Academic literature on the topic 'Decomposition (Mathematics)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decomposition (Mathematics).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Decomposition (Mathematics)"

1

Crâşmăreanu, Mircea. "Particular trace decompositions and applications of trace decomposition to almost projective invariants." Mathematica Bohemica 126, no. 3 (2001): 631–37. http://dx.doi.org/10.21136/mb.2001.134205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ĐOKOVIĆ, DRAGOMIR Ž., and KAIMING ZHAO. "RATIONAL JORDAN DECOMPOSITION OF BILINEAR FORMS." Communications in Contemporary Mathematics 07, no. 06 (December 2005): 769–86. http://dx.doi.org/10.1142/s0219199705001945.

Full text
Abstract:
This is a continuation of our previous work on Jordan decomposition of bilinear forms over algebraically closed fields of characteristic 0. In this note, we study Jordan decomposition of bilinear forms over any field K0 of characteristic 0. Let V0 be an n-dimensional vector space over K0. Denote by [Formula: see text] the space of bilinear forms f : V0 × V0 → K0. We say that f = g + h, where f, g, [Formula: see text], is a rational Jordan decomposition of f if, after extending the field K0 to an algebraic closure K, we obtain a Jordan decomposition over K. By using the Galois group of K/K0, we prove the existence of rational Jordan decompositions and describe a method for constructing all such decompositions. Several illustrative examples of rational Jordan decompositions of bilinear forms are included. We also show how to classify the unimodular congruence classes of bilinear forms over an algebraically closed field of characteristic different from 2 and over the real field.
APA, Harvard, Vancouver, ISO, and other styles
3

Fontanil, Lauro, and Eduardo Mendoza. "Common complexes of decompositions and complex balanced equilibria of chemical reaction networks." MATCH Communications in Mathematical and in Computer Chemistry 87, no. 2 (2021): 329–66. http://dx.doi.org/10.46793/match.87-2.329f.

Full text
Abstract:
A decomposition of a chemical reaction network (CRN) is produced by partitioning its set of reactions. The partition induces networks, called subnetworks, that are "smaller" than the given CRN which, at this point, can be called parent network. A complex is called a common complex if it occurs in at least two subnetworks in a decomposition. A decomposition is said to be incidence independent if the image of the incidence map of the parent network is the direct sum of the images of the subnetworks' incidence maps. It has been recently discovered that the complex balanced equilibria of the parent network and its subnetworks are fundamentally connected in an incidence independent decomposition. In this paper, we utilized the set of common complexes and a developed criterion to investigate decomposition’s incidence independence properties. A framework was also developed to analyze decomposition classes with similar structure and incidence independence properties. We identified decomposition classes that can be characterized by their sets of common complexes and studied their incidence independence. Some of these decomposition classes occur in some biological and chemical models. Finally, a sufficient condition was obtained for the complex balancing of some power law kinetic (PLK) systems with incidence independent and complex balanced decompositions. This condition led to a generalization of the Deficiency Zero Theorem for some PLK systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Diestel, Reinhard. "Simplicial minors and decompositions of graphs." Mathematical Proceedings of the Cambridge Philosophical Society 103, no. 3 (May 1988): 409–26. http://dx.doi.org/10.1017/s0305004100065026.

Full text
Abstract:
The purpose of this paper is to give natural characterizations of the countable graphs that admit tree-decompositions or simplicial tree-decompositions into primes. Tree-decompositions were recently introduced by Robertson and Seymour in their series of papers on graph minors [7]. Simplicial tree-decompositions were first considered by Halin[6], being the most typical kind of ‘simplicial decomposition’ as introduced by Halin[5] in 1964. The problem of determining which infinite graphs admit a simplicial decomposition into primes has stood unresolved since then; a first solution for simplicial tree-decompositions was given in [2].
APA, Harvard, Vancouver, ISO, and other styles
5

AVGUSTINOVICH, S. V., and A. E. FRID. "A UNIQUE DECOMPOSITION THEOREM FOR FACTORIAL LANGUAGES." International Journal of Algebra and Computation 15, no. 01 (February 2005): 149–60. http://dx.doi.org/10.1142/s0218196705002116.

Full text
Abstract:
We study decompositions of a factorial language to catenations of factorial languages and introduce the notion of a canonical decomposition. Then we prove that for each factorial language, a canonical decomposition exists and is unique.
APA, Harvard, Vancouver, ISO, and other styles
6

Breiding, Paul, and Nick Vannieuwenhoven. "On the average condition number of tensor rank decompositions." IMA Journal of Numerical Analysis 40, no. 3 (June 20, 2019): 1908–36. http://dx.doi.org/10.1093/imanum/drz026.

Full text
Abstract:
Abstract We compute the expected value of powers of the geometric condition number of random tensor rank decompositions. It is shown in particular that the expected value of the condition number of $n_1\times n_2 \times 2$ tensors with a random rank-$r$ decomposition, given by factor matrices with independent and identically distributed standard normal entries, is infinite. This entails that it is expected and probable that such a rank-$r$ decomposition is sensitive to perturbations of the tensor. Moreover, it provides concrete further evidence that tensor decomposition can be a challenging problem, also from the numerical point of view. On the other hand, we provide strong theoretical and empirical evidence that tensors of size $n_1~\times ~n_2~\times ~n_3$ with all $n_1,n_2,n_3 \geqslant 3$ have a finite average condition number. This suggests that there exists a gap in the expected sensitivity of tensors between those of format $n_1\times n_2 \times 2$ and other order-3 tensors. To establish these results we show that a natural weighted distance from a tensor rank decomposition to the locus of ill-posed decompositions with an infinite geometric condition number is bounded from below by the inverse of this condition number. That is, we prove one inequality towards a so-called condition number theorem for the tensor rank decomposition.
APA, Harvard, Vancouver, ISO, and other styles
7

Broer, Abraham. "Decomposition Varieties in Semisimple Lie Algebras." Canadian Journal of Mathematics 50, no. 5 (October 1, 1998): 929–71. http://dx.doi.org/10.4153/cjm-1998-048-6.

Full text
Abstract:
AbstractThe notion of decompositon class in a semisimple Lie algebra is a common generalization of nilpotent orbits and the set of regular semisimple elements.We prove that the closure of a decomposition class has many properties in common with nilpotent varieties, e.g., its normalization has rational singularities.The famous Grothendieck simultaneous resolution is related to the decomposition class of regular semisimple elements. We study the properties of the analogous commutative diagrams associated to an arbitrary decomposition class.
APA, Harvard, Vancouver, ISO, and other styles
8

FOULIS, DAVID J., SYLVIA PULMANNOVÁ, and ELENA VINCEKOVÁ. "TYPE DECOMPOSITION OF A PSEUDOEFFECT ALGEBRA." Journal of the Australian Mathematical Society 89, no. 3 (December 2010): 335–58. http://dx.doi.org/10.1017/s1446788711001042.

Full text
Abstract:
AbstractEffect algebras, which generalize the lattice of projections in a von Neumann algebra, serve as a basis for the study of unsharp observables in quantum mechanics. The direct decomposition of a von Neumann algebra into types I, II, and III is reflected by a corresponding decomposition of its lattice of projections, and vice versa. More generally, in a centrally orthocomplete effect algebra, the so-called type-determining sets induce direct decompositions into various types. In this paper, we extend the theory of type decomposition to a (possibly) noncommutative version of an effect algebra called a pseudoeffect algebra. It has been argued that pseudoeffect algebras constitute a natural structure for the study of noncommuting unsharp or fuzzy observables. We develop the basic theory of centrally orthocomplete pseudoeffect algebras, generalize the notion of a type-determining set to pseudoeffect algebras, and show how type-determining sets induce direct decompositions of centrally orthocomplete pseudoeffect algebras.
APA, Harvard, Vancouver, ISO, and other styles
9

Theriault, Stephen D. "Homotopy Decompositions Involving the Loops of Coassociative Co-H Spaces." Canadian Journal of Mathematics 55, no. 1 (February 1, 2003): 181–203. http://dx.doi.org/10.4153/cjm-2003-008-5.

Full text
Abstract:
AbstractJames gave an integral homotopy decomposition of ∑Ω∑X, Hilton-Milnor one for Ω(∑X ∨ ∑Y), and Cohen-Wu gave p-local decompositions of Ω∑X if X is a suspension. All are natural. Using idempotents and telescopes we show that the James andHilton-Milnor decompositions have analogues when the suspensions are replaced by coassociative co-H spaces, and the Cohen-Wu decomposition has an analogue when the (double) suspension is replaced by a coassociative, cocommutative co-H space.
APA, Harvard, Vancouver, ISO, and other styles
10

GUTIERREZ, MAURICIO, and ADAM PIGGOTT. "RIGIDITY OF GRAPH PRODUCTS OF ABELIAN GROUPS." Bulletin of the Australian Mathematical Society 77, no. 2 (April 2008): 187–96. http://dx.doi.org/10.1017/s0004972708000105.

Full text
Abstract:
AbstractWe show that if G is a group and G has a graph-product decomposition with finitely generated abelian vertex groups, then G has two canonical decompositions as a graph product of groups: a unique decomposition in which each vertex group is a directly indecomposable cyclic group, and a unique decomposition in which each vertex group is a finitely generated abelian group and the graph satisfies the T0 property. Our results build on results by Droms, Laurence and Radcliffe.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Decomposition (Mathematics)"

1

Burns, Brenda D. "The Staircase Decomposition for Reductive Monoids." NCSU, 2002. http://www.lib.ncsu.edu/theses/available/etd-20020422-102254.

Full text
Abstract:

Burns, Brenda Darlene. The Staircase Decomposition for Reductive Monoids. (Under the direction of Mohan Putcha.) The purpose of the research has been to develop a decomposition for the J-classes of a reductive monoid. The reductive monoid M(K) isconsidered first. A J-class in M(K) consists ofelements of the same rank. Lower and upper staircase matricesare defined and used to decompose a matrix x of rank r into theproduct of a lower staircase matrix, a matrix with a rank rpermutation matrix in the upper left hand corner, and an upperstaircase matrix, each of which is of rank r. The choice ofpermutation matrix is shown to be unique. The primary submatrix of a matrixis defined. The unique permutation matrix from the decompositionabove is seen to be the unique permutation matrix from Bruhat'sdecomposition for the primary submatrix. All idempotent elementsand regular J-classes of the lower and upper staircasematrices are determined. A decomposition for the upper and lowerstaircase matrices is given as well.The above results are then generalized to an arbitrary reductivemonoid by first determining the analogue of the components forthe decomposition above. Then the decomposition above is shown tobe valid for each J-class of a reductive monoid. Theanalogues of the upper and lower staircase matrices are shown tobe semigroups and all idempotent elements and regularJ-classes are determined. A decomposition for eachof them is discussed.

APA, Harvard, Vancouver, ISO, and other styles
2

Kwizera, Petero. "Matrix Singular Value Decomposition." UNF Digital Commons, 2010. http://digitalcommons.unf.edu/etd/381.

Full text
Abstract:
This thesis starts with the fundamentals of matrix theory and ends with applications of the matrix singular value decomposition (SVD). The background matrix theory coverage includes unitary and Hermitian matrices, and matrix norms and how they relate to matrix SVD. The matrix condition number is discussed in relationship to the solution of linear equations. Some inequalities based on the trace of a matrix, polar matrix decomposition, unitaries and partial isometies are discussed. Among the SVD applications discussed are the method of least squares and image compression. Expansion of a matrix as a linear combination of rank one partial isometries is applied to image compression by using reduced rank matrix approximations to represent greyscale images. MATLAB results for approximations of JPEG and .bmp images are presented. The results indicate that images can be represented with reasonable resolution using low rank matrix SVD approximations.
APA, Harvard, Vancouver, ISO, and other styles
3

Ngulo, Uledi. "Decomposition Methods for Combinatorial Optimization." Licentiate thesis, Linköpings universitet, Tillämpad matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175896.

Full text
Abstract:
This thesis aims at research in the field of combinatorial optimization. Problems within this field often posses special structures allowing them to be decomposed into more easily solved subproblems, which can be exploited in solution methods. These structures appear frequently in applications. We contribute with both re-search on the development of decomposition principles and on applications. The thesis consists of an introduction and three papers.  In Paper I, we develop a Lagrangian meta-heuristic principle, which is founded on a primal-dual global optimality condition for discrete and non-convex optimization problems. This condition characterizes (near-)optimal solutions in terms of near-optimality and near-complementarity measures for Lagrangian relaxed solutions. The meta-heuristic principle amounts to constructing a weighted combination of these measures, thus creating a parametric auxiliary objective function (which is a close relative to a Lagrangian function), and embedding a Lagrangian heuristic in a search procedure in the space of the weight parameters. We illustrate and assess the Lagrangian meta-heuristic principle by applying it to the generalized assignment problem and to the set covering problem. Our computational experience shows that the meta-heuristic extension of a standard Lagrangian heuristic principle can significantly improve upon the solution quality.  In Paper II, we study the duality gap for set covering problems. Such problems sometimes have large duality gaps, which make them computationally challenging. The duality gap is dissected with the purpose of understanding its relationship to problem characteristics, such as problem shape and density. The means for doing this is the above-mentioned optimality condition, which is used to decompose the duality gap into terms describing near-optimality in a Lagrangian relaxation and near-complementarity in the relaxed constraints. We analyse these terms for numerous problem instances, including some large real-life instances, and conclude that when the duality gap is large, the near-complementarity term is typically large and the near-optimality term small. The large violation of complementarity is due to extensive over-coverage. Our observations have implications for the design of solution methods, especially for the design of core problems.  In Paper III, we study a bi-objective covering problem stemming from a real-world application concerning the design of camera surveillance systems for large-scale outdoor areas. It is prohibitively costly to surveil the entire area, and therefore relevant to be able to present a decision-maker with trade-offs between total cost and the portion of the area that is surveilled. The problem is stated as a set covering problem with two objectives, describing cost and portion of covering constraints that are fulfilled, respectively. Finding the Pareto frontier for these objectives is very computationally demanding and we therefore develop a method for finding a good approximate frontier in a reasonable computing time. The method is based on the ε−constraint reformulation, an established heuristic for set covering problems, and subgradient optimization.
Denna avhandling behandlar lösningsmetoder för stora och komplexa kombinatoriska optimeringsproblem. Sådana problem har ofta speciella strukturer som gör att de kan dekomponeras i en uppsättning mindre delproblem, vilket kan utnyttjas för konstruktion av effektiva lösningsmetoder. Avhandlingen omfattar både grundforskning inom utvecklingen av dekompositionsprinciper för kombinatorisk optimering och forskning på tillämpningar inom detta område. Avhandlingen består av en introduktion och tre artiklar.  I den första artikeln utvecklar vi en “Lagrange-meta-heuristik-princip”. Principen bygger på primal-duala globala optimalitetsvillkor för diskreta och icke-konvexa optimeringsproblem. Dessa optimalitetsvillkor beskriver (när)optimala lösningar i termer av när-optimalitet och när-komplementaritet för Lagrange-relaxerade lösningar. Den meta-heuristiska principen bygger på en ihopviktning av dessa storheter vilket skapar en parametrisk hjälpmålfunktion, som har stora likheter med en Lagrange-funktion, varefter en traditionell Lagrange-heuristik används för olika värden på viktparametrarna, vilka avsöks med en meta-heuristik. Vi illustrerar och utvärderar denna meta-heuristiska princip genom att tillämpa den på det generaliserade tillordningsproblemet och övertäckningsproblemet, vilka båda är välkända och svårlösta kombinatoriska optimeringsproblem. Våra beräkningsresultat visar att denna meta-heuristiska utvidgning av en vanlig Lagrange-heuristik kan förbättra lösningskvaliteten avsevärt.  I den andra artikeln studerar vi egenskaper hos övertäckningsproblem. Denna typ av optimeringsproblem har ibland stora dual-gap, vilket gör dem beräkningskrävande. Dual-gapet analyseras därför med syfte att förstå dess relation till problemegenskaper, såsom problemstorlek och täthet. Medlet för att göra detta är de ovan nämnda primal-duala globala optimalitetsvillkoren för diskreta och icke-konvexa optimeringsproblem. Dessa delar upp dual-gapet i två termer, som är när-optimalitet i en Lagrange-relaxation och när-komplementaritet i de relaxerade bivillkoren, och vi analyserar dessa termer för ett stort antal probleminstanser, däribland några storskaliga praktiska problem. Vi drar slutsatsen att när dualgapet är stort är vanligen den när-komplementära termen stor och den när-optimala termen liten. Vidare obseveras att när den när-komplementära termen är stor så beror det på en stor överflödig övertäckning. Denna förståelse för problemets inneboende egenskaper går att använda vid utformningen av lösningsmetoder för övertäckningsproblem, och speciellt för konstruktion av så kallade kärnproblem.  I den tredje artikeln studeras tvåmålsproblem som uppstår vid utformningen av ett kameraövervakningssystem för stora områden utomhus. Det är i denna tillämpning alltför kostsamt att övervaka hela området och problemet modelleras därför som ett övertäckningsproblem med två mål, där ett mål beskriver totalkostnaden och ett mål beskriver hur stor del av området som övervakas. Man önskar därefter kunna skapa flera lösningar som har olika avvägningar mellan total kostnad och hur stor del av området som övervakas. Detta är dock mycket beräkningskrävande och vi utvecklar därför en metod för att hitta bra approximationer av sådana lösningar inom rimlig beräkningstid.
APA, Harvard, Vancouver, ISO, and other styles
4

Hersh, Patricia (Patricia Lynn) 1973. "Decomposition and enumeration in partially ordered sets." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Samuelsson, Saga. "The Singular Value Decomposition Theorem." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150917.

Full text
Abstract:
This essay will present a self-contained exposition of the singular value decomposition theorem for linear transformations. An immediate consequence is the singular value decomposition for complex matrices.
Denna uppsats kommer presentera en självständig exposition av singulärvärdesuppdelningssatsen för linjära transformationer. En direkt följd är singulärvärdesuppdelning för komplexa matriser.
APA, Harvard, Vancouver, ISO, and other styles
6

Simeone, Daniel. "Network connectivity: a tree decomposition approach." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18797.

Full text
Abstract:
We show that the gap between the least costly 3-edge-connected metric graph and the least costly 3-vertex-connected metric graph is at most $3$. The approach relies upon tree decompositions, and a degree limiting theorem of Bienstock et al. As well, we explore the tree decomposition approach for general k-edge and vertex-connected graphs, and demonstrate a large amount of the required background theory.
Nous démontrons que l'écart entre un graphe métrique 3-arête-connexe de coût minimum et un graphe métrique 3-sommet-connexe de coût minimum est au plus 3. Notre approche repose sur l'existence de décompositions arborescentes et sur un théorème de Bienstock et al qui limite les degrés des sommets. De plus, nous explorons la décomposition arborescente pour le cas plus général des graphes k-arête et sommet connexes et nous exposons en grande partie les résultats nécessaires pour accéder à notre travail.
APA, Harvard, Vancouver, ISO, and other styles
7

Riaz, Samia. "Domain decomposition method for variational inequalities." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/4815/.

Full text
Abstract:
Variational inequalities have found many applications in applied science. A partial list includes obstacles problems, fluid flow in porous media, management science, traffic network, and financial equilibrium problems. However, solving variational inequalities remain a challenging task as they are often subject to some set of complex constraints, for example the obstacle problem. Domain decomposition methods provide great flexibility to handle these types of problems. In our thesis we consider a general variational inequality, its finite element formulation and its equivalence with linear and quadratic programming. We will then present a non-overlapping domain decomposition formulation for variational inequalities. In our formulation, the original problem is reformulated into two subproblems such that the first problem is a variational inequality in subdomain Ω\(^i\) and the other is a variational equality in the complementary subdomain Ω\(^e\). This new formulation will reduce the computational cost as the variational inequality is solved on a smaller region. However one of the main challenges here is to obtain the global solution of the problem, which is to be coupled through an interface problem. Finally, we validate our method on a two dimensional obstacle problem using quadratic programming.
APA, Harvard, Vancouver, ISO, and other styles
8

Korey, Michael Brian. "A decomposition of functions with vanishing mean oscillation." Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2592/.

Full text
Abstract:
A function has vanishing mean oscillation (VMO) on R up(n) if its mean oscillation - the local average of its pointwise deviation from its mean value - both is uniformly bounded over all cubes within R up(n) and converges to zero with the volume of the cube. The more restrictive class of functions with vanishing lower oscillation (VLO) arises when the mean value is replaced by the minimum value in this definition. It is shown here that each VMO function is the difference of two functions in VLO.
APA, Harvard, Vancouver, ISO, and other styles
9

Wilson, Michelle Marie Lucy. "A survey of primary decomposition using Gröbner bases." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/37005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jung, Kyomin. "Approximate inference : decomposition methods with applications to networks." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/50595.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2009.
Includes bibliographical references (p. 147-151).
Markov random field (MRF) model provides an elegant probabilistic framework to formulate inter-dependency between a large number of random variables. In this thesis, we present a new approximation algorithm for computing Maximum a Posteriori (MAP) and the log-partition function for arbitrary positive pair-wise MRF defined on a graph G. Our algorithm is based on decomposition of G into appropriately chosen small components; then computing estimates locally in each of these components and then producing a good global solution. We show that if either G excludes some finite-sized graph as its minor (e.g. planar graph) and has a constant degree bound, or G is a polynoinially growing graph, then our algorithm produce solutions for both questions within arbitrary accuracy. The running time of the algorithm is linear on the number of nodes in G, with constant dependent on the accuracy. We apply our algorithm for MAP computation to the problem of learning the capacity region of wireless networks. We consider wireless networks of nodes placed in some geographic area in an arbitrary manner under interference constraints. We propose a polynomial time approximate algorithm to determine whether a, given vector of end-to-end rates between various source-destination pairs can be supported by the network through a combination of routing and scheduling decisions. Lastly, we investigate the problem of computing loss probabilities of routes in a stochastic loss network, which is equivalent to computing the partition function of the corresponding MR.F for the exact stationary distribution.
(cont.) We show that the very popular Erlang approximation provide relatively poor performance estimates, especially for loss networks in the critically loaded regime. Then we propose a novel algorithm for estimating the stationary loss probabilities, which is shown to always converge, exponentially fast, to the asymptotically exact results.
by Kyomin Jung.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Decomposition (Mathematics)"

1

Truemper, K. Matroid decomposition. 2nd ed. [Berlin, Germany]: ELibM [EMIS, EMS], 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moody, R. V. Lie algebras with triangular decompositions. New York: Wiley, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adomian, G. Solving frontier problems of physics: The decomposition methoc [i.e. method]. Dordrecht: Kluwer Academic Publishers, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Milman, Mario. Extrapolation and optimal decompositions: With applications to analysis. Berlin: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

N, Pavlovskiĭ I͡U︡, and Akademii͡a︡ nauk SSSR. Vychislitelʹnyĭ t͡s︡entr., eds. Dekompozit͡s︡ii͡a︡ i optimizat͡s︡ii͡a︡ v slozhnykh sistemakh. Moskva: Vychislitelʹnyĭ t͡s︡entr AN SSSR, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pavlovskiĭ, I͡U N. Dekompozit͡sii͡a i optimizat͡sii͡a v slozhnykh sistemakh. Moskva: Vychislitelʹnyĭ t͡sentr AN SSSR, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Conejo, Antonio J. Decomposition techniques in mathematical programming: Engineering and science applications. Berlin: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pavlovskiĭ, I︠U︡ N. Geometricheskai︠a︡ teorii︠a︡ dekompozit︠s︡ii i nekotorye ee prilozhenii︠a︡. Moskva: Vychislitelʹnyĭ t︠s︡entr im. A.A. Dorodnit︠s︡yna Rossiĭskoĭ akademii nauk, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Daverman, Robert J. Decompositions of manifolds. Providence, R.I: American Mathematical Society, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ho, James K. K. DECOMP: An implementation of Dantzig-Wolfe decomposition for linear programming. New York: Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Decomposition (Mathematics)"

1

Méndez, Miguel A. "Decomposition Theory." In SpringerBriefs in Mathematics, 63–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11713-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Macías, Sergio. "Decomposition Theorems." In Developments in Mathematics, 95–122. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65081-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pilgrim, Kevin M. "5 Decomposition." In Lecture Notes in Mathematics, 69–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39936-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lorentz, Rudolph A. "Decomposition theorems." In Lecture Notes in Mathematics, 62–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0088794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bruns, Winfried, and Udo Vetter. "Primary decomposition." In Lecture Notes in Mathematics, 122–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0080388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fujiwara, Hidenori, and Jean Ludwig. "Irreducible Decomposition." In Springer Monographs in Mathematics, 289–315. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55288-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jorgenson, Jay, and Serge Lang. "Polar Decomposition." In Springer Monographs in Mathematics, 219–54. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4684-9302-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hilgert, Joachim, and Karl-Hermann Neeb. "Root Decomposition." In Springer Monographs in Mathematics, 133–66. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-0-387-84794-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blyth, T. S., and E. F. Robertson. "Primary Decomposition." In Springer Undergraduate Mathematics Series, 37–46. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0661-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Landsberg, J. "Tensor decomposition." In Graduate Studies in Mathematics, 289–310. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/gsm/128/12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Decomposition (Mathematics)"

1

Divanyan, Letisya, Metin Demiralp, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Weighted Reductive Multilinear Array Decomposition." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fuad, Amirul Aizad Ahmad, and Tahir Ahmad. "The decomposition of electroencephalography signals during epileptic seizure." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gündoğar, Zeynep, N. A. Baykara, Metin Demiralp, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Derivative Including Quadratures Based on Kernel Decomposition." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Awajan, Ahmad M., Mohd Tahir Ismail, and S. AL Wadi. "Stock market forecasting using empirical mode decomposition with holt-winter." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rahman, Norazrizal Aswad Abdul. "Fuzzy Sumudu decomposition method for solving differential equations with uncertainty." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Biazar, Jafar, Zainab Ayati, and Hamideh Ebrahimi. "Comparing Homotopy Perturbation Method and Adomian Decomposition Method." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Egidi, Nadaniela. "Taylor expansion for RBFs decomposition." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0212718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Giacomini, Josephin. "RBFs preconditioning via Fourier decomposition method." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0212993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berninger, Heiko, Ralf Kornhuber, Oliver Sander, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Heterogeneous Domain Decomposition of Surface and Porous Media Flow." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Demiralp, Metin, Emre Demiralp, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "An Orthonormal Decomposition Method for Multidimensional Matrices." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241487.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Decomposition (Mathematics)"

1

Davis, Wayne, and Albert Jones. Mathematical decomposition and simulation in real-time production scheduling. Gaithersburg, MD: error:, January 1987. http://dx.doi.org/10.6028/nbs.ir.87-3639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salloum, Maher N., and Patricia E. Gharagozloo. Empirical and physics based mathematical models of uranium hydride decomposition kinetics with quantified uncertainties. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1115318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography