Journal articles on the topic 'Deep Generatve Models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deep Generatve Models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mehmood, Rayeesa, Rumaan Bashir, and Kaiser J. Giri. "Deep Generative Models: A Review." Indian Journal Of Science And Technology 16, no. 7 (February 21, 2023): 460–67. http://dx.doi.org/10.17485/ijst/v16i7.2296.
Full textRagoza, Matthew, Tomohide Masuda, and David Ryan Koes. "Generating 3D molecules conditional on receptor binding sites with deep generative models." Chemical Science 13, no. 9 (2022): 2701–13. http://dx.doi.org/10.1039/d1sc05976a.
Full textSalakhutdinov, Ruslan. "Learning Deep Generative Models." Annual Review of Statistics and Its Application 2, no. 1 (April 10, 2015): 361–85. http://dx.doi.org/10.1146/annurev-statistics-010814-020120.
Full textPartaourides, Harris, and Sotirios P. Chatzis. "Asymmetric deep generative models." Neurocomputing 241 (June 2017): 90–96. http://dx.doi.org/10.1016/j.neucom.2017.02.028.
Full textChangsheng Du, Changsheng Du, Yong Li Changsheng Du, and Ming Wen Yong Li. "G-DCS: GCN-Based Deep Code Summary Generation Model." 網際網路技術學刊 24, no. 4 (July 2023): 965–73. http://dx.doi.org/10.53106/160792642023072404014.
Full textWu, Han. "Face image generation and feature visualization using deep convolutional generative adversarial networks." Journal of Physics: Conference Series 2634, no. 1 (November 1, 2023): 012041. http://dx.doi.org/10.1088/1742-6596/2634/1/012041.
Full textBerrahal, Mohammed, Mohammed Boukabous, Mimoun Yandouzi, Mounir Grari, and Idriss Idrissi. "Investigating the effectiveness of deep learning approaches for deep fake detection." Bulletin of Electrical Engineering and Informatics 12, no. 6 (December 1, 2023): 3853–60. http://dx.doi.org/10.11591/eei.v12i6.6221.
Full textChe, Tong, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong, and Yoshua Bengio. "Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (May 18, 2021): 7002–10. http://dx.doi.org/10.1609/aaai.v35i8.16862.
Full textScurto, Hugo, Thomas Similowski, Samuel Bianchini, and Baptiste Caramiaux. "Probing Respiratory Care With Generative Deep Learning." Proceedings of the ACM on Human-Computer Interaction 7, CSCW2 (September 28, 2023): 1–34. http://dx.doi.org/10.1145/3610099.
Full textPrakash Patil, Et al. "GAN-Enhanced Medical Image Synthesis: Augmenting CXR Data for Disease Diagnosis and Improving Deep Learning Performance." Journal of Electrical Systems 19, no. 3 (January 25, 2024): 53–61. http://dx.doi.org/10.52783/jes.651.
Full textCui, Bo, Guyue Hu, and Shan Yu. "DeepCollaboration: Collaborative Generative and Discriminative Models for Class Incremental Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 2 (May 18, 2021): 1175–83. http://dx.doi.org/10.1609/aaai.v35i2.16204.
Full textPeng, Shi-Ping, Xin-Yu Yang, and Yi Zhao. "Molecular Conditional Generation and Property Analysis of Non-Fullerene Acceptors with Deep Learning." International Journal of Molecular Sciences 22, no. 16 (August 23, 2021): 9099. http://dx.doi.org/10.3390/ijms22169099.
Full textZeng, Jinshan, Qi Chen, Yunxin Liu, Mingwen Wang, and Yuan Yao. "StrokeGAN: Reducing Mode Collapse in Chinese Font Generation via Stroke Encoding." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 4 (May 18, 2021): 3270–77. http://dx.doi.org/10.1609/aaai.v35i4.16438.
Full textQiang, Zhenping, Libo He, Qinghui Zhang, and Junqiu Li. "Face Inpainting with Deep Generative Models." International Journal of Computational Intelligence Systems 12, no. 2 (2019): 1232. http://dx.doi.org/10.2991/ijcis.d.191016.003.
Full textDu, Fang, Jiangshe Zhang, Junying Hu, and Rongrong Fei. "Discriminative multi-modal deep generative models." Knowledge-Based Systems 173 (June 2019): 74–82. http://dx.doi.org/10.1016/j.knosys.2019.02.023.
Full textXu, Jungang, Hui Li, and Shilong Zhou. "An Overview of Deep Generative Models." IETE Technical Review 32, no. 2 (December 20, 2014): 131–39. http://dx.doi.org/10.1080/02564602.2014.987328.
Full textJørgensen, Peter B., Mikkel N. Schmidt, and Ole Winther. "Deep Generative Models for Molecular Science." Molecular Informatics 37, no. 1-2 (January 2018): 1700133. http://dx.doi.org/10.1002/minf.201700133.
Full textAhmad, Bilal, Jun Sun, Qi You, Vasile Palade, and Zhongjie Mao. "Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks." Biomedicines 10, no. 2 (January 21, 2022): 223. http://dx.doi.org/10.3390/biomedicines10020223.
Full textAndreu, Sergi, and Monica Villanueva Aylagas. "Neural Synthesis of Sound Effects Using Flow-Based Deep Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 18, no. 1 (October 11, 2022): 2–9. http://dx.doi.org/10.1609/aiide.v18i1.21941.
Full textKarimi, Mostafa, Arman Hasanzadeh, and Yang Shen. "Network-principled deep generative models for designing drug combinations as graph sets." Bioinformatics 36, Supplement_1 (July 1, 2020): i445—i454. http://dx.doi.org/10.1093/bioinformatics/btaa317.
Full textHawkins-Hooker, Alex, Florence Depardieu, Sebastien Baur, Guillaume Couairon, Arthur Chen, and David Bikard. "Generating functional protein variants with variational autoencoders." PLOS Computational Biology 17, no. 2 (February 26, 2021): e1008736. http://dx.doi.org/10.1371/journal.pcbi.1008736.
Full textHess, Moritz, Maren Hackenberg, and Harald Binder. "Exploring generative deep learning for omics data using log-linear models." Bioinformatics 36, no. 20 (August 1, 2020): 5045–53. http://dx.doi.org/10.1093/bioinformatics/btaa623.
Full textTang, Keke, Jianpeng Wu, Weilong Peng, Yawen Shi, Peng Song, Zhaoquan Gu, Zhihong Tian, and Wenping Wang. "Deep Manifold Attack on Point Clouds via Parameter Plane Stretching." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 2 (June 26, 2023): 2420–28. http://dx.doi.org/10.1609/aaai.v37i2.25338.
Full textHe, Yu, Shuai Li, Xin Wen, and Jing Xu. "A High-Quality Sample Generation Method for Improving Steel Surface Defect Inspection." Sensors 24, no. 8 (April 20, 2024): 2642. http://dx.doi.org/10.3390/s24082642.
Full textSamanta, Bidisha, Abir DE, Gourhari Jana, Pratim Kumar Chattaraj, Niloy Ganguly, and Manuel Gomez Rodriguez. "NeVAE: A Deep Generative Model for Molecular Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1110–17. http://dx.doi.org/10.1609/aaai.v33i01.33011110.
Full textYue, Yunpeng, Hai Liu, Xu Meng, Yinguang Li, and Yanliang Du. "Generation of High-Precision Ground Penetrating Radar Images Using Improved Least Square Generative Adversarial Networks." Remote Sensing 13, no. 22 (November 15, 2021): 4590. http://dx.doi.org/10.3390/rs13224590.
Full textHe, Junpeng, Lei Luo, Kun Xiao, Xiyu Fang, and Yun Li. "Generate qualified adversarial attacks and foster enhanced models based on generative adversarial networks." Intelligent Data Analysis 26, no. 5 (September 5, 2022): 1359–77. http://dx.doi.org/10.3233/ida-216134.
Full textLiu, Yukai. "Data augmentation-based enhanced fingerprint recognition using deep convolutional generative adversarial network and diffusion models." Applied and Computational Engineering 52, no. 1 (March 27, 2024): 8–13. http://dx.doi.org/10.54254/2755-2721/52/20241115.
Full textLanusse, François, Rachel Mandelbaum, Siamak Ravanbakhsh, Chun-Liang Li, Peter Freeman, and Barnabás Póczos. "Deep generative models for galaxy image simulations." Monthly Notices of the Royal Astronomical Society 504, no. 4 (May 4, 2021): 5543–55. http://dx.doi.org/10.1093/mnras/stab1214.
Full textWu, Zachary, Kadina E. Johnston, Frances H. Arnold, and Kevin K. Yang. "Protein sequence design with deep generative models." Current Opinion in Chemical Biology 65 (December 2021): 18–27. http://dx.doi.org/10.1016/j.cbpa.2021.04.004.
Full textSensoy, Murat, Lance Kaplan, Federico Cerutti, and Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Full textBejarano, Gissella, David DeFazio, and Arti Ramesh. "Deep Latent Generative Models for Energy Disaggregation." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 850–57. http://dx.doi.org/10.1609/aaai.v33i01.3301850.
Full textKalibhat, Neha Mukund, Yogesh Balaji, and Soheil Feizi. "Winning Lottery Tickets in Deep Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (May 18, 2021): 8038–46. http://dx.doi.org/10.1609/aaai.v35i9.16980.
Full textOjeda, Cesar, Kostadin Cvejoski, Bodgan Georgiev, Christian Bauckhage, Jannis Schuecker, and Ramses J. Sanchez. "Learning Deep Generative Models for Queuing Systems." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 9214–22. http://dx.doi.org/10.1609/aaai.v35i10.17112.
Full textBerns, Sebastian. "Increasing the Diversity of Deep Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12870–71. http://dx.doi.org/10.1609/aaai.v36i11.21572.
Full textSuzuki, Masahiro, and Yutaka Matsuo. "A survey of multimodal deep generative models." Advanced Robotics 36, no. 5-6 (February 21, 2022): 261–78. http://dx.doi.org/10.1080/01691864.2022.2035253.
Full textKang, Seokho, and Kyunghyun Cho. "Conditional Molecular Design with Deep Generative Models." Journal of Chemical Information and Modeling 59, no. 1 (July 17, 2018): 43–52. http://dx.doi.org/10.1021/acs.jcim.8b00263.
Full textImrie, Fergus, Anthony R. Bradley, Mihaela van der Schaar, and Charlotte M. Deane. "Deep Generative Models for 3D Linker Design." Journal of Chemical Information and Modeling 60, no. 4 (March 20, 2020): 1983–95. http://dx.doi.org/10.1021/acs.jcim.9b01120.
Full textBesedin, Andrey, Pierre Blanchart, Michel Crucianu, and Marin Ferecatu. "Deep online classification using pseudo-generative models." Computer Vision and Image Understanding 201 (December 2020): 103048. http://dx.doi.org/10.1016/j.cviu.2020.103048.
Full textBaillif, Benoit, Jason Cole, Patrick McCabe, and Andreas Bender. "Deep generative models for 3D molecular structure." Current Opinion in Structural Biology 80 (June 2023): 102566. http://dx.doi.org/10.1016/j.sbi.2023.102566.
Full textBehnia, Farnaz, Dominik Karbowski, and Vadim Sokolov. "Deep generative models for vehicle speed trajectories." Applied Stochastic Models in Business and Industry 39, no. 5 (September 2023): 701–19. http://dx.doi.org/10.1002/asmb.2816.
Full textJung, Steffen, and Margret Keuper. "Spectral Distribution Aware Image Generation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 2 (May 18, 2021): 1734–42. http://dx.doi.org/10.1609/aaai.v35i2.16267.
Full textBazarbaev, Manas, Tserenpurev Chuluunsaikhan, Hyoseok Oh, Ga-Ae Ryu, Aziz Nasridinov, and Kwan-Hee Yoo. "Generation of Time-Series Working Patterns for Manufacturing High-Quality Products through Auxiliary Classifier Generative Adversarial Network." Sensors 22, no. 1 (December 22, 2021): 29. http://dx.doi.org/10.3390/s22010029.
Full textNye, Logan, Hamid Ghaednia, and Joseph H. Schwab. "Generating synthetic samples of chondrosarcoma histopathology with a denoising diffusion probabilistic model." Journal of Clinical Oncology 41, no. 16_suppl (June 1, 2023): e13592-e13592. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e13592.
Full textDu, Chuan, and Lei Zhang. "Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network." Remote Sensing 13, no. 21 (October 29, 2021): 4358. http://dx.doi.org/10.3390/rs13214358.
Full textRojas-Campos, Adrian, Michael Langguth, Martin Wittenbrink, and Gordon Pipa. "Deep learning models for generation of precipitation maps based on numerical weather prediction." Geoscientific Model Development 16, no. 5 (March 8, 2023): 1467–80. http://dx.doi.org/10.5194/gmd-16-1467-2023.
Full textShchetinin, Eugene Yu. "COMPUTER ALGORITHMS FOR SYNTHETIC IMAGES MODELLING BASED ON DIFFUSION MODELS." SOFT MEASUREMENTS AND COMPUTING 11/2, no. 72 (2023): 48–58. http://dx.doi.org/10.36871/2618-9976.2023.11-2.005.
Full textNaman and Sudha Narang, Chaudhary Sarimurrab, Ankita Kesari. "Human Face Generation using Deep Convolution Generative Adversarial Network." January 2021 7, no. 01 (January 29, 2021): 114–20. http://dx.doi.org/10.46501/ijmtst070127.
Full textAkande, Timileyin Opeyemi, Oluwaseyi Omotayo Alabi, and Julianah B. Oyinloye. "A Review of Generative Models for 3D Vehicle Wheel Generation and Synthesis." Journal of Computing Theories and Applications 2, no. 2 (March 21, 2024): 148–68. http://dx.doi.org/10.62411/jcta.10125.
Full textSeong, Ju Yong, Seung-min Ji, Dong-hyun Choi, Seungjae Lee, and Sungchul Lee. "Optimizing Generative Adversarial Network (GAN) Models for Non-Pneumatic Tire Design." Applied Sciences 13, no. 19 (September 25, 2023): 10664. http://dx.doi.org/10.3390/app131910664.
Full text