Academic literature on the topic 'DEEP LEARNING MODEL'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DEEP LEARNING MODEL.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DEEP LEARNING MODEL"
Wang, Yating, Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, and Min Wang. "Deep multiscale model learning." Journal of Computational Physics 406 (April 2020): 109071. http://dx.doi.org/10.1016/j.jcp.2019.109071.
Full textXu, Zongben, and Jian Sun. "Model-driven deep-learning." National Science Review 5, no. 1 (August 25, 2017): 22–24. http://dx.doi.org/10.1093/nsr/nwx099.
Full textShlezinger, Nir, and Yonina C. Eldar. "Model-Based Deep Learning." Foundations and Trends® in Signal Processing 17, no. 4 (2023): 291–416. http://dx.doi.org/10.1561/2000000113.
Full textBakhtiari, Shahab. "Can Deep Learning Model Perceptual Learning?" Journal of Neuroscience 39, no. 2 (January 9, 2019): 194–96. http://dx.doi.org/10.1523/jneurosci.2209-18.2018.
Full textWu, Chong. "A Credit Risk Predicting Hybrid Model Based on Deep Learning Technology." International Journal of Machine Learning and Computing 11, no. 3 (May 2021): 182–87. http://dx.doi.org/10.18178/ijmlc.2021.11.3.1033.
Full textSrinivas, Dr Kalyanapu, and Reddy Dr.B.R.S. "Deep Learning based CNN Optimization Model for MR Braing Image Segmentation." Journal of Advanced Research in Dynamical and Control Systems 11, no. 11 (November 20, 2019): 213–20. http://dx.doi.org/10.5373/jardcs/v11i11/20193190.
Full textEvseenko, Alla, and Dmitrii Romannikov. "Application of Deep Q-learning and double Deep Q-learning algorithms to the task of control an inverted pendulum." Transaction of Scientific Papers of the Novosibirsk State Technical University, no. 1-2 (August 26, 2020): 7–25. http://dx.doi.org/10.17212/2307-6879-2020-1-2-7-25.
Full text白家納, 白家納, and 黃崇能 Pachara Opattrakarnkul. "以深度學習模式估測控制之駕駛輔助系統的研發." 理工研究國際期刊 12, no. 1 (April 2022): 015–24. http://dx.doi.org/10.53106/222344892022041201002.
Full textHao, Xing, Guigang Zhang, and Shang Ma. "Deep Learning." International Journal of Semantic Computing 10, no. 03 (September 2016): 417–39. http://dx.doi.org/10.1142/s1793351x16500045.
Full textDjellali, Choukri, and Mehdi adda. "An Enhanced Deep Learning Model to Network Attack Detection, by using Parameter Tuning, Hidden Markov Model and Neural Network." Journal of Ubiquitous Systems and Pervasive Networks 15, no. 01 (March 1, 2021): 35–41. http://dx.doi.org/10.5383/juspn.15.01.005.
Full textDissertations / Theses on the topic "DEEP LEARNING MODEL"
Meng, Zhaoxin. "A deep learning model for scene recognition." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36491.
Full textZeledon, Lostalo Emilia Maria. "FMRI IMAGE REGISTRATION USING DEEP LEARNING." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2641.
Full textGiovanelli, Francesco. "Model Agnostic solution of CSPs with Deep Learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18633/.
Full textMatsoukas, Christos. "Model Distillation for Deep-Learning-Based Gaze Estimation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261412.
Full textDen senaste utvecklingen inom djupinlärning har hjälp till att förbättra precisionen hos gaze estimation-modeller till nivåer som inte tidigare varit möjliga. Dock kräver djupinlärningsmetoder oftast både stora mängder beräkningar och minne som därmed begränsar dess användning i inbyggda system med små minnes- och beräkningsresurser. Det här arbetet syftar till att kringgå detta problem genom att öka prediktiv kraft i små nätverk som kan användas i inbyggda system, med hjälp av en modellkomprimeringsmetod som kallas distillation". Under begreppet destillation introducerar vi ytterligare en term till den komprimerade modellens totala optimeringsfunktion som är en avgränsande term mellan en komprimerad modell och en kraftfull modell. Vi visar att destillationsmetoden inför mer än bara brus i den komprimerade modellen. Det vill säga lärarens induktiva bias som hjälper studenten att nå ett bättre optimum tack vare adaptive error deduction. Utöver detta visar vi att MobileNet-familjen uppvisar instabila träningsfaser och vi rapporterar att den destillerade MobileNet25 överträffade sin lärare MobileNet50 något. Dessutom undersöker vi nyligen föreslagna träningsmetoder för att förbättra prediktionen hos små och tunna nätverk och vi konstaterar att extremt tunna arkitekturer är svåra att träna. Slutligen föreslår vi en ny träningsmetod baserad på hint-learning och visar att denna teknik hjälper de tunna MobileNets att stabiliseras under träning och ökar dess prediktiva effektivitet.
Lim, Steven. "Recommending TEE-based Functions Using a Deep Learning Model." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104999.
Full textMaster of Science
Improving the security of software systems has become critically important. A trusted execution environment (TEE) is an emerging technology that can help secure software that uses or stores confidential information. To make use of this technology, developers need to identify which pieces of code handle confidential information and should thus be placed in a TEE. However, this process is costly and laborious because it requires the developers to understand the code well enough to make the appropriate changes in order to incorporate a TEE. This process can become challenging for large software that contains millions of lines of code. To help reduce the cost incurred in the process of identifying which pieces of code should be placed within a TEE, this thesis presents ML-TEE, a recommendation system that uses a deep learning model to help reduce the number of lines of code a developer needs to inspect. Our results show that the recommendation system achieves high accuracy as well as a good balance between precision and recall. In addition, we conducted a pilot study and found that participants from the intervention group who used the output from the recommendation system managed to achieve a higher average accuracy and perform the assigned task faster than the participants in the control group.
Del, Vecchio Matteo. "Improving Deep Question Answering: The ALBERT Model." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20414/.
Full textWu, Xinheng. "A Deep Unsupervised Anomaly Detection Model for Automated Tumor Segmentation." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22502.
Full textKayesh, Humayun. "Deep Learning for Causal Discovery in Texts." Thesis, Griffith University, 2022. http://hdl.handle.net/10072/415822.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Info & Comm Tech
Science, Environment, Engineering and Technology
Full Text
Зайяд, Абдаллах Мухаммед. "Ecrypted Network Classification With Deep Learning." Master's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/34069.
Full textThis dissertation consists of 84 pages, 59 Figures and 29 sources in the reference list. Problem: As the world becomes more security conscious, more encryption protocols have been employed in ensuring suecure data transmission between communicating parties. Network classification has become more of a hassle with the use of some techniques as inspecting encrypted traffic can pose to be illegal in some countries. This has hindered network engineers to be able to classify traffic to differentiate encrypted from unencrypted traffic. Purpose of work: This paper aims at the problem caused by previous techniques used in encrypted network classification. Some of which are limited to data size and computational power. This paper employs the use of deep learning algorithm to solve this problem. The main tasks of the research: 1. Compare previous traditional techniques and compare their advantages and disadvantages 2. Study previous related works in the current field of research. 3. Propose a more modern and efficient method and algorithm for encrypted network traffic classification The object of research: Simple artificial neural network algorithm for accurate and reliable network traffic classification that is independent of data size and computational power. The subject of research: Based on data collected from private traffic flow in our own network simulation tool. We use our proposed method to identify the differences in network traffic payloads and classify network traffic. It helped to separate or classify encrypted from unencrypted traffic. 6 Research methods: Experimental method. We have carried out our experiment with network simulation and gathering traffic of different unencrypted protocols and encrypted protocols. Using python programming language and the Keras library we developed a convolutional neural network that was able to take in the payload of the traffic gathered, train the model and classify the traffic in our test set with high accuracy without the requirement of high computational power.
Zhao, Yajing. "Chaotic Model Prediction with Machine Learning." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8419.
Full textBooks on the topic "DEEP LEARNING MODEL"
Poonkuntran, S., Balamurugan Balusamy, and Rajesh Kumar Dhanraj. Object Detection with Deep Learning Models. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003206736.
Full textDeep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch. New York: Apress L. P., 2021.
Find full textBisong, Ekaba. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4470-8.
Full textPaper, David. State-of-the-Art Deep Learning Models in TensorFlow. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7341-8.
Full textCTS student online assessment pilot study: An exploration of The Learning Manager (TLM) Model with Red Deer College. Edmonton, AB: Alberta Education, 2009.
Find full textEl-Amir, Hisham, and Mahmoud Hamdy. Deep Learning Pipeline: Building a Deep Learning Model with TensorFlow. Apress, 2019.
Find full textLattery, Mark J. Deep Learning in Introductory Physics: Exploratory Studies of Model-Based Reasoning. Information Age Publishing, 2016.
Find full textUrtāns, Ēvalds. Function shaping in deep learning. RTU Press, 2021. http://dx.doi.org/10.7250/9789934226854.
Full text1st, Kala K. U., and Nandhini M. 2nd. Deep Learning Model for Categorical Context Adaptation in Sequence-Aware Recommender Systems. INSC International Publisher (IIP), 2021.
Find full textJena, Om Prakash, Alok Ranjan Tripathy, Brojo Kishore Mishra, and Ahmed A. Elngar, eds. Augmented Intelligence: Deep Learning, Machine Learning, Cognitive Computing, Educational Data Mining. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150404011220301.
Full textBook chapters on the topic "DEEP LEARNING MODEL"
Kumar, R. Santhosh, and M. Kalaiselvi Geetha. "Deep Learning Model." In Data Science, 305–22. Boca Raton : CRC Press, [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429263798-14.
Full textRodriguez, Andres. "Training a Model." In Deep Learning Systems, 73–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01769-8_4.
Full textRodriguez, Andres. "Reducing the Model Size." In Deep Learning Systems, 111–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01769-8_6.
Full textRen, Jianfeng, and Dong Xia. "Deep Learning Model Optimization." In Autonomous driving algorithms and Its IC Design, 183–99. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2897-2_8.
Full textGhayoumi, Mehdi. "Finding the Best Model." In Deep Learning in Practice, 175–87. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003025818-8.
Full textSanghi, Nimish. "Model-Free Approaches." In Deep Reinforcement Learning with Python, 77–122. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6809-4_4.
Full textSanghi, Nimish. "Model-Based Algorithms." In Deep Reinforcement Learning with Python, 49–76. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6809-4_3.
Full textAmaratunga, Thimira. "Building Your First Deep Learning Model." In Deep Learning on Windows, 67–100. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6431-7_4.
Full textAmaratunga, Thimira. "Deploying Your Model as a Web Application." In Deep Learning on Windows, 215–31. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6431-7_9.
Full textLei, Chen. "Unsupervised Learning: Deep Generative Model." In Cognitive Intelligence and Robotics, 183–215. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2233-5_9.
Full textConference papers on the topic "DEEP LEARNING MODEL"
Karatekin, Tamer, Selim Sancak, Gokhan Celik, Sevilay Topcuoglu, Guner Karatekin, Pinar Kirci, and Ali Okatan. "Interpretable Machine Learning in Healthcare through Generalized Additive Model with Pairwise Interactions (GA2M): Predicting Severe Retinopathy of Prematurity." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00020.
Full textKee Wong, Yew. "Advanced Deep Learning Model." In 5th International Conference on Computer Science and Information Technology (COMIT 2021). Academy and Industry Research Collaboration Center (AIRCC), 2021. http://dx.doi.org/10.5121/csit.2021.111707.
Full textYerushalmi, Raz, Guy Amir, Achiya Elyasaf, David Harel, Guy Katz, and Assaf Marron. "Scenario-assisted Deep Reinforcement Learning." In 10th International Conference on Model-Driven Engineering and Software Development. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010904700003119.
Full textMiaschi, Alessio, Dominique Brunato, Felice Dell’Orletta, and Giulia Venturi. "What Makes My Model Perplexed? A Linguistic Investigation on Neural Language Models Perplexity." In Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.deelio-1.5.
Full textAckerman, Samuel, Parijat Dube, Eitan Farchi, Orna Raz, and Marcel Zalmanovici. "Machine Learning Model Drift Detection Via Weak Data Slices." In 2021 IEEE/ACM Third International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2021. http://dx.doi.org/10.1109/deeptest52559.2021.00007.
Full textBloch, Anthony. "Online deep learning for behavior prediction." In Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2022, edited by Raja Suresh. SPIE, 2022. http://dx.doi.org/10.1117/12.2619359.
Full textKatz, Guy. "Guarded Deep Learning using Scenario-based Modeling." In 8th International Conference on Model-Driven Engineering and Software Development. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009097601260136.
Full textGatto, Nicola, Evgeny Kusmenko, and Bernhard Rumpe. "Modeling Deep Reinforcement Learning Based Architectures for Cyber-Physical Systems." In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, 2019. http://dx.doi.org/10.1109/models-c.2019.00033.
Full textKong, Phutphalla, Matei Mancas, Nimol Thuon, Seng Kheang, and Bernard Gosselin. "Do Deep-Learning Saliency Models Really Model Saliency?" In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451809.
Full textNarayanan, Niranjhana, and Karthik Pattabiraman. "TF-DM: Tool for Studying ML Model Resilience to Data Faults." In 2021 IEEE/ACM Third International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 2021. http://dx.doi.org/10.1109/deeptest52559.2021.00010.
Full textReports on the topic "DEEP LEARNING MODEL"
Zheng, Jian. Relational Patterns Discovery in Climate with Deep Learning Model. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2021. http://dx.doi.org/10.7546/crabs.2021.01.05.
Full textAihara, Shimpei, Takara Saki, Tyusei Shibata, Toshiaki Matsubara, Ryosuke Mizukami, Yudai Yoshida, and Akira Shionoya. Deep Learning Model for Integrated Estimation of Wheelchair and Human Poses Using Camera Images. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317545.
Full textRenchon, Alexandre, Roser Matamala, Miquel Gonzalez-Meler, Zoe Cardon, Sébastien Lacube, Julie Jastrow, Beth Drewniak, Jules Cacho, and James Franke. Predictabilityand feedbacks of the ocean-soil-plant-atmosphere water cycle: deep learning water conductance in Earth System Model. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769763.
Full textMaher, Nicola, Pedro DiNezio, Antonietta Capotondi, and Jennifer Kay. Identifying precursors of daily to seasonal hydrological extremes over the USA using deep learning techniques and climate model ensembles. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769719.
Full textFullan, Michael, and Joanne Quinn. How Do Disruptive Innovators Prepare Today's Students to Be Tomorrow's Workforce?: Deep Learning: Transforming Systems to Prepare Tomorrow’s Citizens. Inter-American Development Bank, December 2020. http://dx.doi.org/10.18235/0002959.
Full textSelley, Austin. Deep Learning Model Segmentations on Computed Tomography 3D Reconstructions of Coffee Beans to Determine Void Ratio (U-Net) and Roast Level (LinkNet). Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1975634.
Full textPatwa, B., P. L. St-Charles, G. Bellefleur, and B. Rousseau. Predictive models for first arrivals on seismic reflection data, Manitoba, New Brunswick, and Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329758.
Full textJiang, Peishi, Xingyuan Chen, Maruti Mudunuru, Praveen Kumar, Pin Shuai, Kyongho Son, and Alexander Sun. Towards Trustworthy and Interpretable Deep Learning-assisted Ecohydrological Models. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769787.
Full textPettit, Chris, and D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41034.
Full textGastelum, Zoe, Laura Matzen, Mallory Stites, Kristin Divis, Breannan Howell, Aaron Jones, and Michael Trumbo. Assessing Cognitive Impacts of Errors from Machine Learning and Deep Learning Models: Final Report. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821527.
Full text