To see the other types of publications on this topic, follow the link: Deep ocean circulation.

Books on the topic 'Deep ocean circulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 25 books for your research on the topic 'Deep ocean circulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

1926-, Teramoto Toshihiko, ed. Deep ocean circulation: Physical and chemical aspects. Amsterdam: Elsevier, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Johnson, Gregory Conrad. Near-equatorial deep circulation in the Indian and Pacific Oceans. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Johnson, Gregory Conrad. Near-equatorial deep circulation in the Indian and Pacific Oceans. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Edwards, Christopher A. Dynamics of nonlinear cross-equatorial flow in the deep ocean. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chippindale, Marc David. Deep ocean circulation near the Charlie-Gibbs fracture zone. Norwich: University of East Anglia, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

C, Chu P., and Gascard J. C, eds. Deep convection and deep water formation in the oceans: Proceedings of the International Monterey Colloquium on Deep Convection and Deep Water Formation in the Oceans. Amsterdam: Elsevier, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Speer, Kevin George. The influence of geothermal sources on deep ocean temperature, salinity, and flow fields. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pacific deep circulation in world ocean cicrulation model: Sekai kaiyō gaijumkan moderu kora mita Taiheiyō shinsō junkan. Tokyo]: [University of Tokyo, Center for Climate System Research], 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tōkyō Daigaku. Kikō Shisutemu Kenkyū Sentā, ed. Role of freshwater forcing and salt transport in the formation of the Atlantic deep circulation. Tokyo]: University of Tokyo, Center for Climate System Research, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Levy-Ryan, Ellen. Moored current meter and temperature-pressure recorder measurements from the western North Atlantic (high energy benthic boundary layer and abyssal circulation experiments 1983-1984): Volume XXXIX. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

LeGrand, Pascal. What do paleo-geochemical tracers tell us about the deep ocean circulation during the last ice age? Woods Hole, Mass: Woods Hole Oceanographic Institution, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

LeGrand, Pascal. What do paleo-geochemical tracers tell us about the deep ocean circulation during the last ice age? Woods Hole, Mass: Woods Hole Oceanographic Institution, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Brix, Holger. North Atlantic deep water and Antarctic bottom water: Their interaction and influence on modes of the global ocean circulation = Die wechselseitige Beeinflussung von Nordatlantischem Tiefenwasser und antarktischem Bodenwasser und ihre Rolle für globale Moden der ozeanischen Zirkulation. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schodlok, Michael. Über die Tiefenwasserausbreitung im Weddellmeer und in der Scotia-See: Numerische Untersuchungen der Transport- und Austauschprozesse in der Weddell-Scotia-Konfluenz-Zone = On the spreading of deep water in the Weddell and Scotia seas : a numerical model approach to investigate the transport and exchange processes of the Weddell Scotia Confluence. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Schmiedl, Gerhard. Rekonstruktion der spätquartären Tiefenwasserzirkulation und Produktivität im östlichen Südatlantik anhand von benthischen Foraminiferenvergesellschaftungen =: Late Quaternary benthic foraminiferal assemblages from the eastern South Atlantic Ocean : reconstruction of deep water circulation and productivity changes. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Deep Ocean Circulation - Physical and Chemical Aspects. Elsevier, 1993. http://dx.doi.org/10.1016/s0422-9894(08)x7061-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Teramoto, T. Deep Ocean Circulation: Physical and Chemical Aspects. Elsevier Science & Technology Books, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jiménez, Hernán Eduardo García. On the large-scale characteristics, fluxes, and variability of the North Atlantic Deep Water and its deep western boundary current deduced from nutrient and oxygen data. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jiménez, Hernán Eduardo García. On the large-scale characteristics, fluxes, and variability of the North Atlantic Deep Water and its deep western boundary current deduced from nutrient and oxygen data. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Foulc, Jean-Numa, and Frederic Aitken. From Deep Sea to Laboratory 2: Discovering H. M. S. Challenger's Physical Measurements Relating to Ocean Circulation. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Foulc, Jean-Numa, and Frederic Aitken. From Deep Sea to Laboratory 2: Discovering H. M. S. Challenger's Physical Measurements Relating to Ocean Circulation. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Foulc, Jean-Numa, and Frederic Aitken. From Deep Sea to Laboratory 2: Discovering H. M. S. Challenger's Physical Measurements Relating to Ocean Circulation. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Foulc, Jean-Numa, and Frederic Aitken. From Deep Sea to Laboratory 2: From the Discovery of Physical Measurements to H. M. S Challenger in Relation to Ocean Circulation. Wiley & Sons, Incorporated, John, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Artale, Vincenzo, Nadia Lo Bue, Katrin Schroeder, and Vassilis Zervakis, eds. Impact of Deep Oceanic Processes on Circulation and Climate Variability: Examples from the Mediterranean Sea and the Global Ocean. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-240-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Goswami, B. N., and Soumi Chakravorty. Dynamics of the Indian Summer Monsoon Climate. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.613.

Full text
Abstract:
Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales.The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient.The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography