Academic literature on the topic 'Decomposition for BV functions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decomposition for BV functions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Decomposition for BV functions"
Bianchini, Stefano, and Daniela Tonon. "A decomposition theorem for $BV$ functions." Communications on Pure and Applied Analysis 10, no. 6 (May 2011): 1549–66. http://dx.doi.org/10.3934/cpaa.2011.10.1549.
Full textSong, Yingqing, Xiaoping Yang, and Zhenghai Liu. "DECOMPOSITION OF BV FUNCTIONS IN CARNOT-CARATHÉODORY SPACES." Acta Mathematica Scientia 23, no. 4 (October 2003): 433–39. http://dx.doi.org/10.1016/s0252-9602(17)30485-x.
Full textdel Álamo, Miguel, and Axel Munk. "Total variation multiscale estimators for linear inverse problems." Information and Inference: A Journal of the IMA 9, no. 4 (March 2, 2020): 961–86. http://dx.doi.org/10.1093/imaiai/iaaa001.
Full textParasidis, I. N., and E. Providas. "Factorization method for solving nonlocal boundary value problems in Banach space." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 103, no. 3 (September 30, 2021): 76–86. http://dx.doi.org/10.31489/2021m3/76-86.
Full textTang, Liming, and Chuanjiang He. "Multiscale Image Representation and Texture Extraction Using Hierarchical Variational Decomposition." Journal of Applied Mathematics 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/107120.
Full textAnzellotti, G., S. Delladio, and G. Scianna. "BV Functions over rectifiable currents." Annali di Matematica Pura ed Applicata 170, no. 1 (December 1996): 257–96. http://dx.doi.org/10.1007/bf01758991.
Full textWilliams, Stephen A., and Richard C. Scalzo. "Differential games and BV functions." Journal of Differential Equations 59, no. 3 (September 1985): 296–313. http://dx.doi.org/10.1016/0022-0396(85)90143-3.
Full textsci, global. "Gaussian BV Functions and Gaussian BV Capacity on Stratified Groups." Analysis in Theory and Applications 37, no. 3 (June 2021): 311–29. http://dx.doi.org/10.4208/ata.2021.lu80.03.
Full textAraujo, Jesuś. "Linear isometries between spaces of functions of bounded variation." Bulletin of the Australian Mathematical Society 59, no. 2 (April 1999): 335–41. http://dx.doi.org/10.1017/s0004972700032949.
Full textCheng, Yong, Yahan Yang, Zao Jiang, Longjun Xu, and Chenglun Liu. "Fabrication and Characterization of a Novel Composite Magnetic Photocatalyst β-Bi2O3/BiVO4/MnxZn1−xFe2O4 for Rhodamine B Degradation under Visible Light." Nanomaterials 10, no. 4 (April 21, 2020): 797. http://dx.doi.org/10.3390/nano10040797.
Full textDissertations / Theses on the topic "Decomposition for BV functions"
Tonon, Daniela. "Regularity results for Hamilton-Jacobi equations." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4210.
Full textDe, Cicco Virginia. "Some Lower Semicontinuity and Relaxation Results for Functionals Defined on BV (Ω)." Doctoral thesis, SISSA, 1992. http://hdl.handle.net/20.500.11767/4325.
Full textBUFFA, Vito. "BV Functions in Metric Measure Spaces: Traces and Integration by Parts Formulæ." Doctoral thesis, Università degli studi di Ferrara, 2018. http://hdl.handle.net/11392/2488124.
Full textThis thesis offers a survey on the theory of Sobolev and BV functions in the setting of metric measure spaces. We compare different characterizations of such spaces in order to emphasize their relationships along with the conditions which ensure the equivalence of the definitions. Then, we discuss the differential structure introduced by N. Gigli in a paper of 2014 to give a new definition of BV functions in the RCD(K,\infty) setting, making use of suitable vector fileds. Later, in the metric doubling setting with Poincaré inequality, we give new integration by parts formulæ via "divergence-measure" vector fields to attack the issue of traces of BV functions. We compare the theory of "rough traces" (re-adapted to the present setting, cfr. V. Maz'ya) with the trace operator defined via Lebesgue points, finding the conditions under which the two characterizations coincide.
Korey, Michael Brian. "A decomposition of functions with vanishing mean oscillation." Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2592/.
Full textLanagan, Gareth Daniel Edward. "Weather forecast error decomposition using rearrangements of functions." Thesis, Aberystwyth University, 2012. http://hdl.handle.net/2160/b489892f-7607-4125-90fb-46d8376edf8f.
Full textCAMFIELD, CHRISTOPHER SCOTT. "Comparison of BV Norms in Weighted Euclidean Spaces and Metric Measure Spaces." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1211551579.
Full textSoneji, Parth. "Lower semicontinuity and relaxation in BV of integrals with superlinear growth." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:c7174516-588e-46ae-93dc-56d4a95f1e6f.
Full textShillam, Laura-Lee. "Structural diversity and decomposition functions of volcanic soils at different stages of development." Thesis, University of Stirling, 2008. http://hdl.handle.net/1893/444.
Full textMENEGATTI, GIORGIO. "Sobolev classes and bounded variation functions on domains of Wiener spaces, and applications." Doctoral thesis, Università degli studi di Ferrara, 2018. http://hdl.handle.net/11392/2488305.
Full textL’argomento principale di questo lavoro sono le funzioni a variazione limitata (BV) in spazi di Wiener astratti (un argomento di analisi infinito-dimensionale). Nella prima parte di questo lavoro, presentiamo alcuni risultati noti, e introduciamo i concetti di spazi di Wiener, di classi di Sobolev su spazi di Wiener, di funzioni BV (e insiemi di perimetro finito) in spazi di Wiener, e di funzioni BV in sottoinsiemi convessi di Spazi di Wiener (seguendo la definizione in V. I. Bogachev, A. Y. Pilipenko, A. V. Shaposhnikov, “Sobolev Functions on Infinite-dimensional domains”, J. Math. Anal. Appl., 2014); inoltre, introduciamo la teoria delle tracce su sottoinsiemi di uno spazio di Wiener( seguendo P. Celada, A. Lunardi, “Traces of Sobolev functions on regular surfaces in infinite dimensions”, J. Funct. Anal., 2014), e il concetto di convergenza di Mosco. Nella seconda parte presentiamo alcuni risultati originali. Nel capitolo 6, consideriamo un sottoinsieme O di uno spazio di Wiener che soddisfa a una condizione di regolarità, e proviamo che una funzione in W^{1,2} (O) ha traccia nulla se e solo se è il limite di una sequenza di funzioni con supporto contenuto in O. Il capitolo principale è il 7, che è dedicato all'estensione all'ambito degli spazi di Wiener di un risultato dato nella sezione 8 di (V. Barbu, M. Röckner, “Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise”, Arch. Ration. Mech. Anal., 2013): se O è un insieme convesso limitato con frontiera regolare in R^{d} e L è l'operatore di Laplace in O con condizione al bordo di Dirichlet nulla, allora il risolvente normalizzato di L è contrattivo nel senso L^1 rispetto al gradiente. Estendiamo questo risultato al caso di L operatore di Ornstein-Uhlenbeck in O con condizione al bordo di Dirichlet nulla, con misura gaussiana (usando i risultati del Capitolo 6): in questo caso O deve soddisfare una condizione (che chiamiamo convessità Gaussiana) che nel caso gaussiano prende il posto della convessità. Inoltre, estendiamo il risultato anche al caso di: L operatore di Laplace in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura di Lebesgue; L operatore in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura gaussiana. Nell'ultima parte del Capitolo 7, usiamo i precedenti risultati per dare una definizione alternativa di funzione BV in O (nel caso L^2(O) ). Nel Capitolo 8, sia X l'insieme delle funzioni continue in R^d su [ 0,1 ] con punti di partenza nell’origine fornito della misura indotta dal moto browniano con punto di partenza nell’origine; è uno spazio di Wiener. Per ogni A sottoinsieme di X, definiamo Ξ_A, insieme delle funzioni in X con immagine in A. In (M. Hino, H. Uchida, “Reflecting Ornstein–Uhlenbeck processes on pinned path spaces”, Res. Inst. Math. Sci. (RIMS), 2008) viene dimostrato che, se d ≥ 2 e A è un insieme aperto in R^d che soddisfa una condizione di uniforme palla esterna, allora Ξ_A ha perimetro finito nel senso della misura gaussiana. Presentiamo una condizione più debole su A (in dimensione sufficientemente grande) tale che Ξ_A ha perimetro finito: in particolare, A può essere il complementare di un cono convesso illimitato simmetrico.
Amato, Stefano. "Some results on anisotropic mean curvature and other phase transition models." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4859.
Full textBooks on the topic "Decomposition for BV functions"
Cheverry, Christophe. Systèmes de lois de conservation et stabilité BV. [Paris, France]: Société mathématique de France, 1998.
Find full textGiuseppe, Buttazzo, and Michaille Gérard, eds. Variational analysis in Sobolev and BV spaces: Applications to PDEs and optimization. Philadelphia: Society for Industrial and Applied Mathematics, 2005.
Find full textBillings, S. A. Decomposition of generalised frequency response functions for non-linear systems using symbolic computation. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1994.
Find full textSerge, Lang, ed. Heat Eisenstein series on SL[subscript n](C). Providence, R.I: American Mathematical Society, 2009.
Find full textJorgenson, Jay. Heat Eisenstein series on SL[subscript n](C). Providence, R.I: American Mathematical Society, 2009.
Find full textJorgenson, Jay. Spherical Inversion on SLn(R). New York, NY: Springer New York, 2001.
Find full textStengel, Bernhard von. Eine Dekompositionstheorie für mehrstellige Funktionen mit Anwendungen in Systemtheorie und Operations Research. Frankfurt am Main: A. Hain, 1991.
Find full textMoeglin, Colette. Spectral decomposition and Eisenstein series: Une paraphrase de l'écriture. Cambridge: Cambridge University Press, 1995.
Find full textTopics on continua. Boca Raton: Chapman & Hall/CRC, 2005.
Find full textV, Efimov A., and Skvort͡s︡ov V. A, eds. Walsh series and transforms: Theory and applications. Dordrecht [Netherlands]: Kluwer Academic Publishers, 1991.
Find full textBook chapters on the topic "Decomposition for BV functions"
Kannan, R., and Carole King Krueger. "Spaces of BV and AC Functions." In Universitext, 216–45. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4613-8474-8_10.
Full textBressan, Alberto, and Marta Lewicka. "Shift Differentials of Maps in BV Spaces." In Nonlinear Theory of Generalized Functions, 47–61. Boca Raton: Routledge, 2022. http://dx.doi.org/10.1201/9780203745458-5.
Full textRudeanu, Sergiu. "Decomposition of Boolean functions." In Lattice Functions and Equations, 289–302. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0241-0_11.
Full textKozen, Dexter, Susan Landau, and Richard Zippel. "Decomposition of algebraic functions." In Lecture Notes in Computer Science, 80–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58691-1_46.
Full textTelcs, András, and Vincenzo Vespri. "A Quantitative Lusin Theorem for Functions in BV." In Geometric Methods in PDE’s, 81–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-02666-4_4.
Full textDanner, George E. "Diagrammatic Decomposition of Corporate Functions." In The Executive's How-To Guide to Automation, 45–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99789-6_5.
Full textGriffith, N., and D. Partridge. "Self-Organizing Decomposition of Functions." In Multiple Classifier Systems, 250–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45014-9_24.
Full textUchiyama, Akihito. "Atomic decomposition from S-functions." In Springer Monographs in Mathematics, 61–69. Tokyo: Springer Japan, 2001. http://dx.doi.org/10.1007/978-4-431-67905-9_6.
Full textBegehr, H. "Integral Decomposition of Differentiable Functions." In Proceedings of the Second ISAAC Congress, 1301–12. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4613-0271-1_55.
Full textEidelman, Yuli, Vitali Milman, and Antonis Tsolomitis. "Functions of operators; spectral decomposition." In Graduate Studies in Mathematics, 105–18. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/gsm/066/07.
Full textConference papers on the topic "Decomposition for BV functions"
Saito, Takahiro, Yuki Ishii, Haruya Aizawa, and Takashi Komatsu. "Noise suppression approach with the BV- L 1 nonlinear image decomposition." In Electronic Imaging 2008, edited by Jeffrey M. DiCarlo and Brian G. Rodricks. SPIE, 2008. http://dx.doi.org/10.1117/12.761112.
Full textSaito, Takahiro, Daisuke Yamada, and Takashi Komatsu. "Digital camera IP-pipeline based on BV-G color-image decomposition." In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5413836.
Full textWojcik, Anthony S. "Decomposition Of Digital Switching Functions." In OE LASE'87 and EO Imaging Symp (January 1987, Los Angeles), edited by Raymond Arrathoon. SPIE, 1987. http://dx.doi.org/10.1117/12.939921.
Full textHel-Or, Y., and P. C. Teo. "Canonical decomposition of steerable functions." In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1996. http://dx.doi.org/10.1109/cvpr.1996.517165.
Full textWirski, Robert T., and Krzysztof W. Wawryn. "QR decomposition of rational matrix functions." In Signal Processing (ICICS). IEEE, 2009. http://dx.doi.org/10.1109/icics.2009.5397546.
Full textBertacco and Damiani. "The disjunctive decomposition of logic functions." In Proceedings of IEEE International Conference on Computer Aided Design (ICCAD). IEEE, 1997. http://dx.doi.org/10.1109/iccad.1997.643371.
Full textSasao, Tsutomu. "Linear decomposition of index generation functions." In 2012 17th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2012. http://dx.doi.org/10.1109/aspdac.2012.6165060.
Full textYang, Liren, and Necmiye Ozay. "Tight decomposition functions for mixed monotonicity." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030065.
Full textShahinfar, Farbod, Sebastiano Miano, Alireza Sanaee, Giuseppe Siracusano, Roberto Bifulco, and Gianni Antichi. "The case for network functions decomposition." In CoNEXT '21: The 17th International Conference on emerging Networking EXperiments and Technologies. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3485983.3493349.
Full textBronstein, Manuel, and Bruno Salvy. "Full partial fraction decomposition of rational functions." In the 1993 international symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/164081.164114.
Full textReports on the topic "Decomposition for BV functions"
Wan, Wei. A New Approach to the Decomposition of Incompletely Specified Functions Based on Graph Coloring and Local Transformation and Its Application to FPGA Mapping. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6582.
Full text