Academic literature on the topic 'Deep learning segmentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep learning segmentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep learning segmentation"
Noori, Amani Y., Dr Shaimaa H. Shaker, and Dr Raghad Abdulaali Azeez. "Semantic Segmentation of Urban Street Scenes Using Deep Learning." Webology 19, no. 1 (January 20, 2022): 2294–306. http://dx.doi.org/10.14704/web/v19i1/web19156.
Full textAL-Oudat, Mohammad, Mohammad Azzeh, Hazem Qattous, Ahmad Altamimi, and Saleh Alomari. "Image Segmentation based Deep Learning for Biliary Tree Diagnosis." Webology 19, no. 1 (January 20, 2022): 1834–49. http://dx.doi.org/10.14704/web/v19i1/web19123.
Full textSri, S. Vinitha, and S. P. Kavya. "Lung Segmentation Using Deep Learning." Asian Journal of Applied Science and Technology 05, no. 02 (2021): 10–19. http://dx.doi.org/10.38177/ajast.2021.5202.
Full textVogt, Nina. "Neuron segmentation with deep learning." Nature Methods 16, no. 6 (May 30, 2019): 460. http://dx.doi.org/10.1038/s41592-019-0450-7.
Full textHyun-Cheol Park, Hyun-Cheol Park, Raman Ghimire Hyun-Cheol Park, Sahadev Poudel Raman Ghimire, and Sang-Woong Lee Sahadev Poudel. "Deep Learning for Joint Classification and Segmentation of Histopathology Image." 網際網路技術學刊 23, no. 4 (July 2022): 903–10. http://dx.doi.org/10.53106/160792642022072304025.
Full textWeishaupt, L. L., T. Vuong, A. Thibodeau-Antonacci, A. Garant, K. S. Singh, C. Miller, A. Martin, and S. Enger. "A121 QUANTIFYING INTER-OBSERVER VARIABILITY IN THE SEGMENTATION OF RECTAL TUMORS IN ENDOSCOPY IMAGES AND ITS EFFECTS ON DEEP LEARNING." Journal of the Canadian Association of Gastroenterology 5, Supplement_1 (February 21, 2022): 140–42. http://dx.doi.org/10.1093/jcag/gwab049.120.
Full textIwaszenko, Sebastian, and Leokadia Róg. "Application of Deep Learning in Petrographic Coal Images Segmentation." Minerals 11, no. 11 (November 13, 2021): 1265. http://dx.doi.org/10.3390/min11111265.
Full textYang, Zi, Mingli Chen, Mahdieh Kazemimoghadam, Lin Ma, Strahinja Stojadinovic, Robert Timmerman, Tu Dan, Zabi Wardak, Weiguo Lu, and Xuejun Gu. "Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation." Physics in Medicine & Biology 67, no. 2 (January 19, 2022): 025004. http://dx.doi.org/10.1088/1361-6560/ac4667.
Full textXue, Jie, Bao Wang, Yang Ming, Xuejun Liu, Zekun Jiang, Chengwei Wang, Xiyu Liu, et al. "Deep learning–based detection and segmentation-assisted management of brain metastases." Neuro-Oncology 22, no. 4 (December 23, 2019): 505–14. http://dx.doi.org/10.1093/neuonc/noz234.
Full textNapte, Kiran, and Anurag Mahajan. "Deep Learning based Liver Segmentation: A Review." Revue d'Intelligence Artificielle 36, no. 6 (December 31, 2022): 979–84. http://dx.doi.org/10.18280/ria.360620.
Full textDissertations / Theses on the topic "Deep learning segmentation"
Favia, Federico. "Real-time hand segmentation using deep learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292930.
Full textHandsegmentering är en grundläggande del av många datorvisionssystem som syftar till gestigenkänning eller handspårning. I synnerhet behöver förstärkta verklighetslösningar ett mycket exakt gestanalyssystem för att tillfredsställa slutkonsumenterna på ett lämpligt sätt. Därför är handsegmenteringssteget kritiskt. Segmentering är ett välkänt problem vid bildbehandling, det vill säga processen att dela en digital bild i flera regioner med pixlar av liknande kvaliteter. Klassificera vilka pixlar som tillhör handen och vilka som hör till bakgrunden måste utföras i realtidsprestanda och rimlig beräkningskomplexitet. Medan tidigare använts huvudsakligen lättviktiga probabilistiska metoder och maskininlärningsmetoder, undersöker detta arbete utmaningarna med realtidshandsegmentering uppnådd genom flera djupinlärningstekniker. Är det möjligt eller inte att förbättra nuvarande toppmoderna segmenteringssystem för smartphone-applikationer? Flera modeller testas och jämförs baserat på noggrannhet och processhastighet. Transfer learning-liknande metoden leder metoden för detta arbete eftersom många arkitekturer byggdes bara för generisk semantisk segmentering eller för specifika applikationer som autonom körning. Stora ansträngningar läggs på att organisera en gedigen och generaliserad uppsättning händer, utnyttja befintliga och data som samlats in av ManoMotion AB. Eftersom det första syftet var att få en riktigt exakt handsegmentering, väljs i slutändan RefineNetarkitekturen och både kvantitativa och kvalitativa utvärderingar utförs med beaktande av fördelarna med det och analys av problemen relaterade till beräkningstiden som kan förbättras i framtiden.
Sarpangala, Kishan. "Semantic Segmentation Using Deep Learning Neural Architectures." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin157106185092304.
Full textWen, Shuangyue. "Automatic Tongue Contour Segmentation using Deep Learning." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38343.
Full text¿, Ananya. "DEEP LEARNING METHODS FOR CROP AND WEED SEGMENTATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1528372119706623.
Full textTosteberg, Patrik. "Semantic Segmentation of Point Clouds Using Deep Learning." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-136793.
Full textKolhatkar, Dhanvin. "Real-Time Instance and Semantic Segmentation Using Deep Learning." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40616.
Full textWang, Wei. "Image Segmentation Using Deep Learning Regulated by Shape Context." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227261.
Full textUnder de senaste åren har bildsegmentering med hjälp av djupa neurala nätverk gjort stora framsteg. Att nå ett bra resultat med träning med en liten mängd data kvarstår emellertid som en utmaning. För att hitta ett bra sätt att förbättra noggrannheten i segmenteringen med begränsade datamängder så implementerade vi en ny segmentering för automatiska röntgenbilder av bröstkorgsdiagram baserat på tidigare forskning av Chunliang. Detta tillvägagångssätt använder djupt lärande neurala nätverk kombinerat med "shape context" information. I detta experiment skapade vi en ny nätverkstruktur genom omkonfiguration av U-nätverket till en 2-inputstruktur och förfinade pipeline processeringssteget där bilden och "shape contexten" var tränade tillsammans genom den nya nätverksmodellen genom iteration.Den föreslagna metoden utvärderades på dataset med 247 bröströntgenfotografier, och n-faldig korsvalidering användes för utvärdering. Resultatet visar att den föreslagna pipelinen jämfört med ursprungs U-nätverket når högre noggrannhet när de tränas med begränsade datamängder. De "begränsade" dataseten här hänvisar till 1-20 bilder inom det medicinska fältet. Ett bättre resultat med högre noggrannhet kan nås om den andra strukturen förfinas ytterligare och "shape context-generatorns" parameter finjusteras.
Chen, Yani. "Deep Learning based 3D Image Segmentation Methods and Applications." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1547066297047003.
Full textLiu, Dongnan. "Supervised and Unsupervised Deep Learning-based Biomedical Image Segmentation." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24744.
Full textGranli, Petter. "Semantic segmentation of seabed sonar imagery using deep learning." Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160561.
Full textBooks on the topic "Deep learning segmentation"
Wang, Xiaogang. Deep Learning in Object Recognition, Detection, and Segmentation. Now Publishers, 2016.
Find full textBrain Tumor MRI Image Segmentation Using Deep Learning Techniques. Elsevier, 2022. http://dx.doi.org/10.1016/c2021-0-00056-0.
Full textChaki, Jyotismita. Brain Tumor MRI Image Segmentation Using Deep Learning Techniques. Elsevier Science & Technology, 2021.
Find full textChaki, Jyotismita. Brain Tumor MRI Image Segmentation Using Deep Learning Techniques. Elsevier Science & Technology Books, 2021.
Find full textAdvanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, Deep RL, Unsupervised Learning, Object Detection and Segmentation, and More, 2nd Edition. Packt Publishing, Limited, 2020.
Find full textBook chapters on the topic "Deep learning segmentation"
Hatamizadeh, Ali, Assaf Hoogi, Debleena Sengupta, Wuyue Lu, Brian Wilcox, Daniel Rubin, and Demetri Terzopoulos. "Deep Active Lesion Segmentation." In Machine Learning in Medical Imaging, 98–105. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32692-0_12.
Full textBenoit, Alexandre, Badih Ghattas, Emna Amri, Joris Fournel, and Patrick Lambert. "Deep Learning for Semantic Segmentation." In Multi-faceted Deep Learning, 39–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74478-6_3.
Full textMoskalenko, Viktor, Nikolai Zolotykh, and Grigory Osipov. "Deep Learning for ECG Segmentation." In Studies in Computational Intelligence, 246–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30425-6_29.
Full textYang, Hao-Yu. "Deep Learning in Brain Segmentation." In Handbook of Artificial Intelligence in Biomedical Engineering, 261–88. Series statement: Biomedical engineering: techniques and applications: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003045564-12.
Full textKaur, Prabhjot, and Anand Muni Mishra. "Segmentation of Deep Learning Models." In Machine Learning for Edge Computing, 115–26. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003143468-8.
Full textKeydana, Sigrid. "Image Segmentation." In Deep Learning and Scientific Computing with R torch, 181–200. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003275923-19.
Full textEzeobiejesi, Jude, and Bir Bhanu. "Latent Fingerprint Image Segmentation Using Deep Neural Network." In Deep Learning for Biometrics, 83–107. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61657-5_4.
Full textJalilian, Ehsaneddin, and Andreas Uhl. "Iris Segmentation Using Fully Convolutional Encoder–Decoder Networks." In Deep Learning for Biometrics, 133–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61657-5_6.
Full textRashed, Hazem, Senthil Yogamani, Ahmad El-Sallab, Mohamed Elhelw, and Mahmoud Hassaballah. "Deep Semantic Segmentation in Autonomous Driving." In Deep Learning in Computer Vision, 151–82. First edition. | Boca Raton, FL : CRC Press/Taylor and Francis, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9781351003827-6.
Full textMunir, Khushboo, Fabrizio Frezza, and Antonello Rizzi. "Deep Learning for Brain Tumor Segmentation." In Studies in Computational Intelligence, 189–201. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6321-8_11.
Full textConference papers on the topic "Deep learning segmentation"
Kamkova, Yuliia, Hemin Ali Qadir, Ole Jakob, and Rahul Prasanna Kumar. "Kidney and tumor segmentation using combined Deep learning method." In 2019 Kidney Tumor Segmentation Challenge: KiTS19. University of Minnesota Libraries Publishing, 2019. http://dx.doi.org/10.24926/548719.091.
Full textRaein Hashemi, Seyed, Boris Gershman, and Vladimir I. Valtchinov. "Development of a Deep Learning Algorithm for Segmentation of Kidney Tumor Imaging." In 2019 Kidney Tumor Segmentation Challenge: KiTS19. University of Minnesota Libraries Publishing, 2019. http://dx.doi.org/10.24926/548719.083.
Full textSouza, Alan, Wilson Leao, Daniel Miranda, Nelson Hargreaves, Bruno Dias, and Erick Talarico. "Salt segmentation using deep learning." In International Congress of the Brazilian Geophysical Society&Expogef. Brazilian Geophysical Society, 2019. http://dx.doi.org/10.22564/16cisbgf2019.219.
Full textZhou, Xueting, Yan Chen, and Shoushan Liu. "Deep learning for image segmentation." In ICAIP 2022: 2022 6th International Conference on Advances in Image Processing. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3577117.3577144.
Full textJunior, Gerivan, Janderson Ferreira, Cristian Millan-Aria, Ramiro Daniel, Alberto Casado, and Bruno Fernandes. "Ceramic Cracks Segmentation with Deep Learning." In LatinX in AI at International Conference on Machine Learning 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/202107245.
Full textJunior, Gerivan, Janderson Ferreira, Cristian Millan-Aria, Ramiro Daniel, Alberto Casado, and Bruno Fernandes. "Ceramic Cracks Segmentation with Deep Learning." In LatinX in AI at International Conference on Machine Learning 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai202107245.
Full textMüller, Dominik, and Frank Kramer. "MIScnn: A Framework for Medical Image Segmentation with Convolutional Neural Networks and Deep Learning." In 2019 Kidney Tumor Segmentation Challenge: KiTS19. University of Minnesota Libraries Publishing, 2019. http://dx.doi.org/10.24926/548719.074.
Full textMehrubeoglu, Mehrube, Isaac Vargas, Chi Huang, and Kirk Cammarata. "Segmentation of seagrass blade images using deep learning." In Real-Time Image Processing and Deep Learning 2021, edited by Nasser Kehtarnavaz and Matthias F. Carlsohn. SPIE, 2021. http://dx.doi.org/10.1117/12.2587057.
Full textVijay, Amishi, Jasleen Saini, and B. S. Saini. "A Review of Brain Tumor Image Segmentation of MR Images Using Deep Learning Methods." In International Conference on Women Researchers in Electronics and Computing. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.114.19.
Full textLiu, Yun, Peng-Tao Jiang, Vahan Petrosyan, Shi-Jie Li, Jiawang Bian, Le Zhang, and Ming-Ming Cheng. "DEL: Deep Embedding Learning for Efficient Image Segmentation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/120.
Full textReports on the topic "Deep learning segmentation"
Chang, Ke-Vin. Deep Learning Algorithm for Automatic Localization and Segmentation of the Median Nerve: a Protocol for Systematic Review and Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0074.
Full textHuang, Haohang, Erol Tutumluer, Jiayi Luo, Kelin Ding, Issam Qamhia, and John Hart. 3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2. Illinois Center for Transportation, September 2022. http://dx.doi.org/10.36501/0197-9191/22-017.
Full textAlhasson, Haifa F., and Shuaa S. Alharbi. New Trends in image-based Diabetic Foot Ucler Diagnosis Using Machine Learning Approaches: A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0128.
Full textPatwa, B., P. L. St-Charles, G. Bellefleur, and B. Rousseau. Predictive models for first arrivals on seismic reflection data, Manitoba, New Brunswick, and Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329758.
Full text