Academic literature on the topic 'Deep Fingerprinting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep Fingerprinting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep Fingerprinting"
Guo, Maohua, Jinlong Fei, and Yitong Meng. "Deep Nearest Neighbor Website Fingerprinting Attack Technology." Security and Communication Networks 2021 (July 14, 2021): 1–14. http://dx.doi.org/10.1155/2021/5399816.
Full textSong, Pingfan, Yonina C. Eldar, Gal Mazor, and Miguel R. D. Rodrigues. "HYDRA: Hybrid deep magnetic resonance fingerprinting." Medical Physics 46, no. 11 (September 10, 2019): 4951–69. http://dx.doi.org/10.1002/mp.13727.
Full textCohen, Ouri, Bo Zhu, and Matthew S. Rosen. "MR fingerprinting Deep RecOnstruction NEtwork (DRONE)." Magnetic Resonance in Medicine 80, no. 3 (April 6, 2018): 885–94. http://dx.doi.org/10.1002/mrm.27198.
Full textOh, Se Eun, Saikrishna Sunkam, and Nicholas Hopper. "p1-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning." Proceedings on Privacy Enhancing Technologies 2019, no. 3 (July 1, 2019): 191–209. http://dx.doi.org/10.2478/popets-2019-0043.
Full textOh, Se Eun, Nate Mathews, Mohammad Saidur Rahman, Matthew Wright, and Nicholas Hopper. "GANDaLF: GAN for Data-Limited Fingerprinting." Proceedings on Privacy Enhancing Technologies 2021, no. 2 (January 29, 2021): 305–22. http://dx.doi.org/10.2478/popets-2021-0029.
Full textZhang, Qiang, Pan Su, Zhensen Chen, Ying Liao, Shuo Chen, Rui Guo, Haikun Qi, et al. "Deep learning–based MR fingerprinting ASL ReconStruction (DeepMARS)." Magnetic Resonance in Medicine 84, no. 2 (February 4, 2020): 1024–34. http://dx.doi.org/10.1002/mrm.28166.
Full textZhao, Jingjing, Qingyue Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen, and Mohammad Mehedi Hassan. "AFA: Adversarial fingerprinting authentication for deep neural networks." Computer Communications 150 (January 2020): 488–97. http://dx.doi.org/10.1016/j.comcom.2019.12.016.
Full textLee, Woongsup, Seon Yeob Baek, and Seong Hwan Kim. "Deep-Learning-Aided RF Fingerprinting for NFC Security." IEEE Communications Magazine 59, no. 5 (May 2021): 96–101. http://dx.doi.org/10.1109/mcom.001.2000912.
Full textLi, Tao, Hai Wang, Yuan Shao, and Qiang Niu. "Channel state information–based multi-level fingerprinting for indoor localization with deep learning." International Journal of Distributed Sensor Networks 14, no. 10 (October 2018): 155014771880671. http://dx.doi.org/10.1177/1550147718806719.
Full textFang, Zhenghan, Yong Chen, Sheng‐Che Hung, Xiaoxia Zhang, Weili Lin, and Dinggang Shen. "Submillimeter MR fingerprinting using deep learning–based tissue quantification." Magnetic Resonance in Medicine 84, no. 2 (December 19, 2019): 579–91. http://dx.doi.org/10.1002/mrm.28136.
Full textDissertations / Theses on the topic "Deep Fingerprinting"
Magnusson, Jonathan. "Evaluation of a Proposed Traffic-Splitting Defence for Tor : Using Directional Time and Simulation Against TrafficSliver." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-84762.
Full textTor är ett personlig-integritetsverktyg baserat på onion routing som låter sina användare anonymnt besöka hemsidor på internet. Även om trafiken är enkrypterad i flera lager, kan trafikanalys användas för att utvinna information från metadata som exempelvis: tid, storlek och riktning av trafik. En Website Fingerprinting (WF)-attack karaktäriseras av att övervaka trafik nära användaren för att sedan avgöra vilken hemsida som besökts utifrån mönster. TrafficSliver är ett föreslaget försvar mot WF-attacker genom att dela upp trafiken på flera vägar genom nätverket. Detta gör att en attackerare antas endast kunna se en delmängd av användarens totala trafik. Den första utvärderingen av TrafficSliver mot Deep Fingerprinting (DF), spjutspetsen inom WF-attacker, visade lovande resultat för försvaret genom att reducera träffsäkerheten av DF från över 98% till mindre än 7% utan att lägga till artificiella fördröjningar eller falsk trafik. I denna uppsats strävar vi att fortsätta utvärderingen av TrafficSliver mot DF utöver vad som redan har gjorts av De la Cadena et al. med en rikare datarepresentation och en undersökning huruvida det går att använda simulerad data för att träna attacker mot försvaret. Genom att introducera riktad tid och öka mängden data för att träna attacken, ökades träffsäkerheten av DF mot TrafficSliver på tre distinkta dataset. Mot det dataset som samlades in av TrafficSliver var träffsäkerheten inledelsevis 7.1% och sedan förbättrad med hjälp av riktad tid och större mängder av simulerad träningsdata till 49.9%. Dessa resultat bekräftades även för två ytterligare dataset med TrafficSliver, där träffsäkerheten blev förbättrad från 5.4% till 44.9% och från 9.8% till 37.7%.
Williams, Thomas. "Investigating the circulation of Southern Ocean deep water masses over the last 1.5 million years by geochemical fingerprinting of marine sediments." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274006.
Full textWilliams, Timothy Roy. "Reeves' muntjac : a molecular genetic study of an invading species." Thesis, University of Kent, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283343.
Full textTAREKEGN, GETANEH BERIE, and Getaneh Berie Tarekegn. "DFOPS: Fingerprinting Outdoor Positioning Scheme in Hybrid Networks: A Deep Learning Approach." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/9jzm29.
Full text國立臺北科技大學
電資國際專班
107
Recently, Location Based Services (LBSs) are becoming a key technology for enhancing the applicability of Internet-of-Things (IoT) to offer seamless, intelligent and adaptive services in academia and industry to create smart world due to the growth of multiple built-in sensors on mobile devices and wireless technology. Satellite-based positioning (e.g., GPS) do not work well for urban and suburban outdoor positioning for the success of IoT deployment because of Line of Sight (LoS) problems and it requiring much power. Besides, most satellite-based positioning systems are not cost-effective. Hence accurate and efficient positioning services is a major challenge in urban and suburban environments. In this paper, we propose an accurate, cost-efficient and robust Fingerprinting Outdoor Positioning Scheme(DFOPS) in a scalable environment using hybrid Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) algorithms. DFOPS contains Wi-Fi and Orthogonal Frequency Division Multiplexing (OFDM) signal values from each reachable Wi-Fi Access Points (APs) and three temporary deployed Unmanned Arial Vehicles Base Stations (UAV-BSs), respectively, to construct a radio-map. Due to signal unreachable and shadowing effects, the signal values are missed. Accordingly, we fill the missing values of the radio-map using mean of RSS values at each reference point. Since we collect multiple RSS measurements at each reference points over time with different mobile devices to mitigate signal variations during constructing a radio-map. We apply Linear Discriminant Analysis (LDA) to remove outliers, extract unique features from raw data, reduce Wi-Fi and OFDM features, speed up learning processes, and optimize the proposed algorithm performances. The proposed hybrid SVM+LSTM model (i.e., DFOPS) is the sequential combination of classification and regression model, which is SVM with Radial Basis Function (RBF) kernel as classifier and LSTM as regression model. In this model, to limit the search space and improve the positioning performance, we primarily apply SVM classifier as a coarse positioning that predicts the class of a mobile user inferred from the class-based signal distribution. Secondly, by adding the SVM predicted class of the mobile user as one feature to the signal reading of the target IoT device, we use an input to the LSTM model. Then, the LSTM model is used to figure out the current positioning (latitude, longitude) of the mobile user. The proposed system is evaluated on experimental datasets in real environment in three different scenarios. To assess the trustworthiness of the SVM classifier, we compare with k-Nearest Neighbor(k-NN), Random Forest, and Multilayer Perceptron (MLP) algorithms in all our proposed scenarios. The experimental result shows that SVM has better positioning performance in all scenarios than the others. The proposed DFOPS model achieved positioning errors less than 1.5 m are 87.46%, 92.74% and 99.23% for Scenario-I (original collected Wi-Fi and OFDM signal), Scenario-II (reduced the Scenario-I signal features using PCA) and Scenario-III (reduced the Scenario-I signal features using LDA), respectively. The model achieved no more than 1.29 m position estimation errors. This shows that the proposed model achieves a promising and reasonable positioning services of the IoT devices in wireless environment.
Yang, Jia-Hong, and 楊佳虹. "A Robust Music Auto-Tagging Technique Using Audio Fingerprinting and Deep Convolutional Neural Networks." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/vagbse.
Full text國立中興大學
資訊科學與工程學系
106
Music tags are a set of descriptive keywords that convey high-level information about a music clip, such as emotions(sadness, happiness), genres(jazz, classical), and instruments(guitar, vocal). Since tags provide high-level information from the listener’s perspectives, they can be used for music discovery and recommendation. However, in music information retrieval (MIR), researchers need to have expertise based on acoustics or engineering design in order to analyze and organize music informations, classify them according to music forms, and then provide music information retrieval. In recent years, people have been paying more attention to the feature learning and deep architecture, thus reducing the required of the engineering works and the need for prior knowledge. The use of deep convolutional neural networks has been successfully explored in the image, text and speech field. However, previous methods for music auto-tagging can’t accurately discriminate the type of music for the distortion and noise audio, it will have the bad results in the auto-tagging. Therefore, we will propose a robust method to implement auto-music tagging. First, convert the music into a spectrogram, and find out the important information from the spectrogram, that is, the audio fingerprint. Then use it as the input of convolutional neural networks to learn the features, in this way to get a good music search result. Experimental results demonstrate the robustness of the proposed method.
Books on the topic "Deep Fingerprinting"
Brinkman, Todd J. Assessing population trends of deer in southeast Alaska using a DNA-based approach: A general guide, version 1.0. Juneau, AK: Alaska Dept. of Fish and Game, Division of Wildlife Conservation, 2010.
Find full textBrinkman, Todd J. Using DNA to test the utility of pellet-group counts as indices of deer density. Juneau, AK: Alaska Dept. of Fish and Game, Division of Wildlife Conservation, 2010.
Find full textBook chapters on the topic "Deep Fingerprinting"
Billah Karbab, ElMouatez, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga Mouheb. "Portable Supervised Malware Fingerprinting Using Deep Learning." In Android Malware Detection using Machine Learning, 143–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74664-3_7.
Full textAbid, Mahdi, and Grégoire Lefebvre. "Deep Neural Networks for Indoor Geomagnetic Field Fingerprinting with Regression Approach." In Proceedings of the International Neural Networks Society, 178–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80568-5_15.
Full textWang, Jiankun, Zenghua Zhao, Jiayang Cui, Yu Wang, YiYao Shi, and Bin Wu. "Low-Cost Wi-Fi Fingerprinting Indoor Localization via Generative Deep Learning." In Wireless Algorithms, Systems, and Applications, 53–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85928-2_5.
Full textvan Schooten, Kipp. "Towards Chemical Fingerprinting of Deep-Level Defect Sites in CdS Nanocrystals by Optically Detected Spin Coherence." In Optically Active Charge Traps and Chemical Defects in Semiconducting Nanocrystals Probed by Pulsed Optically Detected Magnetic Resonance, 75–88. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00590-4_4.
Full textFang, Zhenghan, Yong Chen, Mingxia Liu, Yiqiang Zhan, Weili Lin, and Dinggang Shen. "Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)." In Machine Learning in Medical Imaging, 398–405. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00919-9_46.
Full textFang, Zhenghan, Yong Chen, Mingxia Liu, Yiqiang Zhan, Weili Lin, and Dinggang Shen. "Correction to: Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)." In Machine Learning in Medical Imaging, C1. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-00919-9_47.
Full textDada, Michael O., and Bamidele O. Awojoyogbe. "A Computational MRI Based on Bloch’s NMR Flow Equation, MRI Fingerprinting and Python Deep Learning for Classifying Adult Brain Tumors." In Biological and Medical Physics, Biomedical Engineering, 179–217. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76728-0_5.
Full textBhuyan, Manasjyoti, and Kandarpa Kumar Sarma. "Fingerprinting Based Localization with Channel State Information Features and Spatio-Temporal Deep Learning in Long Term Evolution Femtocell Network: An Experimental Approach." In Sustainable Communication Networks and Application, 156–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34515-0_16.
Full textBuckley, Michael, Richard G. Cooke, María Fernanda Martínez, Fernando Bustamante, Máximo Jiménez, Alexandra Lara, and Juan Guillermo Martín. "Archaeological Collagen Fingerprinting in the Neotropics; Protein Survival in 6000 Year Old Dwarf Deer Remains from Pedro González Island, Pearl Islands, Panama." In Zooarchaeology in the Neotropics, 157–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57328-1_10.
Full textConference papers on the topic "Deep Fingerprinting"
Sirinam, Payap, Mohsen Imani, Marc Juarez, and Matthew Wright. "Deep Fingerprinting." In CCS '18: 2018 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3243734.3243768.
Full textNicolussi, Alessandro, Simon Tanner, and Roger Wattenhofer. "Aircraft Fingerprinting Using Deep Learning." In 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco47968.2020.9287691.
Full textJafari, Hossein, Oluwaseyi Omotere, Damilola Adesina, Hsiang-Huang Wu, and Lijun Qian. "IoT Devices Fingerprinting Using Deep Learning." In MILCOM 2018 - IEEE Military Communications Conference. IEEE, 2018. http://dx.doi.org/10.1109/milcom.2018.8599826.
Full textRimmer, Vera, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter Joosen. "Automated Website Fingerprinting through Deep Learning." In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2018. http://dx.doi.org/10.14722/ndss.2018.23105.
Full textXu, Tongyang, and Izzat Darwazeh. "Faster URLLC: Deep Learning Waveform Fingerprinting." In 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2021. http://dx.doi.org/10.1109/iccworkshops50388.2021.9473878.
Full textHe, Zecheng, Tianwei Zhang, and Ruby Lee. "Sensitive-Sample Fingerprinting of Deep Neural Networks." In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00486.
Full textSeto, Mae L., and Parmeet Singh. "Visual fingerprinting for lobsters using deep learning." In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8914029.
Full textCui, Weiqi, Tao Chen, and Eric Chan-Tin. "More Realistic Website Fingerprinting Using Deep Learning." In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2020. http://dx.doi.org/10.1109/icdcs47774.2020.00058.
Full textWang, Si, and Chip-Hong Chang. "Fingerprinting Deep Neural Networks - a DeepFool Approach." In 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401119.
Full textSeok, Keun Young, and Jung Hoon Lee. "Deep Learning Based Fingerprinting Scheme for Wireless Positioning." In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2020. http://dx.doi.org/10.1109/icaiic48513.2020.9065054.
Full text