Contents
Academic literature on the topic 'Découverte d'objets 2D/3D'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Découverte d'objets 2D/3D.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Découverte d'objets 2D/3D"
Kara, Sandra. "Unsupervised object discovery in images and video data." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASG019.
Full textThis thesis explores self-supervised learning methods for object localization, commonly known as Object Discovery. Object localization in images and videos is an essential component of computer vision tasks such as detection, re-identification, tracking etc. Current supervised algorithms can localize (and classify) objects accurately but are costly due to the need for annotated data. The process of labeling is typically repeated for each new data or category of interest, limiting their scalability. Additionally, the semantically specialized approaches require prior knowledge of the target classes, restricting their use to known objects. Object Discovery aims to address these limitations by being more generic. The first contribution of this thesis focused on the image modality, investigating how features from self-supervised vision transformers can serve as cues for multi-object discovery. To localize objects in their broadest definition, we extended our focus to video data, leveraging motion cues and targeting the localization of objects that can move. We introduced background modeling and knowledge distillation in object discovery to tackle the background over-segmentation issue in existing object discovery methods and to reintegrate static objects, significantly improving the signal-to-noise ratio in predictions. Recognizing the limitations of single-modality data, we incorporated 3D data through a cross-modal distillation framework. The knowledge exchange between 2D and 3D domains improved alignment on object regions between the two modalities, enabling the use of multi-modal consistency as a confidence criterion
Merad, Djamel. "Reconnaissance 2D/2D et 2D/3D d'objets à partir de leurs squelettes." Evry-Val d'Essonne, 2004. http://www.theses.fr/2004EVRY0029.
Full textBoulinguez, David. "Reconnaissance 2D et 3D d'objets sous-marins enfouis." Brest, 2000. http://www.theses.fr/2000BRES2019.
Full textBilodeau, Guillaume-Alexandre. "Segmentation en parties d'objets 3D provenant d'images 2D réelles et complexes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0011/MQ41855.pdf.
Full textManuel, Adeline. "Annotation sémantique 2D/3D d'images spatialisées pour la documentation et l'analyse d'objets patrimoniaux." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0009/document.
Full textIn the field of architecture and historic preservation , the information and communication technologies enable the acquisition of large amounts of data introducing analysis media for different purposes and at different levels of details ( photographs, point cloud, scientific imaging, ...). The organization and the structure of these resources is now a major problem for the description, the analysis and the understanding of cultural heritage objects. However the existing solutions in semantic annotations on images or on 3D model are insufficient, especially in the linking of different analysis media.This thesis proposes an approach for conducting annotations on different two-dimensional media while allowing the propagation of these annotations between different representations (2D or 3D) of the object. The objective is to identify solutions to correlate (from a spatial, temporal and semantic point of view) sets of annotations within sets of images. Thus, the system is based on the principle of data spatialization for establishing a relationship between the 3D representations, incorporating all the geometric complexity of the object and therefore to the metric information extraction, and 2D representations of object. The approach seeks to the establishment of an information continuity from the image acquisition to the construction of 3D representations semantically enhanced by incorporating multi-media and multi-temporal aspects. This work resulted in the definition and the development of a set of software modules that can be used by specialists of conservation of architectural heritage as by the general public
Gamal, Eldin Ahmed. "Processus ponctuels et algorithmes de coupure minimal de graphe appliqués à l'extraction d'objets 2D et 3D." Phd thesis, Université de Nice Sophia-Antipolis, 2011. http://tel.archives-ouvertes.fr/tel-00737988.
Full textEn première partie : nous proposons une nouvelle méthode probabiliste pour gérer les occultations et les effets de perspective. Le modèle proposé est fondé sur la simulation d'une scène 3D utilisant OpenGL sur une carte graphique (GPU). C'est une méthode orientée objet, intégrée dans le cadre d'un processus ponctuel marqué. Nous l'appliquons pour l'estimation de la taille d'une colonie de manchots, là où nous modélisons une colonie de manchots comme un nombre inconnu d'objets 3D. L'idée principale de l'approche proposée consiste à échantillonner certaines configurations candidat composé d'objets 3D s'appuyant sur le plan réel. Une densité de Gibbs est définie sur l'espace des configurations, qui prend en compte des informations a priori et sur les données. Pour une configuration proposée, la scène est projetée sur le plan image, et les configurations sont modifiées jusqu'à convergence. Pour évaluer une configuration proposée, nous mesurons la similarité entre l'image projetée de la configuration proposée et l'image réelle, définissant ainsi le terme d'attache aux données et l'a priori pénalisant les recouvrements entre objets. Nous avons introduit des modifications dans l'algorithme d'optimisation pour prendre en compte les nouvelles dépendances qui existent dans notre modèle 3D.
En deuxième partie : nous proposons une nouvelle méthode d'optimisation appelée "Naissances et Coupe multiples" ("Multiple Births and Cut" (MBC) en Anglais). Cette méthode combine à la fois la nouvelle méthode d'optimisation "Naissance et Mort multiples" (MBD) et les "Graph-Cut". Les méthodes MBC et MBD sont utilisées pour l'optimisation d'un processus ponctuel marqué. Nous avons comparé les algorithmes MBC et MBD montrant que les principaux avantages de notre algorithme nouvellement proposé sont la réduction du nombre de paramètres, la vitesse de convergence et de la qualité des résultats obtenus. Nous avons validé notre algorithme sur le problème de dénombrement des flamants roses dans une colonie.
Bubel, Annie. "Détection et groupement des jonctions dans une image 2D pour l'extraction des contours structurés d'objets 3D." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ57927.pdf.
Full textTrujillo-Romero, Felipe De Jesus. "Modélisation et reconnaissance active d'objets 3D de forme libre par vision en robotique." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2008. http://tel.archives-ouvertes.fr/tel-00842693.
Full textSambra-Petre, Raluca-Diana. "2D/3D knowledge inference for intelligent access to enriched visual content." Phd thesis, Institut National des Télécommunications, 2013. http://tel.archives-ouvertes.fr/tel-00917972.
Full textQiu, Xuchong. "2D and 3D Geometric Attributes Estimation in Images via deep learning." Thesis, Marne-la-vallée, ENPC, 2021. http://www.theses.fr/2021ENPC0005.
Full textThe visual perception of 2D and 3D geometric attributes (e.g. translation, rotation, spatial size and etc.) is important in robotic applications. It helps robotic system build knowledge about its surrounding environment and can serve as the input for down-stream tasks such as motion planning and physical intersection with objects.The main goal of this thesis is to automatically detect positions and poses of interested objects for robotic manipulation tasks. In particular, we are interested in the low-level task of estimating occlusion relationship to discriminate different objects and the high-level tasks of object visual tracking and object pose estimation.The first focus is to track the object of interest with correct locations and sizes in a given video. We first study systematically the tracking framework based on discriminative correlation filter (DCF) and propose to leverage semantics information in two tracking stages: the visual feature encoding stage and the target localization stage. Our experiments demonstrate that the involvement of semantics improves the performance of both localization and size estimation in our DCF-based tracking framework. We also make an analysis for failure cases.The second focus is using object shape information to improve the performance of object 6D pose estimation and do object pose refinement. We propose to estimate the 2D projections of object 3D surface points with deep models to recover object 6D poses. Our results show that the proposed method benefits from the large number of 3D-to-2D point correspondences and achieves better performance. As a second part, we study the constraints of existing object pose refinement methods and develop a pose refinement method for objects in the wild. Our experiments demonstrate that our models trained on either real data or generated synthetic data can refine pose estimates for objects in the wild, even though these objects are not seen during training.The third focus is studying geometric occlusion in single images to better discriminate objects in the scene. We first formalize geometric occlusion definition and propose a method to automatically generate high-quality occlusion annotations. Then we propose a new occlusion relationship formulation (i.e. abbnom) and the corresponding inference method. Experiments on occlusion reasoning benchmarks demonstrate the superiority of the proposed formulation and method. To recover accurate depth discontinuities, we also propose a depth map refinement method and a single-stage monocular depth estimation method.All the methods that we propose leverage on the versatility and power of deep learning. This should facilitate their integration in the visual perception module of modern robotic systems.Besides the above methodological advances, we also made available software (for occlusion and pose estimation) and datasets (of high-quality occlusion information) as a contribution to the scientific community