Dissertations / Theses on the topic 'Deep Photonic Neural Networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Deep Photonic Neural Networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Liu, Qian. "Deep spiking neural networks." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/deep-spiking-neural-networks(336e6a37-2a0b-41ff-9ffb-cca897220d6c).html.
Full textSquadrani, Lorenzo. "Deep neural networks and thermodynamics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textMancevo, del Castillo Ayala Diego. "Compressing Deep Convolutional Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217316.
Full textAbbasi, Mahdieh. "Toward robust deep neural networks." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67766.
Full textIn this thesis, our goal is to develop robust and reliable yet accurate learning models, particularly Convolutional Neural Networks (CNNs), in the presence of adversarial examples and Out-of-Distribution (OOD) samples. As the first contribution, we propose to predict adversarial instances with high uncertainty through encouraging diversity in an ensemble of CNNs. To this end, we devise an ensemble of diverse specialists along with a simple and computationally efficient voting mechanism to predict the adversarial examples with low confidence while keeping the predictive confidence of the clean samples high. In the presence of high entropy in our ensemble, we prove that the predictive confidence can be upper-bounded, leading to have a globally fixed threshold over the predictive confidence for identifying adversaries. We analytically justify the role of diversity in our ensemble on mitigating the risk of both black-box and white-box adversarial examples. Finally, we empirically assess the robustness of our ensemble to the black-box and the white-box attacks on several benchmark datasets.The second contribution aims to address the detection of OOD samples through an end-to-end model trained on an appropriate OOD set. To this end, we address the following central question: how to differentiate many available OOD sets w.r.t. a given in distribution task to select the most appropriate one, which in turn induces a model with a high detection rate of unseen OOD sets? To answer this question, we hypothesize that the “protection” level of in-distribution sub-manifolds by each OOD set can be a good possible property to differentiate OOD sets. To measure the protection level, we then design three novel, simple, and cost-effective metrics using a pre-trained vanilla CNN. In an extensive series of experiments on image and audio classification tasks, we empirically demonstrate the abilityof an Augmented-CNN (A-CNN) and an explicitly-calibrated CNN for detecting a significantly larger portion of unseen OOD samples, if they are trained on the most protective OOD set. Interestingly, we also observe that the A-CNN trained on the most protective OOD set (calledA-CNN) can also detect the black-box Fast Gradient Sign (FGS) adversarial examples. As the third contribution, we investigate more closely the capacity of the A-CNN on the detection of wider types of black-box adversaries. To increase the capability of A-CNN to detect a larger number of adversaries, we augment its OOD training set with some inter-class interpolated samples. Then, we demonstrate that the A-CNN trained on the most protective OOD set along with the interpolated samples has a consistent detection rate on all types of unseen adversarial examples. Where as training an A-CNN on Projected Gradient Descent (PGD) adversaries does not lead to a stable detection rate on all types of adversaries, particularly the unseen types. We also visually assess the feature space and the decision boundaries in the input space of a vanilla CNN and its augmented counterpart in the presence of adversaries and the clean ones. By a properly trained A-CNN, we aim to take a step toward a unified and reliable end-to-end learning model with small risk rates on both clean samples and the unusual ones, e.g. adversarial and OOD samples.The last contribution is to show a use-case of A-CNN for training a robust object detector on a partially-labeled dataset, particularly a merged dataset. Merging various datasets from similar contexts but with different sets of Object of Interest (OoI) is an inexpensive way to craft a large-scale dataset which covers a larger spectrum of OoIs. Moreover, merging datasets allows achieving a unified object detector, instead of having several separate ones, resultingin the reduction of computational and time costs. However, merging datasets, especially from a similar context, causes many missing-label instances. With the goal of training an integrated robust object detector on a partially-labeled but large-scale dataset, we propose a self-supervised training framework to overcome the issue of missing-label instances in the merged datasets. Our framework is evaluated on a merged dataset with a high missing-label rate. The empirical results confirm the viability of our generated pseudo-labels to enhance the performance of YOLO, as the current (to date) state-of-the-art object detector.
Lu, Yifei. "Deep neural networks and fraud detection." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-331833.
Full textKalogiras, Vasileios. "Sentiment Classification with Deep Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217858.
Full textSentiment analysis is a subfield of natural language processing (NLP) that attempts to analyze the sentiment of written text.It is is a complex problem that entails different challenges. For this reason, it has been studied extensively. In the past years traditional machine learning algorithms or handcrafted methodologies used to provide state of the art results. However, the recent deep learning renaissance shifted interest towards end to end deep learning models. On the one hand this resulted into more powerful models but on the other hand clear mathematical reasoning or intuition behind distinct models is still lacking. As a result, in this thesis, an attempt to shed some light on recently proposed deep learning architectures for sentiment classification is made.A study of their differences is performed as well as provide empirical results on how changes in the structure or capacity of a model can affect its accuracy and the way it represents and ''comprehends'' sentences.
Choi, Keunwoo. "Deep neural networks for music tagging." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/46029.
Full textYin, Yonghua. "Random neural networks for deep learning." Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/64917.
Full textZagoruyko, Sergey. "Weight parameterizations in deep neural networks." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1129/document.
Full textMultilayer neural networks were first proposed more than three decades ago, and various architectures and parameterizations were explored since. Recently, graphics processing units enabled very efficient neural network training, and allowed training much larger networks on larger datasets, dramatically improving performance on various supervised learning tasks. However, the generalization is still far from human level, and it is difficult to understand on what the decisions made are based. To improve on generalization and understanding we revisit the problems of weight parameterizations in deep neural networks. We identify the most important, to our mind, problems in modern architectures: network depth, parameter efficiency, and learning multiple tasks at the same time, and try to address them in this thesis. We start with one of the core problems of computer vision, patch matching, and propose to use convolutional neural networks of various architectures to solve it, instead of manual hand-crafting descriptors. Then, we address the task of object detection, where a network should simultaneously learn to both predict class of the object and the location. In both tasks we find that the number of parameters in the network is the major factor determining it's performance, and explore this phenomena in residual networks. Our findings show that their original motivation, training deeper networks for better representations, does not fully hold, and wider networks with less layers can be as effective as deeper with the same number of parameters. Overall, we present an extensive study on architectures and weight parameterizations, and ways of transferring knowledge between them
Ioannou, Yani Andrew. "Structural priors in deep neural networks." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/278976.
Full textBillman, Linnar, and Johan Hullberg. "Speech Reading with Deep Neural Networks." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-360022.
Full textWang, Shenhao. "Deep neural networks for choice analysis." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129894.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 117-128).
As deep neural networks (DNNs) outperform classical discrete choice models (DCMs) in many empirical studies, one pressing question is how to reconcile them in the context of choice analysis. So far researchers mainly compare their prediction accuracy, treating them as completely different modeling methods. However, DNNs and classical choice models are closely related and even complementary. This dissertation seeks to lay out a new foundation of using DNNs for choice analysis. It consists of three essays, which respectively tackle the issues of economic interpretation, architectural design, and robustness of DNNs by using classical utility theories. Essay 1 demonstrates that DNNs can provide economic information as complete as the classical DCMs.
The economic information includes choice predictions, choice probabilities, market shares, substitution patterns of alternatives, social welfare, probability derivatives, elasticities, marginal rates of substitution (MRS), and heterogeneous values of time (VOT). Unlike DCMs, DNNs can automatically learn the utility function and reveal behavioral patterns that are not prespecified by modelers. However, the economic information from DNNs can be unreliable because the automatic learning capacity is associated with three challenges: high sensitivity to hyperparameters, model non-identification, and local irregularity. To demonstrate the strength of DNNs as well as the three issues, I conduct an empirical experiment by applying the DNNs to a stated preference survey and discuss successively the full list of economic information extracted from the DNNs. Essay 2 designs a particular DNN architecture with alternative-specific utility functions (ASU-DNN) by using prior behavioral knowledge.
Theoretically, ASU-DNN reduces the estimation error of fully connected DNN (F-DNN) because of its lighter architecture and sparser connectivity, although the constraint of alternative-specific utility could cause ASU-DNN to exhibit a larger approximation error. Both ASU-DNN and F-DNN can be treated as special cases of DNN architecture design guided by utility connectivity graph (UCG). Empirically, ASU-DNN has 2-3% higher prediction accuracy than F-DNN. The alternative-specific connectivity constraint, as a domain-knowledge- based regularization method, is more effective than other regularization methods. This essay demonstrates that prior behavioral knowledge can be used to guide the architecture design of DNN, to function as an effective domain-knowledge-based regularization method, and to improve both the interpretability and predictive power of DNNs in choice analysis.
Essay 3 designs a theory-based residual neural network (TB-ResNet) with a two-stage training procedure, which synthesizes decision-making theories and DNNs in a linear manner. Three instances of TB-ResNets based on choice modeling (CM-ResNets), prospect theory (PT-ResNets), and hyperbolic discounting (HD-ResNets) are designed. Empirically, compared to the decision-making theories, the three instances of TB-ResNets predict significantly better in the out-of-sample test and become more interpretable owing to the rich utility function augmented by DNNs. Compared to the DNNs, the TB-ResNets predict better because the decision-making theories aid in localizing and regularizing the DNN models. TB-ResNets also become more robust than DNNs because the decision-making theories stablize the local utility function and the input gradients.
This essay demonstrates that it is both feasible and desirable to combine the handcrafted utility theory and automatic utility specification, with joint improvement in prediction, interpretation, and robustness.
by Shenhao Wang.
Ph. D. in Computer and Urban Science
Ph.D.inComputerandUrbanScience Massachusetts Institute of Technology, Department of Urban Studies and Planning
Sunnegårdh, Christina. "Scar detection using deep neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299576.
Full textObjektdetektion är en metod inom datorseende som inkluderar både lokalisering och klassificering av objekt i bilder. Antalet användningsområden för metoden växer ständigt och denna studie undersöker det outforskade området av att använda djupa neurala nätverk för detektering av ärr. Studien utforskar även att använda detektering av ärr som grund för den binära klassificeringsuppgiften att bestämma om bilder innehåller ett synligt ärr eller inte. Två förtränade objektdetekteringsmodeller, Faster R-CNN och RetinaNet, tränades med olika hyperparametrar på 1830 manuellt märkta bilder. Faster RCNN Inception ResNet V2 uppnådde bäst resultat med avseende på average precision (AP), tätt följd av Faster R-CNN ResNet50 och slutligen RetinaNet. Resultatet indikerar både överlägsenhet av Faster R-CNN gentemot RetinaNet, såväl som att använda Inception ResNet V2 för särdragsextrahering. Detta beror med stor sannolikhet på dess användning av faltningsfilter i flera storlekar på samma nivåer i nätverket. Gällande detekteringstid per bild var RetinaNet snabbast, följd av Faster R-CNN ResNet50 och slutligen Faster R-CNN Inception ResNet V2. För den binära klassificeringsuppgiften testades modellerna på 200 bilder, där hälften av bilderna innehöll tydligt synliga ärr. Faster RCNN ResNet50 uppnådde högst träffsäkerhet, följt av Faster R-CNN Inception ResNet V2 och till sist RetinaNet. Medan träffsäkerheten för RetinaNet huvudsakligen bestraffades på grund av att ha förbisett ärr i bilder, så detekterade Faster R-CNN Inception ResNet V2 ett flertal faktiska ärr som inte datamärkts på grund av bristande bildkvalitet. Detta kan dock vara en fråga om subjektiv datamärkning och att modellen bestraffas för något som andra gånger skulle kunna anses korrekt. Sammanfattningsvis visar denna studie lovande resultat av att använda objektdetektion för att detektera ärr i bilder. Medan tvåstegsmodellen Faster R-CNN har övertaget sett till AP, har enstegsmodellen RetinaNet övertaget sett till detekteringstid. Förslag för framtida arbete inkluderar att lägga större vikt vid märkning av data för att eliminera potentiell subjektivitet, samt inkludera träningsdata innehållande objekt som modellerna misstog för ärr. Exempel på detta är öppna sår, knogar och bakgrundsobjekt som visuellt liknar ärr.
Landeen, Trevor J. "Association Learning Via Deep Neural Networks." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7028.
Full textSrivastava, Sanjana. "On foveation of deep neural networks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123134.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 61-63).
The human ability to recognize objects is impaired when the object is not shown in full. "Minimal images" are the smallest regions of an image that remain recognizable for humans. [26] show that a slight modification of the location and size of the visible region of the minimal image produces a sharp drop in human recognition accuracy. In this paper, we demonstrate that such drops in accuracy due to changes of the visible region are a common phenomenon between humans and existing state-of- the-art convolutional neural networks (CNNs), and are much more prominent in CNNs. We found many cases where CNNs classified one region correctly and the other incorrectly, though they only differed by one row or column of pixels, and were often bigger than the average human minimal image size. We show that this phenomenon is independent from previous works that have reported lack of invariance to minor modifications in object location in CNNs. Our results thus reveal a new failure mode of CNNs that also affects humans to a lesser degree. They expose how fragile CNN recognition ability is for natural images even without synthetic adversarial patterns being introduced. This opens potential for CNN robustness in natural images to be brought to the human level by taking inspiration from human robustness methods. One of these is eccentricity dependence, a model of human focus in which attention to the visual input degrades proportional to distance from the focal point [7]. We demonstrate that applying the "inverted pyramid" eccentricity method, a multi-scale input transformation, makes CNNs more robust to useless background features than a standard raw-image input. Our results also find that using the inverted pyramid method generally reduces useless background pixels, therefore reducing required training data.
by Sanjana Srivastava.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Chen, Zhe. "Augmented Context Modelling Neural Networks." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20654.
Full textHabibi, Aghdam Hamed. "Understanding Road Scenes using Deep Neural Networks." Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/461607.
Full textComprender las escenas de la carretera es crucial para los automóviles autónomos. Esto requiere segmentar escenas de carretera en regiones semánticamente significativas y reconocer objetos en una escena. Mientras que los objetos tales como coches y peatones tienen que segmentarse con precisión, puede que no sea necesario detectar y localizar estos objetos en una escena. Sin embargo, la detección y clasificación de objetos tales como señales de tráfico es esencial para ajustarse a las reglas de la carretera. En esta tesis, proponemos un método para la clasificación de señales de tráfico utilizando atributos visuales y redes bayesianas. A continuación, proponemos dos redes neuronales para este fin y desarrollar un nuevo método para crear un conjunto de modelos. A continuación, se estudia la sensibilidad de las redes neuronales frente a las muestras adversarias y se proponen dos redes destructoras que se unen a las redes de clasificación para aumentar su estabilidad frente al ruido. En la segunda parte de la tesis, proponemos una red para detectar señales de tráfico en imágenes de alta resolución en tiempo real y mostrar cómo implementar la técnica de ventana de escaneo dentro de nuestra red usando circunvoluciones dilatadas. A continuación, formulamos el problema de detección como un problema de segmentación y proponemos una red completamente convolucional para detectar señales de tráfico. Finalmente, proponemos una nueva red totalmente convolucional compuesta de módulos de fuego, conexiones de bypass y circunvoluciones consecutivas dilatadas en la última parte de la tesis para escenarios de carretera segmentinc en regiones semánticamente significativas y muestran que es más accuarate y computacionalmente más eficiente en comparación con redes similares
Understanding road scenes is crucial for autonomous cars. This requires segmenting road scenes into semantically meaningful regions and recognizing objects in a scene. While objects such as cars and pedestrians has to be segmented accurately, it might not be necessary to detect and locate these objects in a scene. However, detecting and classifying objects such as traffic signs is essential for conforming to road rules. In this thesis, we first propose a method for classifying traffic signs using visual attributes and Bayesian networks. Then, we propose two neural network for this purpose and develop a new method for creating an ensemble of models. Next, we study sensitivity of neural networks against adversarial samples and propose two denoising networks that are attached to the classification networks to increase their stability against noise. In the second part of the thesis, we first propose a network to detect traffic signs in high-resolution images in real-time and show how to implement the scanning window technique within our network using dilated convolutions. Then, we formulate the detection problem as a segmentation problem and propose a fully convolutional network for detecting traffic signs. Finally, we propose a new fully convolutional network composed of fire modules, bypass connections and consecutive dilated convolutions in the last part of the thesis for segmenting road scenes into semantically meaningful regions and show that it is more accurate and computationally more efficient compared to similar networks.
Antoniades, Andreas. "Interpreting biomedical data via deep neural networks." Thesis, University of Surrey, 2018. http://epubs.surrey.ac.uk/845765/.
Full textTavanaei, Amirhossein. "Spiking Neural Networks and Sparse Deep Learning." Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10807940.
Full textThis document proposes new methods for training multi-layer and deep spiking neural networks (SNNs), specifically, spiking convolutional neural networks (CNNs). Training a multi-layer spiking network poses difficulties because the output spikes do not have derivatives and the commonly used backpropagation method for non-spiking networks is not easily applied. Our methods use novel versions of the brain-like, local learning rule named spike-timing-dependent plasticity (STDP) that incorporates supervised and unsupervised components. Our method starts with conventional learning methods and converts them to spatio-temporally local rules suited for SNNs.
The training uses two components for unsupervised feature extraction and supervised classification. The first component refers to new STDP rules for spike-based representation learning that trains convolutional filters and initial representations. The second introduces new STDP-based supervised learning rules for spike pattern classification via an approximation to gradient descent by combining the STDP and anti-STDP rules. Specifically, the STDP-based supervised learning model approximates gradient descent by using temporally local STDP rules. Stacking these components implements a novel sparse, spiking deep learning model. Our spiking deep learning model is categorized as a variation of spiking CNNs of integrate-and-fire (IF) neurons with performance comparable with the state-of-the-art deep SNNs. The experimental results show the success of the proposed model for image classification. Our network architecture is the only spiking CNN which provides bio-inspired STDP rules in a hierarchy of feature extraction and classification in an entirely spike-based framework.
Avramova, Vanya. "Curriculum Learning with Deep Convolutional Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178453.
Full textKarlsson, Daniel. "Classifying sport videos with deep neural networks." Thesis, Umeå universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-130654.
Full textPeng, Zeng. "Pedestrian Tracking by using Deep Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302107.
Full textDetta projekt syftar till att använda djupinlärning för att lösa problemet med att följa fotgängare för autonom körning. For ligger inom datorseende och djupinlärning. Multi-Objekt-följning (MOT) syftar till att följa flera mål samtidigt i videodata. de viktigaste applikationsscenarierna för MOT är säkerhetsövervakning och autonom körning. I dessa scenarier behöver vi ofta följa många mål samtidigt, vilket inte är möjligt med endast objektdetektering eller algoritmer för enkel följning av objekt för deras bristande stabilitet och användbarhet, därför måste utforska området för multipel objektspårning. Vår metod bryter MOT i olika steg och använder rörelse- och utseendinformation för mål för att spåra dem i videodata, vi använde tre olika objektdetektorer för att upptäcka fotgängare i ramar en personidentifieringsmodell som utseendefunktionsavskiljare och Kalmanfilter som rörelsesprediktor. Vår föreslagna modell uppnår 47,6 % MOT-noggrannhet och 53,2 % i IDF1 medan resultaten som erhållits av modellen utan personåteridentifieringsmodul är endast 44,8%respektive 45,8 %. Våra experimentresultat visade att den robusta algoritmen för multipel objektspårning kan uppnås genom delade uppgifter och förbättras av de representativa DNN-baserade utseendefunktionerna.
Milner, Rosanna Margaret. "Using deep neural networks for speaker diarisation." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/16567/.
Full textKarlsson, Jonas. "Auditory Classification of Carsby Deep Neural Networks." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355673.
Full textWang, Yuxuan. "Supervised Speech Separation Using Deep Neural Networks." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1426366690.
Full textWu, Chunyang. "Structured deep neural networks for speech recognition." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276084.
Full textZhang, Jeffrey M. Eng Massachusetts Institute of Technology. "Enhancing adversarial robustness of deep neural networks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122994.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 57-58).
Logit-based regularization and pretrain-then-tune are two approaches that have recently been shown to enhance adversarial robustness of machine learning models. In the realm of regularization, Zhang et al. (2019) proposed TRADES, a logit-based regularization optimization function that has been shown to improve upon the robust optimization framework developed by Madry et al. (2018) [14, 9]. They were able to achieve state-of-the-art adversarial accuracy on CIFAR10. In the realm of pretrain- then-tune models, Hendrycks el al. (2019) demonstrated that adversarially pretraining a model on ImageNet then adversarially tuning on CIFAR10 greatly improves the adversarial robustness of machine learning models. In this work, we propose Adversarial Regularization, another logit-based regularization optimization framework that surpasses TRADES in adversarial generalization. Furthermore, we explore the impact of trying different types of adversarial training on the pretrain-then-tune paradigm.
by Jeffry Zhang.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Miglani, Vivek N. "Comparing learned representations of deep neural networks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123048.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 63-64).
In recent years, a variety of deep neural network architectures have obtained substantial accuracy improvements in tasks such as image classification, speech recognition, and machine translation, yet little is known about how different neural networks learn. To further understand this, we interpret the function of a deep neural network used for classification as converting inputs to a hidden representation in a high dimensional space and applying a linear classifier in this space. This work focuses on comparing these representations as well as the learned input features for different state-of-the-art convolutional neural network architectures. By focusing on the geometry of this representation, we find that different network architectures trained on the same task have hidden representations which are related by linear transformations. We find that retraining the same network architecture with a different initialization does not necessarily lead to more similar representation geometry for most architectures, but the ResNeXt architecture consistently learns similar features and hidden representation geometry. We also study connections to adversarial examples and observe that networks with more similar hidden representation geometries also exhibit higher rates of adversarial example transferability.
by Vivek N. Miglani.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Bayer, Ali Orkan. "Semantic Language models with deep neural Networks." Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/367784.
Full textBayer, Ali Orkan. "Semantic Language models with deep neural Networks." Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1578/1/bayer_thesis.pdf.
Full textElezi, Ismail <1991>. "Exploiting contextual information with deep neural networks." Doctoral thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/18453.
Full textRAGONESI, RUGGERO. "Addressing Dataset Bias in Deep Neural Networks." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1069001.
Full textZheng, Xuebin. "Wavelet-based Graph Neural Networks." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/27989.
Full textPons, Puig Jordi. "Deep neural networks for music and audio tagging." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/668036.
Full textL’etiquetatge automàtic d’àudio i de música pot augmentar les possibilitats de reutilització de moltes de les bases de dades d’àudio que romanen pràcticament sense etiquetar. En aquesta tesi, abordem la tasca de l’etiquetatge automàtic d’àudio i de música des de la perspectiva de l’aprenentatge profund i, en aquest context, abordem les següents qüestions cientı́fiques: (i) Quines arquitectures d’aprenentatge profund són les més adients per a senyals d’àudio (musicals)? (ii) En quins escenaris és viable que els models d’aprenentatge profund processin directament formes d’ona? (iii) Quantes dades es necessiten per dur a terme estudis d’investigació en aprenentatge profund? Per tal de respondre a la primera pregunta (i), proposem utilitzar xarxes neuronals convolucionals motivades musicalment i avaluem diverses arquitectures d’aprenentatge profund per a àudio a un baix cost computacional. Al llarg de les nostres investigacions, trobem que els coneixements previs que tenim sobre la música i l’àudio ens poden ajudar a millorar l’eficiència, la interpretabilitat i el rendiment dels models d’aprenentatge basats en espectrogrames. Per a les preguntes (ii – iii) estudiem com el SampleCNN, un model d’aprenentatge profund que processa formes d’ona, funciona quan disposem de quantitats variables de dades d’entrenament — des de 25k cançons fins a 1’2M cançons. En aquest estudi, comparem el SampleCNN amb una arquitectura basada en espectrogrames que està motivada musicalment. Els resultats experimentals que obtenim indiquen que, en escenaris on disposem de suficients dades, els models d’aprenentatge profund que processen formes d’ona (com el SampleCNN) poden aconseguir millors resultats que els que processen espectrogrames. Finalment, per tal d’intentar respondre a la pregunta (iii), també investiguem si una regularització severa de l’espai de solucions, les xarxes prototipades, l’aprenentatge per transferència de coneixement, o la seva combinació, poden permetre als models d’aprenentatge profund obtenir més bons resultats en escenaris on no hi ha gaires dades d’entrenament. Els resultats dels nostres experiments indiquen que l’aprenentatge per transferència de coneixement i les xarxes prototipades són estratègies útils quan les dades d’entrenament no són abundants.
Purmonen, Sami. "Predicting Game Level Difficulty Using Deep Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217140.
Full textVi utforskade användning av Monte Carlo tree search (MCTS) och deep learning för attuppskatta banors svårighetsgrad i Candy Crush Saga (Candy). Ett deep neural network(DNN) tränades för att förutse speldrag från spelbanor från stora mängder speldata. DNN:en spelade en varierad mängd banor i Candy och en modell byggdes för att förutsemänsklig svårighetsgrad från DNN:ens svårighetsgrad. Resultatet jämfördes medMCTS. Våra resultat indikerar att DNN:ens kan göra uppskattningar jämförbara medMCTS men på substantiellt kortare tid.
Winsnes, Casper. "Automatic Subcellular Protein Localization Using Deep Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189991.
Full textPitkänen, P. (Perttu). "Automatic image quality enhancement using deep neural networks." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201904101454.
Full textWu, Jimmy M. Eng Massachusetts Institute of Technology. "Robotic object pose estimation with deep neural networks." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119699.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 39-45).
In this work, we introduce pose interpreter networks for 6-DoF object pose estimation. In contrast to other CNN-based approaches to pose estimation that require expensively-annotated object pose data, our pose interpreter network is trained entirely on synthetic data. We use object masks as an intermediate representation to bridge real and synthetic. We show that when combined with a segmentation model trained on RGB images, our synthetically-trained pose interpreter network is able to generalize to real data. Our end-to-end system for object pose estimation runs in real-time (20 Hz) on live RGB data, without using depth information or ICP refinement.
by Jimmy Wu.
M. Eng.
Paula, Thomas da Silva. "Contributions in face detection with deep neural networks." Pontif?cia Universidade Cat?lica do Rio Grande do Sul, 2017. http://tede2.pucrs.br/tede2/handle/tede/7563.
Full textMade available in DSpace on 2017-07-04T12:23:44Z (GMT). No. of bitstreams: 1 DIS_THOMAS_DA_SILVA_PAULA_COMPLETO.pdf: 10601063 bytes, checksum: f63f9b6e33e22c4a2553f784a3a029e1 (MD5) Previous issue date: 2017-03-28
Reconhecimento facial ? um dos assuntos mais estudos no campo de Vis?o Computacional. Dada uma imagem arbitr?ria ou um frame arbitr?rio, o objetivo do reconhecimento facial ? determinar se existem faces na imagem e, se existirem, obter a localiza??o e a extens?o de cada face encontrada. Tal detec??o ? facilmente feita por seres humanos, por?m continua sendo um desafio em Vis?o Computacional. O alto grau de variabilidade e a dinamicidade da face humana tornam-a dif?cil de detectar, principalmente em ambientes complexos. Recentementemente, abordagens de Aprendizado Profundo come?aram a ser utilizadas em tarefas de Vis?o Computacional com bons resultados. Tais resultados abriram novas possibilidades de pesquisa em diferentes aplica??es, incluindo Reconhecimento Facial. Embora abordagens de Aprendizado Profundo tenham sido aplicadas com sucesso para tal tarefa, a maior parte das implementa??es estado da arte utilizam detectores faciais off-the-shelf e n?o avaliam as diferen?as entre eles. Em outros casos, os detectores faciais s?o treinados para m?ltiplas tarefas, como detec??o de pontos fiduciais, detec??o de idade, entre outros. Portanto, n?s temos tr?s principais objetivos. Primeiramente, n?s resumimos e explicamos alguns avan?os do Aprendizado Profundo, detalhando como cada arquitetura e implementa??o funcionam. Depois, focamos no problema de detec??o facial em si, realizando uma rigorosa an?lise de alguns dos detectores existentes assim como algumas implementa??es nossas. N?s experimentamos e avaliamos varia??es de alguns hiper-par?metros para cada um dos detectores e seu impacto em diferentes bases de dados. N?s exploramos tanto implementa??es tradicionais quanto mais recentes, al?m de implementarmos nosso pr?prio detector facial. Por fim, n?s implementamos, testamos e comparamos uma abordagem de meta-aprendizado para detec??o facial, que visa aprender qual o melhor detector facial para uma determinada imagem. Nossos experimentos contribuem para o entendimento do papel do Aprendizado Profundo em detec??o facial, assim como os detalhes relacionados a mudan?a de hiper-par?metros dos detectores faciais e seu impacto no resultado da detec??o facial. N?s tamb?m mostramos o qu?o bem features obtidas com redes neurais profundas ? treinadas em bases de dados de prop?sito geral ? combinadas com uma abordagem de meta-aprendizado, se aplicam a detec??o facial. Nossos experimentos e conclus?es mostram que o aprendizado profundo possui de fato um papel not?vel em detec??o facial.
Face Detection is one of the most studied subjects in the Computer Vision field. Given an arbitrary image or video frame, the goal of face detection is to determine whether there are any faces in the image and, if present, return the image location and the extent of each face. Such a detection is easily done by humans, but it is still a challenge within Computer Vision. The high degree of variability and the dynamicity of the human face makes it an object very difficult to detect, mainly in complex environments. Recently, Deep Learning approaches started to be applied for Computer Vision tasks with great results. They opened new research possibilities in different applications, including Face Detection. Even though Deep Learning has been successfully applied for such a task, most of the state-of-the-art implementations make use of off-the-shelf face detectors and do not evaluate differences among them. In other cases, the face detectors are trained in a multitask manner that includes face landmark detection, age detection, and so on. Hence, our goal is threefold. First, we summarize and explain many advances of deep learning, detailing how each different architecture and implementation work. Second, we focus on the face detection problem itself, performing a rigorous analysis of some of the existing face detectors as well as implementations of our own. We experiment and evaluate variations of hyper-parameters for each of the detectors and their impact in different datasets. We explore both traditional and more recent approaches, as well as implementing our own face detectors. Finally, we implement, test, and compare a meta learning approach for face detection, which aims to learn the best face detector for a given image. Our experiments contribute in understanding the role of deep learning in face detection as well as the subtleties of changing hyper-parameters of the face detectors and their impact in face detection. We also show how well features obtained with deep neural networks trained on a general-purpose dataset perform on a meta learning approach for face detection. Our experiments and conclusions show that deep learning has indeed a notable role in face detection.
D'Amicantonio, Giacomo. "Improvements to knowledge distillation of deep neural networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24178/.
Full textConway, Alexander. "Deep neural networks for video classification in ecology." Master's thesis, University of Cape Town, 2020. http://hdl.handle.net/11427/32520.
Full textHocquet, Guillaume. "Class Incremental Continual Learning in Deep Neural Networks." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST070.
Full textWe are interested in the problem of continual learning of artificial neural networks in the case where the data are available for only one class at a time. To address the problem of catastrophic forgetting that restrain the learning performances in these conditions, we propose an approach based on the representation of the data of a class by a normal distribution. The transformations associated with these representations are performed using invertible neural networks, which can be trained with the data of a single class. Each class is assigned a network that will model its features. In this setting, predicting the class of a sample corresponds to identifying the network that best fit the sample. The advantage of such an approach is that once a network is trained, it is no longer necessary to update it later, as each network is independent of the others. It is this particularly advantageous property that sets our method apart from previous work in this area. We support our demonstration with experiments performed on various datasets and show that our approach performs favorably compared to the state of the art. Subsequently, we propose to optimize our approach by reducing its impact on memory by factoring the network parameters. It is then possible to significantly reduce the storage cost of these networks with a limited performance loss. Finally, we also study strategies to produce efficient feature extractor models for continual learning and we show their relevance compared to the networks traditionally used for continual learning
Faraone, Julian. "Simplification Of Deep Neural Networks For Efficient Inference." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25846.
Full textKan, Jichao. "Visual-Text Translation with Deep Graph Neural Networks." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23759.
Full textPeterson, Joshua C. "Leveraging Deep Neural Networks to Study Human Cognition." Thesis, University of California, Berkeley, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10930700.
Full textThe majority of computational theories of inductive processes in psychology derive from small-scale experiments with simple stimuli that are easy to represent. However, real-world stimuli are complex, hard to represent efficiently, and likely require very different cognitive strategies to cope with. Indeed, the difficulty of such tasks are part of what make humans so impressive, yet methodological resources for modeling their solutions are limited. This presents a fundamental challenge to the precision of psychology as a science, especially if traditional laboratory methods fail to generalize. Recently, a number of computationally tractable, data-driven methods such as deep neural networks have emerged in machine learning for deriving useful representations of complex perceptual stimuli, but they are explicitly optimized in service to engineering objectives rather than modeling human cognition. It has remained unclear to what extent engineering models, while often state-of-the-art in terms of human-level task performance, can be leveraged to model, predict, and understand humans.
In the following, I outline a methodology by which psychological research can confidently leverage representations learned by deep neural networks to model and predict complex human behavior, potentially extending the scope of the field. In Chapter 1, I discuss the challenges to ecological validity in the laboratory that may be partially circumvented by technological advances and trends in machine learning, and weigh the advantages and disadvantages of bootstrapping from largely uninterpretable models. In Chapter 2, I contrast methods from psychology and machine learning for representing complex stimuli like images. Chapter 3 provides a first case study of applying deep neural networks to predict whether objects in a large database of images will be remembered by humans. Chapter 4 provides the central argument for using representations from deep neural networks as proxies for human psychological representations in general. To do this, I establish and demonstrate methods for quantifying their correspondence, improving their correspondence with minimal cost, and applying the result to the modeling of downstream cognitive processes. Building on this, Chapter 5 develops a method for modeling human subjective probability over deep representations in order to capture multimodal mental visual concepts such as "landscape". Finally, in Chapter 6, I discuss the implications of the overall paradigm espoused in the current work, along with the most crucial challenges ahead and potential ways forward. The overall endeavor is almost certainly a stepping stone to methods that may look very different in the near future, as the gains in leveraging machine learning methods are consolidated and made more interpretable/useful. The hope is that a synergy can be formed between the two fields, each bootstrapping and learning from the other.
Lenc, Karel. "Representation of spatial transformations in deep neural networks." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:87a16dc2-9d77-49c3-8096-cf3416fa6893.
Full textLarsson, Susanna. "Monocular Depth Estimation Using Deep Convolutional Neural Networks." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159981.
Full textVenigalla, Abhinav S. "Strongly-transferring memorized examples in deep neural networks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123124.
Full textThesis: M. Eng. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 59-60).
Training deep neural networks requires large quantities of labeled training data, on the order of thousands of examples per class. These requirements make model training both time-consuming and expensive, which provides an incentive for adversaries to steal, or copy, other users' models. In this work, we examine a recent defense method called neural network watermarking via memorized examples, where an owner intentionally trains his model to mislabel particular inputs. We try to isolate the mechanism by which memorized examples are learned by a model in order to better evaluate their robustness. We find that memorized examples are indeed strongly embedded in trained models and actually transfer to stolen models under one form of model stealing. When access to local input-logit gradient information is used by an attacker, the stolen model also learns to mislabel the memorized examples. We show that this transfer is robust to architecture mismatch and perturbations of the query set used for stealing. We present different possible mechanisms for memorized example transfer and find that local input geometry is insufficient to explain the phenomenon. Finally, we describe a simple method for a model owner to boost the transfer rate of memorized examples, increasing their effectiveness as a defense against model stealing.
by Abhinav S. Venigalla.
M. Eng. in Computer Science and Engineering
M.Eng.inComputerScienceandEngineering Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Boukli, Hacene Ghouthi. "Processing and learning deep neural networks on chip." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0153/document.
Full textIn the field of machine learning, deep neural networks have become the inescapablereference for a very large number of problems. These systems are made of an assembly of layers,performing elementary operations, and using a large number of tunable variables. Using dataavailable during a learning phase, these variables are adjusted such that the neural networkaddresses the given task. It is then possible to process new data.To achieve state-of-the-art performance, in many cases these methods rely on a very largenumber of parameters, and thus large memory and computational costs. Therefore, they are oftennot very adapted to a hardware implementation on constrained resources systems. Moreover, thelearning process requires to reuse the training data several times, making it difficult to adapt toscenarios where new information appears on the fly.In this thesis, we are first interested in methods allowing to reduce the impact of computations andmemory required by deep neural networks. Secondly, we propose techniques for learning on thefly, in an embedded context
Kalchbrenner, Nal. "Encoder-decoder neural networks." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:d56e48db-008b-4814-bd82-a5d612000de9.
Full text