Academic literature on the topic 'Deep Learning, Computer Vision, Object Detection'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep Learning, Computer Vision, Object Detection.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Deep Learning, Computer Vision, Object Detection"

1

Kohmann, Erich. "Tecniche di deep learning per l'object detection." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19637/.

Full text
Abstract:
L’object detection è uno dei principali problemi nell’ambito della computer vision. Negli ultimi anni, con l’avvento delle reti neurali e del deep learning, sono stati fatti notevoli progressi nei metodi per affrontare questo problema. Questa tesi intende fornire una rassegna dei principali modelli di object detection basati su deep learning, di cui si illustrano le caratteristiche fondamentali e gli elementi che li contraddistinguono dai modelli precedenti. Dopo un infarinatura iniziale sul deep learning e sulle reti neurali in genere, vengono presentati i modelli caratterizzati da tecniche
APA, Harvard, Vancouver, ISO, and other styles
2

Andersson, Dickfors Robin, and Nick Grannas. "OBJECT DETECTION USING DEEP LEARNING ON METAL CHIPS IN MANUFACTURING." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55068.

Full text
Abstract:
Designing cutting tools for the turning industry, providing optimal cutting parameters is of importance for both the client, and for the company's own research. By examining the metal chips that form in the turning process, operators can recommend optimal cutting parameters. Instead of doing manual classification of metal chips that come from the turning process, an automated approach of detecting chips and classification is preferred. This thesis aims to evaluate if such an approach is possible using either a Convolutional Neural Network (CNN) or a CNN feature extraction coupled with machine
APA, Harvard, Vancouver, ISO, and other styles
3

Arefiyan, Khalilabad Seyyed Mostafa. "Deep Learning Models for Context-Aware Object Detection." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/88387.

Full text
Abstract:
In this thesis, we present ContextNet, a novel general object detection framework for incorporating context cues into a detection pipeline. Current deep learning methods for object detection exploit state-of-the-art image recognition networks for classifying the given region-of-interest (ROI) to predefined classes and regressing a bounding-box around it without using any information about the corresponding scene. ContextNet is based on an intuitive idea of having cues about the general scene (e.g., kitchen and library), and changes the priors about presence/absence of some object classes. We p
APA, Harvard, Vancouver, ISO, and other styles
4

Bartoli, Giacomo. "Edge AI: Deep Learning techniques for Computer Vision applied to embedded systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16820/.

Full text
Abstract:
In the last decade, Machine Learning techniques have been used in different fields, ranging from finance to healthcare and even marketing. Amongst all these techniques, the ones adopting a Deep Learning approach were revealed to outperform humans in tasks such as object detection, image classification and speech recognition. This thesis introduces the concept of Edge AI: that is the possibility to build learning models capable of making inference locally, without any dependence on expensive servers or cloud services. A first case study we consider is based on the Google AIY Vision Kit, an inte
APA, Harvard, Vancouver, ISO, and other styles
5

Espis, Andrea. "Object detection and semantic segmentation for assisted data labeling." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.

Find full text
Abstract:
The automation of data labeling tasks is a solution to the errors and time costs related to human labeling. In this thesis work CenterNet, DeepLabV3, and K-Means applied to the RGB color space, are deployed to build a pipeline for Assisted data labeling: a semi-automatic process to iteratively improve the quality of the annotations. The proposed pipeline pointed out a total of 1547 wrong and missing annotations when applied to a dataset originally containing 8,300 annotations. Moreover, the quality of each annotation has been drastically improved, and at the same time, more than 600 hours of w
APA, Harvard, Vancouver, ISO, and other styles
6

Norrstig, Andreas. "Visual Object Detection using Convolutional Neural Networks in a Virtual Environment." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156609.

Full text
Abstract:
Visual object detection is a popular computer vision task that has been intensively investigated using deep learning on real data. However, data from virtual environments have not received the same attention. A virtual environment enables generating data for locations that are not easily reachable for data collection, e.g. aerial environments. In this thesis, we study the problem of object detection in virtual environments, more specifically an aerial virtual environment. We use a simulator, to generate a synthetic data set of 16 different types of vehicles captured from an airplane. To study
APA, Harvard, Vancouver, ISO, and other styles
7

Dickens, James. "Depth-Aware Deep Learning Networks for Object Detection and Image Segmentation." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42619.

Full text
Abstract:
The rise of convolutional neural networks (CNNs) in the context of computer vision has occurred in tandem with the advancement of depth sensing technology. Depth cameras are capable of yielding two-dimensional arrays storing at each pixel the distance from objects and surfaces in a scene from a given sensor, aligned with a regular color image, obtaining so-called RGBD images. Inspired by prior models in the literature, this work develops a suite of RGBD CNN models to tackle the challenging tasks of object detection, instance segmentation, and semantic segmentation. Prominent architectur
APA, Harvard, Vancouver, ISO, and other styles
8

Solini, Arianna. "Applicazione di Deep Learning e Computer Vision ad un Caso d'uso aziendale: Progettazione, Risoluzione ed Analisi." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
Nella computer vision, sono oramai più di dieci anni che si parla di Machine Learning (ML), con l'obiettivo di creare sistemi autonomi che siano in grado di realizzare modelli approssimati della realtà tridimensionale partendo da immagini bidimensionali. Grazie a questa capacità si possono interpretare e comprendere le immagini, emulando la vista umana. Molti ricercatori hanno creato reti neurali in grado di sfidarsi su grandi dataset di milioni di immagini e, come conseguenza, si è ottenuto il continuo miglioramento delle performance di classificazione di immagini da parte delle reti e la cap
APA, Harvard, Vancouver, ISO, and other styles
9

Cuan, Bonan. "Deep similarity metric learning for multiple object tracking." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI065.

Full text
Abstract:
Le suivi d’objets multiples dans une scène est une tâche importante dans le domaine de la vision par ordinateur, et présente toujours de très nombreux verrous. Les objets doivent être détectés et distingués les uns des autres de manière continue et simultanée. Les approches «suivi par détection» sont largement utilisées, où la détection des objets est d’abord réalisée sur toutes les frames, puis le suivi est ramené à un problème d’association entre les détections d’un même objet et les trajectoires identifiées. La plupart des algorithmes de suivi associent des modèles de mouvement et des modèl
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Zhe. "Augmented Context Modelling Neural Networks." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20654.

Full text
Abstract:
Contexts provide beneficial information for machine-based image understanding tasks. However, existing context modelling methods still cannot fully exploit contexts, especially for object recognition and detection. In this thesis, we develop augmented context modelling neural networks to better utilize contexts for different object recognition and detection tasks. Our contributions are two-fold: 1) we introduce neural networks to better model instance-level visual relationships; 2) we introduce neural network-based algorithms to better utilize contexts from 3D information and synthesized data
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!