Academic literature on the topic 'DED metal additive manufacturing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DED metal additive manufacturing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "DED metal additive manufacturing"

1

Peyre, Patrice. "Additive Layer Manufacturing using Metal Deposition." Metals 10, no. 4 (April 1, 2020): 459. http://dx.doi.org/10.3390/met10040459.

Full text
Abstract:
Among the additive layer manufacturing techniques for metals, those involving metal deposition, including laser cladding/Direct Energy Deposition (DED, with powder feeding) or Wire and Arc Additive Manufacturing (WAAM, with wire feeding), exhibit several attractive features [...]
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Wenjun, Chunguang Xu, Cencheng Li, and Sha Wu. "Advances in Ultrasonic-Assisted Directed Energy Deposition (DED) for Metal Additive Manufacturing." Crystals 14, no. 2 (January 24, 2024): 114. http://dx.doi.org/10.3390/cryst14020114.

Full text
Abstract:
Directed Energy Deposition (DED), a branch of AM processes, has emerged as a significant technique for fabricating large metal components in sectors such as aerospace, automotive, and healthcare. DED is characterized by its high deposition rate and scalability, which stand out among other AM processes. However, it encounters critical issues such as residual stresses, distortion, porosity, and rough surfaces resulting from rapid melting and solidification. As a novel advancement, Ultrasonic-Assisted Directed Energy Deposition (UA-DED) integrates ultrasonic oscillations into DED aimed at addressing these challenges. Herein, the latest research related to the UA-DED process and the current major challenges of the DED process, residual stresses, porosity, and crack defects are critically reviewed. Subsequently, the paper also details the working principle and system components of UA-DED technology and reviews the material improvement by introducing UA into the DED process, grain, porosity, tensile properties, and deposition defects. The most critical optimization methods of process parameter variables for UA and the different material interaction mechanisms between UA and DED processes are identified and discussed in detail. Finally, the perspectives on the research gap and potential future developments in UA-DED are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Ziesing, Ulf, Jonathan Lentz, Arne Röttger, Werner Theisen, and Sebastian Weber. "Processing of a Martensitic Tool Steel by Wire-Arc Additive Manufacturing." Materials 15, no. 21 (October 22, 2022): 7408. http://dx.doi.org/10.3390/ma15217408.

Full text
Abstract:
This work investigates the processability of hot-work tool steels by wire-arc additive manufacturing (DED-Arc) from metal-cored wires. The investigations were carried out with the hot-work tool steel X36CrMoWVTi10-3-2. It is shown that a crack-free processing from metal-cored wire is possible, resulting from a low martensite start (Ms) temperature, high amounts of retained austenite (RA) in combination with increased interpass temperatures during deposition. Overall mechanical properties are similar over the built-up height of 110 mm. High alloying leads to pronounced segregation during processing by DED-Arc, achieving a shift of the secondary hardness maximum towards higher temperatures and higher hardness in as-built + tempered condition in contrast to hardened + tempered condition, which appears to be beneficial for applications of DED-Arc processed material at elevated temperatures.
APA, Harvard, Vancouver, ISO, and other styles
4

Strong, Danielle, Michael Kay, Thomas Wakefield, Issariya Sirichakwal, Brett Conner, and Guha Manogharan. "Rethinking reverse logistics: role of additive manufacturing technology in metal remanufacturing." Journal of Manufacturing Technology Management 31, no. 1 (August 7, 2019): 124–44. http://dx.doi.org/10.1108/jmtm-04-2018-0119.

Full text
Abstract:
Purpose Although the adoption of metal additive manufacturing (AM) for production has continuously grown, in-house access to production grade metal AM systems for small and medium enterprises (SMEs) is a major challenge due to costs of acquiring metal AM systems, specifically powder bed fusion AM. On the other hand, AM technology in directed energy deposition (DED) has been evolving in both: processing capabilities and adaptable configuration for integration within existing traditional machines that are available in most SME manufacturing facilities, e.g. computer numerical control (CNC) machining centers. Integrating DED with conventional processes such as machining and grinding into Hybrid AM is well suited for remanufacturing of metal parts. The paper aims to discuss these issues. Design/methodology/approach Classical facility location models are employed to understand the effects of SMEs adopting DED systems to offer remanufacturing services. This study identifies strategically located counties in the USA to advance hybrid AM for reverse logistics using North American Industry Classification System (NAICS) data on geographical data, demand, fixed and transportation costs. A case study is also implemented to explore its implications on remanufacturing of high-value parts on the reverse logistics supply chain using an aerospace part and NAICS data on aircraft maintenance, repair and overhaul facilities. Findings The results identify the candidate counties, their allocations, allocated demand and total costs. Offering AM remanufacturing services to traditional manufacturers decreases costs for SMEs in the supply chain by minimizing expensive new part replacement. The hubs also benefit from hybrid AM to repair their own parts and tools. Originality/value This research provides a unique analysis on reverse logistics through hybrid AM focused on remanufacturing rather than manufacturing. Facility location using real data is used to obtain results and offers insights into integrating AM for often overlooked aspect of remanufacturing. The study shows that SMEs can participate in the evolving AM economy through remanufacturing services using significantly lower investment costs.
APA, Harvard, Vancouver, ISO, and other styles
5

Dass, Adrita, and Atieh Moridi. "State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design." Coatings 9, no. 7 (June 29, 2019): 418. http://dx.doi.org/10.3390/coatings9070418.

Full text
Abstract:
Additive manufacturing (AM) is a new paradigm for the design and production of high-performance components for aerospace, medical, energy, and automotive applications. This review will exclusively cover directed energy deposition (DED)-AM, with a focus on the deposition of powder-feed based metal and alloy systems. This paper provides a comprehensive review on the classification of DED systems, process variables, process physics, modelling efforts, common defects, mechanical properties of DED parts, and quality control methods. To provide a practical framework to print different materials using DED, a process map using the linear heat input and powder feed rate as variables is constructed. Based on the process map, three different areas that are not optimized for DED are identified. These areas correspond to the formation of a lack of fusion, keyholing, and mixed mode porosity in the printed parts. In the final part of the paper, emerging applications of DED from repairing damaged parts to bulk combinatorial alloys design are discussed. This paper concludes with recommendations for future research in order to transform the technology from “form” to “function,” which can provide significant potential benefits to different industries.
APA, Harvard, Vancouver, ISO, and other styles
6

Rodríguez-González, Paula, Erich Neubauer, Enrique Ariza, Leandro Bolzoni, Elena Gordo, and Elisa María Ruiz-Navas. "Assessment of Plasma Deposition Parameters for DED Additive Manufacturing of AA2319." Journal of Manufacturing and Materials Processing 7, no. 3 (June 8, 2023): 113. http://dx.doi.org/10.3390/jmmp7030113.

Full text
Abstract:
Arc-directed energy deposition using wire as feedstock is establishing itself as a 3D printing method capable of obtaining additively manufactured large structures. Contrasting results are reported in the literature about the effect of the deposition parameters on the quality of the deposited tracks, as it is highly dependent on the relationship and intercorrelations between the individual input parameters, which are generally deposition-technique-dependent. This study comprehensively analysed the effect of several deposition parameters and clarified their interactions in plasma metal deposition of Al alloys. It was found that, although no straightforward correlation between the individual input parameters investigated and the measured output deposition track’s quality aspects existed, the input current had the greatest effect, followed by the wire feed speed and its interaction with the input current. Moreover, the greatest effect of changing the shielding gas atmosphere, including the gas mixture, flow rate and plasma flow, was on the penetration depth, and fine-tuning the frequency/balance ratio and the preheating of the deposition substrates reduced the amount of porosity. This study demonstrates that well-deposited multi-layer walls made out of Al alloys can successfully be achieved via plasma metal deposition.
APA, Harvard, Vancouver, ISO, and other styles
7

Saboori, Abdollah, Mostafa Toushekhah, Alberta Aversa, Manuel Lai, Mariangela Lombardi, Sara Biamino, and Paolo Fino. "Critical Features in the Microstructural Analysis of AISI 316L Produced By Metal Additive Manufacturing." Metallography, Microstructure, and Analysis 9, no. 1 (January 2, 2020): 92–96. http://dx.doi.org/10.1007/s13632-019-00604-6.

Full text
Abstract:
AbstractDirected energy deposition (DED) process is recognized as an alternative technology to produce the complex-shape AISI 316L components. The critical production step in this technology is the optimization of process parameters that can directly affect the final properties of the components. To optimize the process parameters, the residual defects of specimens produced with different combinations of process parameters are evaluated, and the optimum condition is chosen. Therefore, the residual defects assessment is a vital step in finding the optimum process parameters; therefore, this evaluation should be carried out carefully. One of the main issues in the production of AISI 316L by DED process is oxidation during the process that should be considered besides the other defects such as porosity and cracks. However, the identification between the oxides and porosities is not an easy task, and so this study aims to provide more clear insight into the evaluation of pores and oxides in DED 316L samples. The outcomes of this work show that at the best process parameters suitable for a porosity-free sample, there are some oxides that can be misinterpreted as porosity and consequently deteriorate the mechanical properties of the dense sample.
APA, Harvard, Vancouver, ISO, and other styles
8

Ko, Ui Jun, Ju Hyeong Jung, Jung Hyun Kang, Kyunsuk Choi, and Jeoung Han Kim. "Enhanced Microstructure and Wear Resistance of Ti–6Al–4V Alloy with Vanadium Carbide Coating via Directed Energy Deposition." Materials 17, no. 3 (February 3, 2024): 733. http://dx.doi.org/10.3390/ma17030733.

Full text
Abstract:
Ti–6Al–4V alloys are known for their suboptimal tribological properties and are often challenged by durability issues under severe wear conditions. This study was conducted to enhance the alloy’s wear resistance by forming a hardened surface layer. Utilizing directed energy deposition (DED) additive manufacturing with a diode laser, vanadium carbide particles were successfully integrated onto a Ti–6Al–4V substrate. This approach deviates from traditional surface enhancement techniques like surface hardening and cladding, as it employs DED additive manufacturing under parameters akin to those used in standard Ti–6Al–4V production. The formed vanadium carbide layer achieved a remarkable thickness of over 400 µm and a Vickers hardness surpassing 1500 HV. Pin-on-disk test results further corroborated the enhanced surface wear properties of the Ti–6Al–4V alloy following the additive-manufacturing process. These findings suggest that employing vanadium carbide additive manufacturing, under conditions similar to the conventional DED process with a diode laser, significantly improves the surface wear properties of Ti–6Al–4V in metal 3D-printing applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Saboori, Abdollah, Alberta Aversa, Giulio Marchese, Sara Biamino, Mariangela Lombardi, and Paolo Fino. "Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review." Applied Sciences 10, no. 9 (May 9, 2020): 3310. http://dx.doi.org/10.3390/app10093310.

Full text
Abstract:
Directed energy deposition (DED) as a metal additive manufacturing technology can be used to produce or repair complex shape parts in a layer-wise process using powder or wire. Thanks to its advantages in the fabrication of net-shape and functionally graded components, DED could attract significant interest in the production of high-value parts for different engineering applications. Nevertheless, the industrialization of this technology remains challenging, mainly because of the lack of knowledge regarding the microstructure and mechanical characteristics of as-built parts, as well as the trustworthiness/durability of engineering parts produced by the DED process. Hence, this paper reviews the published data about the microstructure and mechanical performance of DED AISI 316L stainless steel. The data show that building conditions play key roles in the determination of the microstructure and mechanical characteristics of the final components produced via DED. Moreover, this review article sheds light on the major advancements and challenges in the production of AISI 316L parts by the DED process. In addition, it is found that in spite of different investigations carried out on the optimization of process parameters, further research efforts into the production of AISI 316L components via DED technology is required.
APA, Harvard, Vancouver, ISO, and other styles
10

Sarzyński, Bartłomiej, Lucjan Śnieżek, and Krzysztof Grzelak. "Metal Additive Manufacturing (MAM) Applications in Production of Vehicle Parts and Components—A Review." Metals 14, no. 2 (February 5, 2024): 195. http://dx.doi.org/10.3390/met14020195.

Full text
Abstract:
In this article, the significance of additive manufacturing techniques in the production of vehicle parts over the past several years is highlighted. It indicates the industries and scientific sectors in which these production techniques have been applied. The primary manufacturing methods are presented based on the materials used, including both metals and non-metals. The authors place their primary focus on additive manufacturing techniques employing metals and their alloys. Within this context, they categorize these methods into three main groups: L-PBF (laser-powder bed fusion), sheet lamination, and DED (directed energy deposition) techniques. In the subsequent stages of work on this article, specific examples of vehicle components produced using metal additive manufacturing (MAM) methods are mentioned.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "DED metal additive manufacturing"

1

TESTA, Cristian (ORCID:0000-0002-6064-9851). "Corrosion behaviour of metal alloys obtained by means of additive manufacturing." Doctoral thesis, Università degli studi di Bergamo, 2020. http://hdl.handle.net/10446/181512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaya, Fuat Emre. "Applications of Additive Manufacturing in Construction and Historic Building Restoration/Rehabilitation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22784/.

Full text
Abstract:
The term “Additive Manufacturing” is described as the layered production of parts from a 3D file. Over the past century, this technology has evolved from a complement tool for conventional product development into an independent production method. Whereas high technology industries such as aerospace and medicine were already embraced additive manufacturing, structural engineering and architecture are lagging. Additive manufacturing has the potential to revolutionize the construction and restoration of historic buildings, with foreseeable benefits including highly complex and efficient structures with the reduction in material use and wastage, streamlining and expedition of the design-build process, improved customization. However, there are also challenges and demands: a new way of thinking for design and verifications for stability and serviceability of printed elements, the cost, the need for well-educated engineers. In this dissertation, the current state of additive manufacturing in construction and historic building restoration/rehabilitation is reviewed as a combination of qualitative and quantitative-based studies. The research aims to give confidence to additive manufacturing applicability in these fields and stimulate further research. The opportunities and challenges are discussed by analysing concrete, polymer, and metal-based processes and their applications of additive manufacturing in the construction sector. A review of structural and non-structural applications in restoration projects, possible future applications in terms of structural strengthening are analysed and opportunities and challenges are identified and discussed. Based on the literature review and experimental lab tests, the outcome was obtained as the tensile mechanical properties are adequate for structural engineering applications. However, further interdisciplinary research on additive manufacturing is necessary to build confidence in structural engineers and architects.
APA, Harvard, Vancouver, ISO, and other styles
3

Schneider-Maunoury, Catherine. "Application de l’injection différentielle au procédé de fabrication additive DED-CLAD® pour la réalisation d’alliages de titane à gradients de compositions chimiques." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0260/document.

Full text
Abstract:
Depuis 1984, les matériaux à gradients de fonction (FGM) permettent de former une barrière thermique et réduire les fortes discontinuités des propriétés entre deux matériaux de nature différente. Ces multi-matériaux, qui consistent en une variation intentionnelle de la composition chimique entrainant par conséquent une modification des propriétés microstructurales, chimiques, mécaniques et thermiques, permettent de lisser la distribution des contraintes thermiques. L’élaboration in situ de ces alliages sur mesure est rendu possible grâce à l’utilisation de procédés de fabrication additive tel que le procédé par dépôt de poudres DED-CLAD®. Ces procédés connaissent un essor considérable depuis les années 1980 et sont idéaux dans la fabrication de FGM. Dans le cadre de cette thèse CIFRE, des développements techniques ont été effectués pour adapter le procédé DED-CLAD® et permettre la réalisation de FGM. Grâce à plusieurs collaborations industrielles, une étude complète a été réalisée sur les alliages titane-molybdène et titane-niobium. Ces alliages permettent dans le premier cas de réaliser des pièces résistantes à de fortes sollicitations thermiques (secteur spatial), et dans le second cas d’associer les propriétés mécaniques et la biocompatibilité (secteur biomédical). L’originalité de cette thèse repose sur l’étude d’un gradient complet, c’est-à-dire que l’ajout en élément d’alliage varie de 0% à 100%. En effet, les études reportées dans la littérature ne font pas mentions des alliages titane-matériaux réfractaire pour des taux élevés en élément réfractaire. Les analyses microstructurale (DRX, structure cristallographique par EBSD, microstructure), chimique (EDS) et mécanique (microdureté, tests de traction et essais d’indentation instrumentée) ont mis en évidence une évolution des propriétés le long du gradients de composition. La caractérisation mécanique des échantillons par indentation instrumentée s’est par ailleurs révélée particulièrement pertinente dans les cas de ces multi-matériaux
Since 1984, the Functionally Graded Material (FGM) allow to create a thermal barrier and to reduce the strong discontinuities of properties between two materials of different composition. These multimaterials,whose consist of an intentional variation in the chemical composition and, consequently, modify the microstructural, chemical, mechanical and thermal properties, lead to a smooth distribution of the thermal stress. The in-situ development of these custom-made alloys is made possible by the use of additive manufacturing processes such as the DED-CLAD® powder deposition process. These processes have grown substantially since the 1980s and are optimal for the manufacture of FGM. During this industrial thesis, technical developments have been carried out to adapt the DED-CLAD® process and to allow the manufacturing of FGM. Thanks to two industrial collaborations, a full study was carried out on titanium-molybdenum and titanium-niobium alloys. These alloys make it possible, in the first case, to produce parts resistant to strong thermal stress (space sector), and in the second case to combine mechanical properties and biocompatibility (biomedical sector). The originality of this thesis rests on the study of a complete gradient, that is the addition in alloy element varied from 0% to 100%. In fact, studies reported in the literature do not mention titanium-refractory material for high levels of refractory element. Microstructural (XRD, crystallographic analysis by EBSD technique), chemical (EDS) and mechanical (microhardness, tensile test and instrumented indentation) analyses revealed an evolution of the properties along the chemical gradient. The mechanical characterization of the sample by instrumented indentation has also proved particularly relevant in the case of these multi-materials
APA, Harvard, Vancouver, ISO, and other styles
4

Vandi, Daniele. "Studio del comportamento a fatica di provini in Maraging steel realizzati tramite Additive Manufacturing." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
Nel presente lavoro di tesi verrà studiato ed analizzato, tramite prove effettuate in laboratorio, il comportamento a fatica di 3 set di provini metallici in Maraging steel, realizzati mediante le più moderne tecnologie di Additive Manufacturing. Tale recente tecnologia, pioniera nell'ambito della produzione manifatturiera di prototipi e pezzi, ha iniziato sin dagli inizi del suo sviluppo a mostrare le sue numerose potenzialità, e solo negli ultimi anni ha dimostrato di poter essere applicata con successo anche a componenti meccanici e parti funzionali. Ciononostante, data la modernità della tecnologia, sono richieste ulteriori ricerche ed analisi per determinare il comportamento meccanico di pezzi prodotti con tali tecnologie, in quanto la loro resistenza, statica e soprattutto a fatica, è influenzata dalla peculiarità del processo tecnologico stesso, che tende a generare forte anisotropia nelle leghe metalliche prodotte. Nella prima parte verranno discussi i fondamenti generali della meccanica per i materiali metallici, in particolare il comportamento dei materiali sottoposti a storie di carico variabile; nella seconda parte verrà presentato uno stato dell'arte dei vari processi di Additive Manufacturing; nella terza parte, verrà studiato il comportamento a fatica, ad alto numero di cicli, dei suddetti provini sottoposti da un macchinario a flessione rotante a vari livelli di carico; nella quarta parte, tramite uso di tecniche statistiche, verrà presentata un'elaborazione dei risultati ottenuti in laboratorio, in particolare per ricavare la curva S-N e il limite di fatica del materiale; infine verrà presentata l'osservazione al microscopio delle superfici di frattura dei provini, per indagare la propagazione della rottura e così risalire alle possibili cause iniziatrici della rottura stessa.
APA, Harvard, Vancouver, ISO, and other styles
5

Schneider-Maunoury, Catherine. "Application de l’injection différentielle au procédé de fabrication additive DED-CLAD® pour la réalisation d’alliages de titane à gradients de compositions chimiques." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0260.

Full text
Abstract:
Depuis 1984, les matériaux à gradients de fonction (FGM) permettent de former une barrière thermique et réduire les fortes discontinuités des propriétés entre deux matériaux de nature différente. Ces multi-matériaux, qui consistent en une variation intentionnelle de la composition chimique entrainant par conséquent une modification des propriétés microstructurales, chimiques, mécaniques et thermiques, permettent de lisser la distribution des contraintes thermiques. L’élaboration in situ de ces alliages sur mesure est rendu possible grâce à l’utilisation de procédés de fabrication additive tel que le procédé par dépôt de poudres DED-CLAD®. Ces procédés connaissent un essor considérable depuis les années 1980 et sont idéaux dans la fabrication de FGM. Dans le cadre de cette thèse CIFRE, des développements techniques ont été effectués pour adapter le procédé DED-CLAD® et permettre la réalisation de FGM. Grâce à plusieurs collaborations industrielles, une étude complète a été réalisée sur les alliages titane-molybdène et titane-niobium. Ces alliages permettent dans le premier cas de réaliser des pièces résistantes à de fortes sollicitations thermiques (secteur spatial), et dans le second cas d’associer les propriétés mécaniques et la biocompatibilité (secteur biomédical). L’originalité de cette thèse repose sur l’étude d’un gradient complet, c’est-à-dire que l’ajout en élément d’alliage varie de 0% à 100%. En effet, les études reportées dans la littérature ne font pas mentions des alliages titane-matériaux réfractaire pour des taux élevés en élément réfractaire. Les analyses microstructurale (DRX, structure cristallographique par EBSD, microstructure), chimique (EDS) et mécanique (microdureté, tests de traction et essais d’indentation instrumentée) ont mis en évidence une évolution des propriétés le long du gradients de composition. La caractérisation mécanique des échantillons par indentation instrumentée s’est par ailleurs révélée particulièrement pertinente dans les cas de ces multi-matériaux
Since 1984, the Functionally Graded Material (FGM) allow to create a thermal barrier and to reduce the strong discontinuities of properties between two materials of different composition. These multimaterials,whose consist of an intentional variation in the chemical composition and, consequently, modify the microstructural, chemical, mechanical and thermal properties, lead to a smooth distribution of the thermal stress. The in-situ development of these custom-made alloys is made possible by the use of additive manufacturing processes such as the DED-CLAD® powder deposition process. These processes have grown substantially since the 1980s and are optimal for the manufacture of FGM. During this industrial thesis, technical developments have been carried out to adapt the DED-CLAD® process and to allow the manufacturing of FGM. Thanks to two industrial collaborations, a full study was carried out on titanium-molybdenum and titanium-niobium alloys. These alloys make it possible, in the first case, to produce parts resistant to strong thermal stress (space sector), and in the second case to combine mechanical properties and biocompatibility (biomedical sector). The originality of this thesis rests on the study of a complete gradient, that is the addition in alloy element varied from 0% to 100%. In fact, studies reported in the literature do not mention titanium-refractory material for high levels of refractory element. Microstructural (XRD, crystallographic analysis by EBSD technique), chemical (EDS) and mechanical (microhardness, tensile test and instrumented indentation) analyses revealed an evolution of the properties along the chemical gradient. The mechanical characterization of the sample by instrumented indentation has also proved particularly relevant in the case of these multi-materials
APA, Harvard, Vancouver, ISO, and other styles
6

TREVISAN, FRANCESCO. "Study and characterisation of different metal alloys processed through Laser Powder Bed Fusion." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2709711.

Full text
Abstract:
Additive Manufacturing (AM) techniques inspired a substantial revolution in the way of concept and produce metal components for industry. Among all the available AM processes, Laser Powder Bed Fusion (LPBF) inspired a noticeable series of investments, studies and standardisation routes since the great interested it acquired in several industrial sectors. In the past years numerous researchers demonstrated how this process produces metal components with innovative and unprecedented microstructures and mechanical properties, disclosing new horizons in the scientific and industrial research. This thesis took under investigation the study and characterisation of three different metal alloys, A357 aluminium alloy, Ti-6Al-4V titanium alloy and pure copper, respectively, all processed by LPBF. Furthermore, the investigation of different post-processing heat treatments was took under study. The processed samples, as well the metal powders used, were characterised by microscopic and macroscopic analyses. The study on A357 aluminium alloy processed by LPBF investigated the process parameters necessary to build full dense components for industrial applications. By correctly combining hatching distance and scanning speed it was possible to fabricate completely dense specimens keeping a good productivity rate. Moreover, the effects of different heat treatments on specimens microstructure and mechanical properties were studied. Particularly, a stress relieving and a subsequent T6 precipitation hardening treatment were performed on the full dense LPBF parts, investigating the effects of different temperatures and durations in the case of T6 treatment. Longer solution treatments enabled to obtain higher hardness values and to reduce the time required to reach peak hardening conditions during ageing. While stress relieving strongly softened the material, a maximum hardness comparable to as-built parts conditions was obtained after subsequent 8 h solution treatment, water quenching and 3 h ageing treatment. Stress reliving treatment slightly modified the as-built microstructure by favouring the diffusion of Si but did not removed the melt pool structures present, furthermore it noticeably increased the elongation at break to detriment of tensile strength. Further T6 treatment modified the tensile properties to values comparable with the as-built conditions eliminating melt pools anisotropic features. The study on Ti-6Al-4V titanium alloy investigated the microstructural, tensile and fatigue properties of the LPBF fabricated parts, produced with two different gas atomised powders. The two powders contained two level of oxygen inside the chemical composition, a low and a high amount, in order to simulate the LPBF processing of Ti-6Al-4V ELI and Ti-6Al-4V grade 5, respectively. Two different building orientations, vertical and horizontal, were chosen for the specimens fabrication and moreover three different testing conditions were considered: after stress relieving, after stress relieving plus heat treatment and after stress relieving plus Hot Isostatic Pressing (HIP). Processing a subsequent heat treatment after stress relieving reduced tensile strength and increased ductility by coarsening α + β lamellar structure while β columnar grains faded. HIP post-processing closed the major part of porosities and defects and enabled to greatly increase both ductility and fatigue resistance. Pores and defects were detected as the most influencing factors upon the fatigue properties, rather than building orientation and oxygen content, which mostly influenced tensile strength. Only stress relieved and HIPped samples resisted more than the chosen endurance limit of 107 cycles at high applied strength than the other specimens. The study carried out on pure copper investigated the feasibility of processing such material with LPBF using a commercial machine equipped with an infrared 200 W fibre laser. The specimens fabricated did not exceed the 83 % of density due to the low absorptivity of copper to infrared radiation, but Diffuse Reflectance Spectroscopy (DRS) analysis demonstrated how modifying the laser radiation from infrared wavelengths to the green ones, the powder bed absorption raised. As-built samples did not present oxides traces inside the microstructure and were constituted by α-Cu phase. The microstructure was constituted by both equiassic and elongated grains depending on the heat fluxes generated inside the material in the horizontal and vertical cross sections.
APA, Harvard, Vancouver, ISO, and other styles
7

Doutre, Pierre-Thomas. "Comment intégrer et faire émerger des structures architecturées dans l'optimisation de pièces pour la fabrication additive par faisceaux d’électrons." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI039.

Full text
Abstract:
Grâce à la fabrication additive, il est aujourd'hui possible de fabriquer de nouvelles géométries. Les perspectives offertes par les moyens de fabrications conventionnelles et additives sont très différentes. Des propositions de design très contraintes peuvent devenir beaucoup plus libres avec la fabrication additive. Cette liberté qu'elle offre fait émerger une multitude de possibilités. Dans ce manuscrit, nous nous sommes focalisés sur un type particulier de structures (les octetruss) ainsi que sur les moyens de fabrication EBM (Electron Beam Melting) de la société ARCAM. Les travaux présentés dans cette thèse ont été réalisés au sein des laboratoires G-SCOP et SIMAP ainsi qu'en partenariat avec l'entreprise POLY-SHAPE. Ce manuscrit est articulé autour de trois principaux points.Il s'agit tout d'abord de faire émerger des structures treillis lors du processus de conception. Pour cela, deux approches existantes sont détaillées. La première met en œuvre l'optimisation topologique et la seconde s'appuie sur le concept de matériau équivalent. Ensuite deux méthodologies permettent de faire émerger des zones dans lesquelles l'intégration de structures treillis est adaptée. La première consiste à réaliser les différentes zones en s'appuyant sur un champ de contraintes issu d'un calcul Eléments Finis, la seconde se base sur un résultat d'optimisation topologique pour établir les différentes zones. Cette seconde méthodologie est appliquée à un cas d'étude industriel.Ensuite nous étudions comment remplir les différentes zones avec des structures treillis adaptées en nous focalisant tout d'abord sur leur génération. Un accent particulier est porté sur l'intersection des différents barreaux par la mise en place de sphères. Une méthodologie permettant de générer des arrondis est également proposée. Une étude est menée sur l'ensemble des paramètres et informations à considérer pour intégrer une structure treillis à une zone donnée. Cette étude conduit à une proposition de méthodologie qui est appliquée à un cas d'étude industriel.Enfin, les aspects liés à la fabrication sont pris en compte. Pour cela, nous considérons différentes limites du moyen de fabrication EBM pour des structures treillis comme les dimensions maximales réalisables ou les problématiques thermiques. Une étude consistant à prédire la dépoudrabilité des pièces est réalisée. Enfin, des essais mécaniques sont effectués. Nos résultats sont comparés à ceux obtenus dans d'autres travaux. L'impact des arrondis sur le comportement mécanique d'une pièce est discuté
Thanks to additive manufacturing, it is now possible to manufacture new geometric shapes. The prospects offered by the methods of conventional and additive manufacturing are very different. Highly constrained design proposals can become much freer with additive manufacturing. The freedom it offers brings forward a multitude of possibilities. In this manuscript, we focused on a particular type of structures (the octetruss) as well as the use of EBM (Electron Beam Melting) of ARCAM as a means of manufacturing. The work presented in this thesis was carried out in the laboratories G-SCOP and SIMAP as well as in partnership with the company POLY-SHAPE. This manuscript focuses on three main points.The first of which is the action of emergence of lattice structures during the design process. For this, two existing approaches are detailed. The first uses topological optimization and the second is based on the concept of equivalent material. Following these, there are two methodologies used to identify areas in which the integration of lattice structures is possible and appropriate. The first consists of creating the different zones by relying on a stress field resulting from a finite element calculation, the second establishes the different zones using a topological optimization result. This second methodology is applied to an industrial case study.Secondly, we study how to fill the different areas with appropriate lattice structures by focusing first on their generation. Particular emphasis is placed on the intersection of the various bars by the establishment of spheres. A methodology for generating rounded-shape is also proposed. A study is carried out on all the parameters and information in order to integrate a lattice structure to a given area. This study leads to a proposed methodology that is applied to an industrial case study.Finally, aspects related to manufacturing are taken into account. For this, we consider different limits of the EBM manufacturing and what they mean for lattice structures; such as maximum achievable dimensions or thermal problems. A study to predict powder removal in order to extract the fabricated structure is performed. Mechanical tests are carried out. Our results are compared to those obtained in other works. The impact of curve on the mechanical behavior of a product is discussed
APA, Harvard, Vancouver, ISO, and other styles
8

Graf, Marcel, Sebastian Härtel, and André Hälsig. "Numerische Auslegung des Mehrlagenschweißens als additives Fertigungsverfahren." Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-225946.

Full text
Abstract:
Die additiven Fertigungstechnologien erleben seit einigen Jahren einen enormen Zuspruch bei der Herstellung von Einzelteilserien mit komplexen, endkonturnahen Geometrien und der Verarbeitung von Sonder- oder hybriden Werkstoffen. Prinzipiell lassen sich die Verfahren gemäß VDI- Richtlinie 3404 in drahtbasierte und pulverbasierte unterteilen. Eine weitere Unterteilung erfolgt hinsichtlich der Ausschmelztechnologie. Allen Verfahren ist gleich, dass schichtweise der Grundwerkstoff an den Stellen aufgetragen wird, wo er gemäß Endkontur benötigt wird. Damit ist ein immer wiederkehrender Wärmeeintrag verbunden, der somit Einfluss auf die Mikrostruktur der Bauteile und gleichzeitig auch auf die mechanischen Endeigenschaften ausübt. Die so erzeugten Komponenten sollten wenig Verzug oder Eigenspannungen als auch keine Porosität aufweisen, um die Gebrauchseigenschaften nicht negativ zu beeinflussen. Das Ziel ist es mittlerweile, diese verschiedenen Technologien numerisch abzubilden, um die Bauteileigenschaften vorherzusagen und ggf. Optimierungspotenziale zu eruieren. Der untersuchte Prozess ist das drahtbasierte Mehrlagenschweißen mittels des Metallschutzgasschweißens, bei dem neben der Simulation auch die Validierung im Fokus hinsichtlich Geometrie und Gefügeausbildung in den Schweißlagen stand. Diesbezüglich wurden im vorliegenden Fall zum einen alle, für die numerische Simulation notwendigen Materialparameter (mechanische und thermophysikalische Kenngrößen) des Schweißzusatzwerkstoffes G4Si1 bestimmt und in ein kommerzielles FEM-Programm (MSC Marc Mentat) implementiert. Zum anderen erfolgt zukünftig die wissenschaftliche Analyse der Verbesserung der Bauteileigenschaft, in dem die Schweißnaht unter Ausnutzung der Schweißhitze warmumgeformt wird. Erste Ergebnisse numerischer Simulationsergebnisse zeigen positive Effekte. Diese zeigen mikrostrukturelle Veränderungen (Kornfeinung durch Rekristallisation) und führten letztendlich zur Steigerung der mechanischen Eigenschaften. Der Vorteil dieser Verfahrenskombination ist außerdem die Kompensation des Verzuges durch die gezielte Umformung und einem gleichzeitigen „Richten“.
APA, Harvard, Vancouver, ISO, and other styles
9

Chougrani, Laurent. "Modélisation avancée de formes complexes de pièces mécaniques pour lesprocédés de fabrication additive." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0054.

Full text
Abstract:
Les procédés de fabrication additive ont connus un fort essor dans les dernières décennies et entament aujourd'hui leur phase d'industrialisation pérenne. L'industrie, dans un souci d'améliorer sans cesse le ratio masse/rigidité des systèmes qu'elle produit (notamment l'industrie aéronautique), a pris conscience du potentiel de ces technologies à produire des structures plus complexes que les procédés classiques. Elle cherche aujourd'hui à tirer profit de ce potentiel pour alléger encore plus les pièces produites en utilisant notamment des géométries de type réseaux ou alvéolaires (Lattice en anglais). Les travaux présentés dans ce manuscrit ont pour but de proposer une méthodologie, des modèles et des outils permettant la conception, le dimensionnement et l'optimisation de telles structures en vue de leur fabrication par procédés additifs. Le framework proposé peut être résumé par les huit étapes ci-dessous:- Importation de l'espace de conception, comprenant également les cas de chargement.- Optimisation topologique sur l'espace de conception.- Reconstruction de la géométrie, appelée primitive, qui servira de support à l'insertion du réseau.- Calcul par éléments finis qui peut être réalisé pour s'assurer de la bonne tenue mécanique.- Définition de la topologie du réseau, par l'intermédiaire d'un graphe 3D.- Déformation du réseau et optimisation mécanique du réseau.- Reconstruction des volumes.- Préparation des fichiers de données et impression 3D
Additive manufacturing processes have been quickly growing those past decades and are now getting to their sustainable industrial. Industry has been caring about the mass to rigidity ratio of the structures it produces (especially in aeronautics), and is now acknowledging the potential of additive processes to produce more complex shapes than classical processes. Industry is now trying to take advantage of this potential by designing highly complex structures like lattices or metal foams. The work that is presented in this document propose a methodology, models and numerical tools allowing the conception, dimensioning and optimization of such structures through additive manufacturing. The proposed framework can be describe through the height following steps:- Importing the design space and the technical requirement (load cases).- Topology optimization of the design space- Geometry reconstruction to create a primitive which will be the lattice insertion area.- Finite elements computation to ensure that the structure meets the requirements.- Lattice topology definition using 3D graphs.- Lattice deformation and optimization.- Creation of the volumes around the lattice.- Printing file creation and 3D printing
APA, Harvard, Vancouver, ISO, and other styles
10

Marion, Guillaume. "Modélisation de procédés de fabrication additive de pièces aéronautiques et spatiales en Ti-6AI-4V par dépôt et fusion sélective d'un lit de poudre par laser : Approche thermique, métallurgique et mécanique." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM055.

Full text
Abstract:
La fabrication additive est une famille de procédés permettant de construire des pièces finies, saines, de géométries très complexes, tout en diminuant le temps de développement des pièces, les coûts et les délais vis-à-vis des techniques de fabrication conventionnelles. Le point commun à tous ces procédés est de construire une pièce directement à partir des données CAO définissant sa géométrie sans outillage autre que la machine de fabrication additive.Cette thèse de Doctorat s'inscrit dans le projet de recherche FALAFEL (Fabrication Additive par procédé LAser et Faisceaux d’ÉLectrons) rassemblant les filières aéronautique et procédés laser dans le but de mettre en œuvre, d’améliorer et de valider des procédés de fabrication additive de pièces métalliques, dans des conditions industrielles et sur des composants aéronautiques.L'objectif est de proposer un modèle numérique permettant d’obtenir, dans des temps raisonnables, des informations sur les caractéristiques thermique, métallurgique et mécanique de pièces industrielles en titane Ti-6Al-4V destinées à être fabriquées par deux procédés de fabrication additive : la projection de poudre (Direct Metal Deposition ou DMD) et la fusion laser sélective (Selective Laser Melting ou SLM)
Additive manufacturing processes allow to build finished industrial parts with very complex geometry, while reducing development time and costs compared to conventional manufacturing processes. The main principle of all these processes is to build components directly from a CAD file defining its geometry without requiring any mold nor specific tools.This study is part of the FALAFEL research project focused on additive manufacturing processes by laser and electron beams. It is composed of academic research laboratories and industrial partners from Aeronautics and Laser Processes industries. The main goal of this project is to implement, improve and validate additive manufacturing processes regarding the production of metallic components for Aeronautics. Studies are conducted under industrial conditions.The aim of our thesis is to provide a numerical model to obtain, within a reasonable time, information about the mechanical and metallurgical properties of industrial components made out of titanium Ti-6Al-4V. It is aimed at two additive manufacturing processes: the Direct Metal Deposition (DMD) and the Selective laser melting (SLM)
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "DED metal additive manufacturing"

1

Leach, Richard, and Simone Carmignato. Precision Metal Additive Manufacturing. Edited by Richard Leach and Simone Carmignato. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429436543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shrivastava, Parnika, Anil Dhanola, and Kishor Kumar Gajrani. Hybrid Metal Additive Manufacturing. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003406488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Waters, Cynthia K. Materials Technology Gaps in Metal Additive Manufacturing. Warrendale, PA: SAE International, 2018. http://dx.doi.org/10.4271/pt-189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bian, Linkan, Nima Shamsaei, and John M. Usher, eds. Laser-Based Additive Manufacturing of Metal Parts. Boca Raton: CRC Press, Taylor & Francis, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315151441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ramesh Babu, N., Santosh Kumar, P. R. Thyla, and K. Sripriyan, eds. Advances in Additive Manufacturing and Metal Joining. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7612-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Borg Costanzi, Christopher. Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-41540-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adaskin, Anatoliy, Aleksandr Krasnovskiy, and Tat'yana Tarasova. Materials science and technology of metallic, non-metallic and composite materials:the technology of manufacturing blanks and parts. Book 2. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1143897.

Full text
Abstract:
Book 2 presents the technologies for manufacturing blanks and parts from metal materials: casting, welding, pressure treatment and cutting. The basics of electroplating technology are given. The technologies of manufacturing parts from non-metallic materials are considered: plastics, rubber, glass, as well as composite materials. The technologies combining the production of composite materials and parts from them are shown. The textbook is supplemented with two chapters reflecting the trends in the development of technology and technology (chapter 28 " Nanostructured materials. Features. Technologies for obtaining. Areas of application", chapter 29 "Additive manufacturing"). Meets the requirements of the federal state educational standards of higher education of the latest generation. For bachelors and undergraduates studying in enlarged groups of training areas 15.00.00 "Mechanical Engineering" and 22.00.00 "Materials Technologies". It can be used for training graduate students of machine-building specialties, as well as for advanced training of engineering and technical workers of machine-building enterprises.
APA, Harvard, Vancouver, ISO, and other styles
8

Leach, Richard, and Simone Carmignato. Precision Metal Additive Manufacturing. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leach, Richard, and Simone Carmignato. Precision Metal Additive Manufacturing. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leach, Richard, and Simone Carmignato. Precision Metal Additive Manufacturing. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "DED metal additive manufacturing"

1

Suryanarayanan, R., and Vishvesh Badheka. "Direct Energy Deposition Process (DED) and an Insight into DED Process Using Flux-cored and Metal-cored Wires." In Additive Manufacturing for Advance Applications, 147–71. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003484325-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Liu, Boyu Wang, Jack C. P. Cheng, Peipei Liu, and Hoon Sohn. "Real-Time Geometry Assessment Using Laser Line Scanner During Laser Powder Directed Energy Deposition Additive Manufacturing of SS316L Component with Sharp Feature." In CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality, 965–76. Florence: Firenze University Press, 2023. http://dx.doi.org/10.36253/10.36253/979-12-215-0289-3.97.

Full text
Abstract:
Directed energy deposition (DED) is a major metal additive manufacturing (AM) technology that is increasingly used in many industries due to its ability to manufacture complex components of arbitrary shapes and sizes. However, a lack of timely geometry assessment and the consequent geometry control hinders the development of DED towards zero defect manufacturing. In this study, a real-time geometry assessment methodology is developed for laser pow-der directed energy deposition (LP-DED). A geometry assessment system is developed using a laser line scanner capable of inspecting the melt pool area, the just solidified area, as well as layer-wise inspection. An image processing method with an encoder-decoder based profile completion network was developed to obtain accurate track profile in images from real-time inspection. Experiments have been conducted to validate the proposed methodology by depositing multi-layer X-shape objects
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Liu, Boyu Wang, Jack C. P. Cheng, Peipei Liu, and Hoon Sohn. "Real-Time Geometry Assessment Using Laser Line Scanner During Laser Powder Directed Energy Deposition Additive Manufacturing of SS316L Component with Sharp Feature." In CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality, 965–76. Florence: Firenze University Press, 2023. http://dx.doi.org/10.36253/979-12-215-0289-3.97.

Full text
Abstract:
Directed energy deposition (DED) is a major metal additive manufacturing (AM) technology that is increasingly used in many industries due to its ability to manufacture complex components of arbitrary shapes and sizes. However, a lack of timely geometry assessment and the consequent geometry control hinders the development of DED towards zero defect manufacturing. In this study, a real-time geometry assessment methodology is developed for laser pow-der directed energy deposition (LP-DED). A geometry assessment system is developed using a laser line scanner capable of inspecting the melt pool area, the just solidified area, as well as layer-wise inspection. An image processing method with an encoder-decoder based profile completion network was developed to obtain accurate track profile in images from real-time inspection. Experiments have been conducted to validate the proposed methodology by depositing multi-layer X-shape objects
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Hao, and Garrison Zong. "Metal Additive Manufacturing." In Materials in Advanced Manufacturing, 269–300. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003182146-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paul, C. P., A. N. Jinoop, and K. S. Bindra. "Metal additive manufacturing using lasers." In Additive Manufacturing, 37–93. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22179-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Narinder, Rupinder Singh, and I. P. S. Ahuja. "Metal Matrix Composite from Thermoplastic Waste." In Additive Manufacturing, 187–210. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22179-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Di, Yongqiang Yang, and Changjun Han. "Additive Manufacturing of Metal Implants and Surgical Plates." In Additive Manufacturing, 151–203. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04721-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yadav, Ashish, Manu Srivastava, Prashant K. Jain, and Sandeep Rathee. "Mechanical Properties of Multi-layer Wall Structure Fabricated through Arc-Based DED Process." In Wire Arc Additive Manufacturing, 213–21. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chandra, Mukesh, K. E. K. Vimal, and Sonu Rajak. "In situ process monitoring and control in metal additive manufacturing." In Additive Manufacturing, 57–75. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258391-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dasdemir, Umit, and Emre Altas. "Metal Based Additive Manufacturing." In Practical Implementations of Additive Manufacturing Technologies, 63–87. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5949-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "DED metal additive manufacturing"

1

Chan, Rothanak, Sriram Manoharan, and Karl R. Haapala. "Comparing the Sustainability Performance of Metal-Based Additive Manufacturing Processes." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68262.

Full text
Abstract:
While there have been many advancements in additive manufacturing (AM) technologies for metal products, there has not been a great deal of attention paid toward developing an understanding of the relative sustainability performance of various AM processes for production of aerospace components, such as wire feed and powder bed fusion processes. This research presents a method to calculate and compare quantitative metrics for evaluating metal AM process on a basis of sustainability performance. The process-level evaluation method encompasses a triple bottom line analysis for low volume part production. A representative aerospace titanium alloy (Ti-6Al-4V) component is considered for the study and the production of the part is modeled using direct energy deposition (DED) as the representative wire feed AM process and selective laser melting (SLM) as the representative powder bed AM process. The results indicate that DED has a superior sustainability performance to SLM, mainly due to the relatively slower deposition rate and higher cost of material for SLM than DED. This research provides decision makers an approach method and a demonstrated case study in comparing DED and SLM AM processes. This understanding reveals advantages between the two options and offers avenues of future investigation for these technologies for further development and larger scale use.
APA, Harvard, Vancouver, ISO, and other styles
2

Heinrich, Lauren, Thomas Feldhausen, Kyle S. Saleeby, Christopher Saldana, and Thomas R. Kurfess. "Prediction of Thermal Conditions of DED With FEA Metal Additive Simulation." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63841.

Full text
Abstract:
Abstract This paper presents the integration of wire-arc additive manufacturing (WAAM) using Gas Metal Arc Welding (GMAW) into a machine tool to create a retrofit hybrid computer numeric control (CNC) machine tool. GMAW, along with other direct energy deposition systems, has the capacity to deposit material faster than the excess thermal energy can dissipate. This results in the need to allow the part to cool between consecutive layers, which is the most time-consuming part of the additive process. Finite element analysis (FEA) was used in conjunction with monitored build plate surface temperatures during deposition samples to improve adequate dwell time prediction and to develop a cooling system. A deposition was completed where no dwell time was used and the build plate along with the machine table temperatures were monitored. A second deposition was completed where only one bead was deposited and the traverse speed was increased. The GMAW welder was mounted on a 3-axis CNC machine where two square deposition samples were completed. A FEA model was designed and verified using the monitored samples. The model will be used to determine improved depositions speeds and whether forced cooling would allow for an increased deposition rate without structural failure. It was determined the FEA software can be used to accurately model and predict the thermal response of WAAM AM components.
APA, Harvard, Vancouver, ISO, and other styles
3

Min, Wenbo, Sheng Yang, Ying Zhang, and Yaoyao Fiona Zhao. "A Comparative Study of Metal Additive Manufacturing Processes for Elevated Sustainability." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97436.

Full text
Abstract:
Abstract Metal additive manufacturing (AM) processes have gone through a compound growth over the past decade, and the technology is widely applied in industries like aerospace, automobile and bio-medical fields. There is an increasing need to understand and improve its sustainability given the high profile of existing environmental challenges. This paper aims at developing a precise comparative model for the three major metal AM processes (including Laser Powder Bed Fusion (LPBF), Electron Beam Melting (EBM), and Direct Energy Deposition (DED)) with respect to environmental performance assessment with a future goal of providing closed-loop feedbacks for design optimization with elevated sustainability. To improve the precision of previously reported models, new factors including embodied impacts of machine and recycled powder, operation patterns, system lifespan and batch size, are considered. A topologically optimized rocket bracket made of Ti6Al4V is used as an example to investigate the environmental performance of the three processes. The results showed that given the same design solution, the EBM had the lowest environmental impacts for low batch size, while the DED excelled at production efficiency.
APA, Harvard, Vancouver, ISO, and other styles
4

Beccard, R., and A. Bartling. "Digital Process Chains for 3D Laser Cladding and LMD/DED Additive Manufacturing." In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0840.

Full text
Abstract:
Abstract Laser cladding or metal deposition (LMD/DED) is widely used for wear-resistant coatings, repair and additive manufacturing applications due to the excellent properties of the deposited material. However, processes on complex 3D surfaces are often a challenge because they require time-consuming programming. This is particularly the case when no CAD data is available for the parts on which metal coatings or structures have to be applied. As a solution, we describe a digital process chain that begins with a 3D scanning process within the laser cladding machine (either robotic or CNC type). Using special software, high-quality 3D models of the scanned parts are created. For coating applications, these models are visualized on a PC. The operator can define cladding areas with just a few clicks of the mouse. Based on predefined parameters, powerful software calculates all the required tool paths. An additional simulation step can be used to verify collision-free operation. Finally, robot or CNC programs are automatically generated that can be executed immediately. Similar software is used to create 3D parts directly from CAD files. Finally, by combining both approaches, 3D geometries can be printed directly onto existing 3D freeform parts using laser metal deposition/LMD, even if their shape is arbitrary and not well documented by CAD data.
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Ze, Chengcheng Wang, Sastry Yagnanna Kandukuri, and Kun Zhou. "Additive Manufacturing of Monel K-500 via Directed Energy Deposition for Pressure Vessel Applications." In ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-85735.

Full text
Abstract:
Abstract Metal additive manufacturing has rapidly revolutionized the production processes across various industries. Laser-assisted powder-fed directed energy deposition (DED) has eminent advantages such as high deposition rate, capability for cladding and repairing valuable parts, and great potential for in-situ alloying, which are highly desirable attributes for pressure vessel applications. This study used DED to process Monel K-500, a nickel-based alloy approved by the American Society Of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Fully dense Monel K-500 parts were printed by DED with the tensile strength of ∼ 20% and elongation of ∼ 120% higher than their casted counterparts. Besides, the anisotropy of mechanical properties of DED fabricated Monel K-500 parts were investigated. This work provides a technical reference for industries to utilize DED to manufacture Monel K-500 parts with desirable performance for pressure vessel applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Rescsanski, Sean, Aref Yadollahi, Mojtaba Khanzadeh, and Farhad Imani. "Anomaly Detection of Laser-Based Metal Additive Manufacturing Using Neural-Variational Auto-Encoder." In ASME 2023 18th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/msec2023-105156.

Full text
Abstract:
Abstract The presence of anomalies in components generated using laser-based Additive Manufacturing (AM) processes greatly affects mechanical properties, making anomaly detection and prevention significant for the improvement of AM. Melt pool thermal imaging of laser-based AM processes such as Direct Energy Deposition (DED) provide rich data from which anomalies can be detected. Although through feature-based learning methods (e.g., support vector machine and k-nearest neighbor) or end-to-end deep learning models (e.g., self organizing map) the anomalies can be identified, the sparsity of defective instances and lack of interpretable analysis, together with high dimensionality and velocity of melt pool images further increase the difficulty of anomaly detection. We propose implementing Neural Vector Quantized Variational Autoencoder (Neural-VAE) to analyze thermal images from a DED process to determine where and when anomalies occur, indicating a flaw in the generated component. A Vector Quantized VAE is designed to represent high-dimensional images as low-dimensional vectors. Then, hyperdimensional computing is introduced to leverage the low-dimensional representation of image data and determine defective and non-defective images. Our proposed methodology can detect anomalies with an accuracy, sensitivity, specificity, and f-score of 99.2%, 99.6%, 98.8%, and 99.2%, respectively, while successfully generating anomalous images.
APA, Harvard, Vancouver, ISO, and other styles
7

Garg, Richie, Harish Singh Dhami, Priti Ranjan Panda, and Koushik Viswanathan. "Directed Energy Deposition Using Non-Spherical Metal Powders?" In ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-84945.

Full text
Abstract:
Abstract Metal additive manufacturing (AM) enables the production of non-trivial geometries and intricate internal structures. Directed energy deposition (DED) is one such AM process that has the inherent advantage of producing multi-material components on complex pre-existing geometries. Significant recent interest in DED processes has been driven by the need for inexpensive powders and potential material recycling. In this work, we explore the possibility of using non-standard arbitrary shaped metal powders within the DED process. A standard numerical model, comprising a three-dimensional viscous, compressible, turbulent solver with two-way discrete phase coupling is employed to understand the mechanics of gas-driven non-spherical powder flow. Spatial distributions of non-spherical powder on a set of pre-existing geometric features (e.g., corners, curved surfaces) are evaluateds and compared with standard spherical powders. The effect of particle collisions on the substrate is evaluated and corresponding density distributions are quantified. Non-spherical particles are generally found to exhibit higher velocities, and greater deposition track width, compared to spherical particles. Our simulations also reveal the effect of particle shape on their flow properties and final powder density. Using a custom-built DED configuration, we present preliminary experimental results of single-track depositions using both spherical and non-spherical powder particles. Based on our findings, we make a case for the use of non-spherical powders for DED applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Tsao, Teng-Yueh, and Jen-Yuan (James) Chang. "Application of Electrostatic Adhesion Method in Metal-Powder-Based Additive Manufacturing Layer-Forming Process." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88741.

Full text
Abstract:
Similar to direct energy deposition (DED) technology, electrostatic adhesion method can also be employed to deposit powder on targeted areas without direct contact. In this paper, feasibility of utilizing the electrostatic adhesion method (EAM) in material deposition step of metal-power-based additive manufacturing is assessed through theoretical models and experimental verifications. A dielectric layer is proposed to be pre-coated on targeted areas to keep the powders being electrostatically attracted and charged without dropping before laser scanning process. Through this study, it is found that the net force of a single metallic particle on top of the deposited powder layer with a different thickness of the dielectric layer can be determined, leading to the suggestion of suitable coating thickness corresponding with desired particle radius. Results showed that the deposition layer thickness can be predicted with the knowing coated dielectric layer thickness and the powder size distribution. With the proposed electrostatic deposition method, a thinner layer compared to DED technology can be deposited, while maintaining its ability to deposit powder layer over a larger area. Through experiments, the developed electrostatic model is validated with results indicating that the deposition layer thickness can be predicted and controlled with the knowing coated dielectric layer thickness and the powder size distribution.
APA, Harvard, Vancouver, ISO, and other styles
9

Moylan, Shawn, Michael McGlauflin, Jared Tarr, and M. Alkan Donmez. "Geometric Performance Testing of Directed Energy Deposition Additive Manufacturing Machine Using Standard Tests for Machine Tools." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-71737.

Full text
Abstract:
Abstract While performance testing of additive manufacturing machines is still nascent, standard tests for performance of machine tools used in metal cutting are well established. Our hypothesis is that because directed energy deposition (DED) additive manufacturing machines physically resemble typical vertical machining centers, standard geometric performance tests for machine tools will directly apply to DED machines. Standard tests of positioning error motions and circular motion were successfully conducted on a commercially-available DED system. With all tests providing reasonable and expected results, there is nothing to falsify our hypothesis. One additional consideration is the need for testing of the Z-axis on additive manufacturing machines using target positioning intervals on the order of a typical layer thickness at several positions along the axis.
APA, Harvard, Vancouver, ISO, and other styles
10

Qiao, Dongchun, Bo Wang, and Hai Gu. "Additive Manufacturing: Challenges and Solutions for Marine and Offshore Applications." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18922.

Full text
Abstract:
Abstract As a rapidly developing technology, the expanded capability of Additive Manufacturing (AM) allows implementation into the marine and offshore industries. Qualification of metal AM part may need detailed test plans and test results in order to meet the design requirements with a certain level of reliability. Approval may also be needed in accordance with regulation codes and class rules. However, challenges and gaps remain between the current metal AM technology level and marine and offshore applications. In this paper, two major categories of metal AM processes are discussed: powder bed fusion (PBF) and directed energy deposition (DED) with powder or wire as raw materials and laser, electronic beam (E-beam) or arc as heat source. The main challenges are also investigated in this study as follows: 1) Optimization of build cost and part quality by selection of appropriate process; 2) Performance of the part under static and cyclic loading; 3) Evaluation of the effects of corrosive environments (seawater); 4) Lack of standardization of the AM process for quality control. This paper addresses possible solutions for these challenges and provides qualification framework for metal AM parts to be implemented into marine and offshore applications.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "DED metal additive manufacturing"

1

Slattery, Kevin, and Kirk A. Rogers. Internal Boundaries of Metal Additive Manufacturing: Future Process Selection. SAE International, March 2022. http://dx.doi.org/10.4271/epr2022006.

Full text
Abstract:
In the early days, there were significant limitations to the build size of laser powder bed fusion (L-PBF) additive manufacturing (AM) machines. However, machine builders have addressed that drawback by introducing larger L-PBF machines with expansive build volumes. As these machines grow, their size capability approaches that of directed energy deposition (DED) machines. Concurrently, DED machines have gained additional axes of motion which enable increasingly complex part geometries—resulting in near-overlap in capabilities at the large end of the L-PBF build size. Additionally, competing technologies, such as binder jet AM and metal material extrusion, have also increased in capability, albeit with different starting points. As a result, the lines of demarcation between different processes are becoming blurred. Internal Boundaries of Metal Additive Manufacturing: Future Process Selection examines the overlap between three prominent powder-based technologies and outlines an approach that a product team can follow to determine the most appropriate process for current and future applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Shenouda, S., and A. Hoff. Discrete Element Method Analysis for Metal Powders Used in Additive Manufacturing, and DEM Simulation Tutorial Using LIGGGHTS-PUBLIC. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1656962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dehoff, Ryan R., and Michael M. Kirka. Additive Manufacturing of Porous Metal. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1362246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Felix H., and Shawn P. Moylan. Literature review of metal additive manufacturing defects. Gaithersburg, MD: National Institute of Standards and Technology, May 2018. http://dx.doi.org/10.6028/nist.ams.100-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Love, Lonnie J., Andrzej Nycz, and Mark W. Noakes. Large Scale Metal Additive Manufacturing with Wolf Robotics. Office of Scientific and Technical Information (OSTI), July 2018. http://dx.doi.org/10.2172/1465067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nycz, Andrzej, Mark Noakes, Luke Meyer, Chris Masuo, Derek Vaughan, Lonnie Love, and Mike Walker. Large Scale Metal Additive Manufacturing for Stamping Dies. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1883756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Knapp, Cameron M. Los Alamos National Laboratory’s Approach to Metal Additive Manufacturing. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1242923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Yousub, Srdjan Simunovic, and A. Kate Gurnon. Quantification of Powder Spreading Process for Metal Additive Manufacturing. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1615799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Slotwinski, John, April Cooke, and Shawn Moylan. Mechanical properties testing for metal parts made via additive manufacturing :. Gaithersburg, MD: National Institute of Standards and Technology, 2012. http://dx.doi.org/10.6028/nist.ir.7847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moylan, Shawn, John Slotwinski, April Cooke, Kevin Jurrens, and M. Alkan Donmez. Lessons learned in establishing the NIST metal additive manufacturing laboratory. National Institute of Standards and Technology, June 2013. http://dx.doi.org/10.6028/nist.tn.1801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography