annat inom områdena bild och röstigenkänning. En neural nätverksarkitektur som har visat lovande resultat med sekventiella data kallas återkommande neurala nätverk (RNN). Sedan skapandet av RNN har många alternativa arkitekturer skapats, bland de mest kända är Long Short Term Memory (LSTM) och Gated Recurrent Units (GRU). Den här studien använder en modifierad GRU där man bland annat lägger till attribut såsom tid och distans i nätverket för att prognostisera nästa plats. I det här examensarbetet har ett rumsligt temporalt neuralt nätverk (ST-GRU) föreslagits. Den består av två delar, nämligen ST och GRU. Den första delen är en extraktionsalgoritm som drar ut relevanta korrelationer mellan tid och plats som är inkorporerade i nätverket. Den andra delen, GRU, förutspår nästa plats med avseende på användarens aktuella plats. Studien visar att den föreslagna modellen ST-GRU ger bättre resultat jämfört med benchmarkmodellerna.
Book chapters on the topic "Deep Recurrent Neural Network (DRNN)"
Long, Liangqu, and Xiangming Zeng. "Recurrent Neural Network." In Beginning Deep Learning with TensorFlow, 461–517. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7915-1_11.
Full textZhang, Yufei, and Jiaju Wu. "Speech Enhancement Based on Deep Neural Network and Recurrent Neural Network." In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 124–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70665-4_15.
Full textEmambakhsh, Mehryar, Alessandro Bay, and Eduard Vazquez. "Deep Recurrent Neural Network for Multi-target Filtering." In MultiMedia Modeling, 519–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05716-9_42.
Full textDheenadayalan, Kumar, Gopalakrishnan Srinivasaraghavan, and V. N. Muralidhara. "Dynamic Control of Storage Bandwidth Using Double Deep Recurrent Q-Network." In Neural Information Processing, 222–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04239-4_20.
Full textSamreen, Muhammad Javed Iqbal, Iftikhar Ahmad, Suleman Khan, and Rizwan Khan. "Language Modeling and Text Generation Using Hybrid Recurrent Neural Network." In Deep Learning for Unmanned Systems, 669–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77939-9_19.
Full textMishra, Debasmita, Bighnaraj Naik, Ronali Madhusmita Sahoo, and Janmenjoy Nayak. "Deep Recurrent Neural Network (Deep-RNN) for Classification of Nonlinear Data." In Computational Intelligence in Pattern Recognition, 207–15. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2449-3_17.
Full textAharoni, Ziv, Gal Rattner, and Haim Permuter. "Brief Announcement: Gradual Learning of Deep Recurrent Neural Network." In Lecture Notes in Computer Science, 274–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94147-9_21.
Full textWijesinghe, Thejan, Chamath Abeysinghe, Chanuka Wijayakoon, Lahiru Jayathilake, and Uthayasanker Thayasivam. "FlowChroma - A Deep Recurrent Neural Network for Video Colorization." In Lecture Notes in Computer Science, 16–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50347-5_2.
Full textTang, Tuan Anh, Des McLernon, Lotfi Mhamdi, Syed Ali Raza Zaidi, and Mounir Ghogho. "Intrusion Detection in SDN-Based Networks: Deep Recurrent Neural Network Approach." In Deep Learning Applications for Cyber Security, 175–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13057-2_8.
Full textRoy, Subhrajit, Isabell Kiral-Kornek, and Stefan Harrer. "ChronoNet: A Deep Recurrent Neural Network for Abnormal EEG Identification." In Artificial Intelligence in Medicine, 47–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21642-9_8.
Full textConference papers on the topic "Deep Recurrent Neural Network (DRNN)"
Madasu, Srinath, and Keshava Prasad Rangarajan. "Deep Recurrent Neural Network DRNN Model for Real-Time Step-Down Analysis." In SPE Reservoir Characterisation and Simulation Conference and Exhibition. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/196621-ms.
Full textMadasu, Srinath, and Keshava P. Rangarajan. "Deep Recurrent Neural Network DRNN Model for Real-Time Multistage Pumping Data." In OTC Arctic Technology Conference. Offshore Technology Conference, 2018. http://dx.doi.org/10.4043/29145-ms.
Full textVidyaratne, L., A. Glandon, M. Alam, and K. M. Iftekharuddin. "Deep recurrent neural network for seizure detection." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727334.
Full textMohajerin, Nima, and Steven L. Waslander. "Modular deep Recurrent Neural Network: Application to quadrotors." In 2014 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2014. http://dx.doi.org/10.1109/smc.2014.6974106.
Full textChien, Jen-Tzung, and Tsai-Wei Lu. "Deep recurrent regularization neural network for speech recognition." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178834.
Full textKaur, Manjot, and Aakash Mohta. "A Review of Deep Learning with Recurrent Neural Network." In 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE, 2019. http://dx.doi.org/10.1109/icssit46314.2019.8987837.
Full textXinhui Song, Ke Chen, Jie Lei, Li Sun, Zhiyuan Wang, Lei Xie, and Mingli Song. "Category driven deep recurrent neural network for video summarization." In 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2016. http://dx.doi.org/10.1109/icmew.2016.7574720.
Full textLiu, Wei, and Yozo Shoji. "Applying Deep Recurrent Neural Network to Predict Vehicle Mobility." In 2018 IEEE Vehicular Networking Conference (VNC). IEEE, 2018. http://dx.doi.org/10.1109/vnc.2018.8628362.
Full textChen, Zhongtao, De Meng, Yufan Zhang, Tinglin Xin, and Ding Xiao. "Electricity Theft Detection Using Deep Bidirectional Recurrent Neural Network." In 2020 22nd International Conference on Advanced Communication Technology (ICACT). IEEE, 2020. http://dx.doi.org/10.23919/icact48636.2020.9061565.
Full textBrahimi, Sourour, Najib Ben Aoun, and Chokri Ben Amar. "Very deep recurrent convolutional neural network for object recognition." In Ninth International Conference on Machine Vision, edited by Antanas Verikas, Petia Radeva, Dmitry P. Nikolaev, Wei Zhang, and Jianhong Zhou. SPIE, 2017. http://dx.doi.org/10.1117/12.2268672.
Full text