Academic literature on the topic 'Decomposition (Mathematics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decomposition (Mathematics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Decomposition (Mathematics)"
Crâşmăreanu, Mircea. "Particular trace decompositions and applications of trace decomposition to almost projective invariants." Mathematica Bohemica 126, no. 3 (2001): 631–37. http://dx.doi.org/10.21136/mb.2001.134205.
Full textĐOKOVIĆ, DRAGOMIR Ž., and KAIMING ZHAO. "RATIONAL JORDAN DECOMPOSITION OF BILINEAR FORMS." Communications in Contemporary Mathematics 07, no. 06 (December 2005): 769–86. http://dx.doi.org/10.1142/s0219199705001945.
Full textFontanil, Lauro, and Eduardo Mendoza. "Common complexes of decompositions and complex balanced equilibria of chemical reaction networks." MATCH Communications in Mathematical and in Computer Chemistry 87, no. 2 (2021): 329–66. http://dx.doi.org/10.46793/match.87-2.329f.
Full textDiestel, Reinhard. "Simplicial minors and decompositions of graphs." Mathematical Proceedings of the Cambridge Philosophical Society 103, no. 3 (May 1988): 409–26. http://dx.doi.org/10.1017/s0305004100065026.
Full textAVGUSTINOVICH, S. V., and A. E. FRID. "A UNIQUE DECOMPOSITION THEOREM FOR FACTORIAL LANGUAGES." International Journal of Algebra and Computation 15, no. 01 (February 2005): 149–60. http://dx.doi.org/10.1142/s0218196705002116.
Full textBreiding, Paul, and Nick Vannieuwenhoven. "On the average condition number of tensor rank decompositions." IMA Journal of Numerical Analysis 40, no. 3 (June 20, 2019): 1908–36. http://dx.doi.org/10.1093/imanum/drz026.
Full textBroer, Abraham. "Decomposition Varieties in Semisimple Lie Algebras." Canadian Journal of Mathematics 50, no. 5 (October 1, 1998): 929–71. http://dx.doi.org/10.4153/cjm-1998-048-6.
Full textFOULIS, DAVID J., SYLVIA PULMANNOVÁ, and ELENA VINCEKOVÁ. "TYPE DECOMPOSITION OF A PSEUDOEFFECT ALGEBRA." Journal of the Australian Mathematical Society 89, no. 3 (December 2010): 335–58. http://dx.doi.org/10.1017/s1446788711001042.
Full textTheriault, Stephen D. "Homotopy Decompositions Involving the Loops of Coassociative Co-H Spaces." Canadian Journal of Mathematics 55, no. 1 (February 1, 2003): 181–203. http://dx.doi.org/10.4153/cjm-2003-008-5.
Full textGUTIERREZ, MAURICIO, and ADAM PIGGOTT. "RIGIDITY OF GRAPH PRODUCTS OF ABELIAN GROUPS." Bulletin of the Australian Mathematical Society 77, no. 2 (April 2008): 187–96. http://dx.doi.org/10.1017/s0004972708000105.
Full textDissertations / Theses on the topic "Decomposition (Mathematics)"
Burns, Brenda D. "The Staircase Decomposition for Reductive Monoids." NCSU, 2002. http://www.lib.ncsu.edu/theses/available/etd-20020422-102254.
Full textBurns, Brenda Darlene. The Staircase Decomposition for Reductive Monoids. (Under the direction of Mohan Putcha.) The purpose of the research has been to develop a decomposition for the J-classes of a reductive monoid. The reductive monoid M(K) isconsidered first. A J-class in M(K) consists ofelements of the same rank. Lower and upper staircase matricesare defined and used to decompose a matrix x of rank r into theproduct of a lower staircase matrix, a matrix with a rank rpermutation matrix in the upper left hand corner, and an upperstaircase matrix, each of which is of rank r. The choice ofpermutation matrix is shown to be unique. The primary submatrix of a matrixis defined. The unique permutation matrix from the decompositionabove is seen to be the unique permutation matrix from Bruhat'sdecomposition for the primary submatrix. All idempotent elementsand regular J-classes of the lower and upper staircasematrices are determined. A decomposition for the upper and lowerstaircase matrices is given as well.The above results are then generalized to an arbitrary reductivemonoid by first determining the analogue of the components forthe decomposition above. Then the decomposition above is shown tobe valid for each J-class of a reductive monoid. Theanalogues of the upper and lower staircase matrices are shown tobe semigroups and all idempotent elements and regularJ-classes are determined. A decomposition for eachof them is discussed.
Kwizera, Petero. "Matrix Singular Value Decomposition." UNF Digital Commons, 2010. http://digitalcommons.unf.edu/etd/381.
Full textNgulo, Uledi. "Decomposition Methods for Combinatorial Optimization." Licentiate thesis, Linköpings universitet, Tillämpad matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175896.
Full textDenna avhandling behandlar lösningsmetoder för stora och komplexa kombinatoriska optimeringsproblem. Sådana problem har ofta speciella strukturer som gör att de kan dekomponeras i en uppsättning mindre delproblem, vilket kan utnyttjas för konstruktion av effektiva lösningsmetoder. Avhandlingen omfattar både grundforskning inom utvecklingen av dekompositionsprinciper för kombinatorisk optimering och forskning på tillämpningar inom detta område. Avhandlingen består av en introduktion och tre artiklar. I den första artikeln utvecklar vi en “Lagrange-meta-heuristik-princip”. Principen bygger på primal-duala globala optimalitetsvillkor för diskreta och icke-konvexa optimeringsproblem. Dessa optimalitetsvillkor beskriver (när)optimala lösningar i termer av när-optimalitet och när-komplementaritet för Lagrange-relaxerade lösningar. Den meta-heuristiska principen bygger på en ihopviktning av dessa storheter vilket skapar en parametrisk hjälpmålfunktion, som har stora likheter med en Lagrange-funktion, varefter en traditionell Lagrange-heuristik används för olika värden på viktparametrarna, vilka avsöks med en meta-heuristik. Vi illustrerar och utvärderar denna meta-heuristiska princip genom att tillämpa den på det generaliserade tillordningsproblemet och övertäckningsproblemet, vilka båda är välkända och svårlösta kombinatoriska optimeringsproblem. Våra beräkningsresultat visar att denna meta-heuristiska utvidgning av en vanlig Lagrange-heuristik kan förbättra lösningskvaliteten avsevärt. I den andra artikeln studerar vi egenskaper hos övertäckningsproblem. Denna typ av optimeringsproblem har ibland stora dual-gap, vilket gör dem beräkningskrävande. Dual-gapet analyseras därför med syfte att förstå dess relation till problemegenskaper, såsom problemstorlek och täthet. Medlet för att göra detta är de ovan nämnda primal-duala globala optimalitetsvillkoren för diskreta och icke-konvexa optimeringsproblem. Dessa delar upp dual-gapet i två termer, som är när-optimalitet i en Lagrange-relaxation och när-komplementaritet i de relaxerade bivillkoren, och vi analyserar dessa termer för ett stort antal probleminstanser, däribland några storskaliga praktiska problem. Vi drar slutsatsen att när dualgapet är stort är vanligen den när-komplementära termen stor och den när-optimala termen liten. Vidare obseveras att när den när-komplementära termen är stor så beror det på en stor överflödig övertäckning. Denna förståelse för problemets inneboende egenskaper går att använda vid utformningen av lösningsmetoder för övertäckningsproblem, och speciellt för konstruktion av så kallade kärnproblem. I den tredje artikeln studeras tvåmålsproblem som uppstår vid utformningen av ett kameraövervakningssystem för stora områden utomhus. Det är i denna tillämpning alltför kostsamt att övervaka hela området och problemet modelleras därför som ett övertäckningsproblem med två mål, där ett mål beskriver totalkostnaden och ett mål beskriver hur stor del av området som övervakas. Man önskar därefter kunna skapa flera lösningar som har olika avvägningar mellan total kostnad och hur stor del av området som övervakas. Detta är dock mycket beräkningskrävande och vi utvecklar därför en metod för att hitta bra approximationer av sådana lösningar inom rimlig beräkningstid.
Hersh, Patricia (Patricia Lynn) 1973. "Decomposition and enumeration in partially ordered sets." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85303.
Full textSamuelsson, Saga. "The Singular Value Decomposition Theorem." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150917.
Full textDenna uppsats kommer presentera en självständig exposition av singulärvärdesuppdelningssatsen för linjära transformationer. En direkt följd är singulärvärdesuppdelning för komplexa matriser.
Simeone, Daniel. "Network connectivity: a tree decomposition approach." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18797.
Full textNous démontrons que l'écart entre un graphe métrique 3-arête-connexe de coût minimum et un graphe métrique 3-sommet-connexe de coût minimum est au plus 3. Notre approche repose sur l'existence de décompositions arborescentes et sur un théorème de Bienstock et al qui limite les degrés des sommets. De plus, nous explorons la décomposition arborescente pour le cas plus général des graphes k-arête et sommet connexes et nous exposons en grande partie les résultats nécessaires pour accéder à notre travail.
Riaz, Samia. "Domain decomposition method for variational inequalities." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/4815/.
Full textKorey, Michael Brian. "A decomposition of functions with vanishing mean oscillation." Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2592/.
Full textWilson, Michelle Marie Lucy. "A survey of primary decomposition using Gröbner bases." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/37005.
Full textJung, Kyomin. "Approximate inference : decomposition methods with applications to networks." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/50595.
Full textIncludes bibliographical references (p. 147-151).
Markov random field (MRF) model provides an elegant probabilistic framework to formulate inter-dependency between a large number of random variables. In this thesis, we present a new approximation algorithm for computing Maximum a Posteriori (MAP) and the log-partition function for arbitrary positive pair-wise MRF defined on a graph G. Our algorithm is based on decomposition of G into appropriately chosen small components; then computing estimates locally in each of these components and then producing a good global solution. We show that if either G excludes some finite-sized graph as its minor (e.g. planar graph) and has a constant degree bound, or G is a polynoinially growing graph, then our algorithm produce solutions for both questions within arbitrary accuracy. The running time of the algorithm is linear on the number of nodes in G, with constant dependent on the accuracy. We apply our algorithm for MAP computation to the problem of learning the capacity region of wireless networks. We consider wireless networks of nodes placed in some geographic area in an arbitrary manner under interference constraints. We propose a polynomial time approximate algorithm to determine whether a, given vector of end-to-end rates between various source-destination pairs can be supported by the network through a combination of routing and scheduling decisions. Lastly, we investigate the problem of computing loss probabilities of routes in a stochastic loss network, which is equivalent to computing the partition function of the corresponding MR.F for the exact stationary distribution.
(cont.) We show that the very popular Erlang approximation provide relatively poor performance estimates, especially for loss networks in the critically loaded regime. Then we propose a novel algorithm for estimating the stationary loss probabilities, which is shown to always converge, exponentially fast, to the asymptotically exact results.
by Kyomin Jung.
Ph.D.
Books on the topic "Decomposition (Mathematics)"
Truemper, K. Matroid decomposition. 2nd ed. [Berlin, Germany]: ELibM [EMIS, EMS], 2000.
Find full textMoody, R. V. Lie algebras with triangular decompositions. New York: Wiley, 1995.
Find full textAdomian, G. Solving frontier problems of physics: The decomposition methoc [i.e. method]. Dordrecht: Kluwer Academic Publishers, 1994.
Find full textMilman, Mario. Extrapolation and optimal decompositions: With applications to analysis. Berlin: Springer-Verlag, 1994.
Find full textN, Pavlovskiĭ I͡U︡, and Akademii͡a︡ nauk SSSR. Vychislitelʹnyĭ t͡s︡entr., eds. Dekompozit͡s︡ii͡a︡ i optimizat͡s︡ii͡a︡ v slozhnykh sistemakh. Moskva: Vychislitelʹnyĭ t͡s︡entr AN SSSR, 1991.
Find full textPavlovskiĭ, I͡U N. Dekompozit͡sii͡a i optimizat͡sii͡a v slozhnykh sistemakh. Moskva: Vychislitelʹnyĭ t͡sentr AN SSSR, 1991.
Find full textConejo, Antonio J. Decomposition techniques in mathematical programming: Engineering and science applications. Berlin: Springer, 2010.
Find full textPavlovskiĭ, I︠U︡ N. Geometricheskai︠a︡ teorii︠a︡ dekompozit︠s︡ii i nekotorye ee prilozhenii︠a︡. Moskva: Vychislitelʹnyĭ t︠s︡entr im. A.A. Dorodnit︠s︡yna Rossiĭskoĭ akademii nauk, 2011.
Find full textDaverman, Robert J. Decompositions of manifolds. Providence, R.I: American Mathematical Society, 2007.
Find full textHo, James K. K. DECOMP: An implementation of Dantzig-Wolfe decomposition for linear programming. New York: Springer-Verlag, 1989.
Find full textBook chapters on the topic "Decomposition (Mathematics)"
Méndez, Miguel A. "Decomposition Theory." In SpringerBriefs in Mathematics, 63–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11713-3_4.
Full textMacías, Sergio. "Decomposition Theorems." In Developments in Mathematics, 95–122. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65081-0_3.
Full textPilgrim, Kevin M. "5 Decomposition." In Lecture Notes in Mathematics, 69–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39936-0_5.
Full textLorentz, Rudolph A. "Decomposition theorems." In Lecture Notes in Mathematics, 62–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0088794.
Full textBruns, Winfried, and Udo Vetter. "Primary decomposition." In Lecture Notes in Mathematics, 122–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0080388.
Full textFujiwara, Hidenori, and Jean Ludwig. "Irreducible Decomposition." In Springer Monographs in Mathematics, 289–315. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55288-8_8.
Full textJorgenson, Jay, and Serge Lang. "Polar Decomposition." In Springer Monographs in Mathematics, 219–54. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4684-9302-3_6.
Full textHilgert, Joachim, and Karl-Hermann Neeb. "Root Decomposition." In Springer Monographs in Mathematics, 133–66. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-0-387-84794-8_6.
Full textBlyth, T. S., and E. F. Robertson. "Primary Decomposition." In Springer Undergraduate Mathematics Series, 37–46. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0661-6_4.
Full textLandsberg, J. "Tensor decomposition." In Graduate Studies in Mathematics, 289–310. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/gsm/128/12.
Full textConference papers on the topic "Decomposition (Mathematics)"
Divanyan, Letisya, Metin Demiralp, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Weighted Reductive Multilinear Array Decomposition." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637820.
Full textFuad, Amirul Aizad Ahmad, and Tahir Ahmad. "The decomposition of electroencephalography signals during epileptic seizure." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136478.
Full textGündoğar, Zeynep, N. A. Baykara, Metin Demiralp, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Derivative Including Quadratures Based on Kernel Decomposition." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637825.
Full textAwajan, Ahmad M., Mohd Tahir Ismail, and S. AL Wadi. "Stock market forecasting using empirical mode decomposition with holt-winter." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136394.
Full textRahman, Norazrizal Aswad Abdul. "Fuzzy Sumudu decomposition method for solving differential equations with uncertainty." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136474.
Full textBiazar, Jafar, Zainab Ayati, and Hamideh Ebrahimi. "Comparing Homotopy Perturbation Method and Adomian Decomposition Method." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991054.
Full textEgidi, Nadaniela. "Taylor expansion for RBFs decomposition." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0212718.
Full textGiacomini, Josephin. "RBFs preconditioning via Fourier decomposition method." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0212993.
Full textBerninger, Heiko, Ralf Kornhuber, Oliver Sander, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Heterogeneous Domain Decomposition of Surface and Porous Media Flow." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637013.
Full textDemiralp, Metin, Emre Demiralp, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "An Orthonormal Decomposition Method for Multidimensional Matrices." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241487.
Full textReports on the topic "Decomposition (Mathematics)"
Davis, Wayne, and Albert Jones. Mathematical decomposition and simulation in real-time production scheduling. Gaithersburg, MD: error:, January 1987. http://dx.doi.org/10.6028/nbs.ir.87-3639.
Full textSalloum, Maher N., and Patricia E. Gharagozloo. Empirical and physics based mathematical models of uranium hydride decomposition kinetics with quantified uncertainties. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1115318.
Full text