Dissertations / Theses on the topic 'DECISION TRESS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'DECISION TRESS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kustra, Rafal. "Soft decision trees." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq28745.pdf.
Full textMáša, Petr. "Finding Optimal Decision Trees." Doctoral thesis, Vysoká škola ekonomická v Praze, 2006. http://www.nusl.cz/ntk/nusl-456.
Full textMinguillón, Alfonso Julià. "On cascading small decision trees." Doctoral thesis, Universitat Autònoma de Barcelona, 2002. http://hdl.handle.net/10803/3027.
Full textEl nostre primer objectiu va ser desenvolupar un sistema capaç de reconèixer diferents tipus d'elements presents en un document com ara el fons, text, línies horitzontals i verticals, dibuixos esquemàtics i imatges. Aleshores, cada element pot ser tractat d'acord a les seves característiques. Per exemple, el fons s'elimina i no és processat, mentre que les altres regions serien comprimides usant l'algorisme apropiat, JPEG amb pèrdua per a les imatges i un mètode sense pèrdua per a la resta, per exemple. Els primers experiments usant arbres de decisió varen mostrar que els arbres de decisió construïts eren massa grans i que patien de sobre-entrenament. Aleshores, vàrem tractar d'aprofitar la redundància espacial present en les imatges, utilitzant una aproximació de resolució múltiple: si un bloc gran no pot ser correctament classificat, trencar-lo en quatre sub-blocs i repetir el procés recursivament per a cada sub-bloc, usant tot el coneixement que s'hagi calculat amb anterioritat. Els blocs que no poden ser processats per una mida de bloc donada s'etiqueten com a "mixed", pel que la paraula progressiu pren sentit: una primera versió de poca resolució de la imatge classificada és obtinguda amb el primer classificador, i és refinada pel segon, el tercer, etc., fins que una versió final és obtinguda amb l'últim classificador del muntatge. De fet, l'ús de l'esquema progressiu porta a l'ús d'arbres de decisió més petits, ja que ja no cal un classificador complex. En lloc de construir un classificador gran i complex per a classificar tot el conjunt d'entrenament, només provem de resoldre la part més fàcil del problema de classificació, retardant la resta per a un segon classificador, etc.
La idea bàsica d'aquesta tesi és, doncs, un compromís entre el cost i la precisió sota una restricció de confiança. Una primera classificació es efectuada a baix cost; si un element és classificat amb una confiança elevada, s'accepta, i si no ho és, es rebutja i s'efectua una segona classificació, etc. És bàsicament, una variació del paradigma de "cascading", on un primer classificador s'usa per a calcular informació addicional per a cada element d'entrada, que serà usada per a millorar la precisió de classificació d'un segon classificador, etc. El que presentem en aquesta tesi és, bàsicament, una extensió del paradigma de "cascading" i una avaluació empírica exhaustiva dels paràmetres involucrats en la creació d'arbres de decisió progressius. Alguns aspectes teòrics relacionats als arbres de decisió progressius com la complexitat del sistema, per exemple, també són tractats.
This thesis is about using small decision trees for classification and data mining. The intuitive idea behind this thesis is that a sequence of small decision trees may perform better than a large decision tree, reducing both training and exploitation costs.
Our first goal was to develop a system capable to recognize several kinds of elements present in a document such as background, text, horizontal and vertical lines, line drawings and images. Then, each element would be treated accordingly to its characteristics. For example, background regions would be removed and not processed at all, while the other regions would be compressed using an appropriate algorithm, the lossy JPEG standard operation mode for images and a lossless method for the rest, for instance. Our first experiments using decision trees showed that the decision trees we built were too large and they suffered from overfitting. Then, we tried to take advantage of spatial redundancy present in images, using a multi-resolution approach: if a large block cannot be correctly classified, split it in four subblocks and repeat the process recursively for each subblock, using all previous computed knowledge about such block. Blocks that could not be processed at a given block size were labeled as mixed, so the word progressive came up: a first low resolution version of the classified image is obtained with the first classifier, and it is refined by the second one, the third one, etc, until a final version is obtained with the last classifier in the ensemble. Furthermore, the use of the progressive scheme yield to the use of smaller decision trees, as we no longer need a complex classifier. Instead of building a large and complex classifier for classifying the whole input training set, we only try to solve the easiest part of the classification problem, delaying the rest for a second classifier, and so.
The basic idea in this thesis is, therefore, a trade-off between cost and accuracy under a confidence constraint. A first classification is performed at a low cost; if an element is classified with a high confidence, it is accepted, and if not, it is rejected and a second classification is performed, and so. It is, basically, a variation of the cascading paradigm, where a first classifier is used to compute additional information from each input sample, information that will be used to improve classification accuracy by a second classifier, and so on. What we present in this thesis, basically, is an extension of the cascading paradigm and an exhaustive empirical evaluation of the parameters involved in the creation of progressive decision trees. Some basic theoretical issues related to progressive decision trees such as system complexity, for example, are also addressed.
Esta tesis trata sobre la utilización de árboles de decisión pequeños para la clasificación y la minería de datos. La idea intuitiva detrás de esta tesis es que una secuencia de árboles de decisión pequeños puede rendir mejor que un árbol de decisión grande, reduciendo tanto el coste de entrenamiento como el de explotación.
Nuestro primer objetivo fue desarrollar un sistema capaz de reconocer diferentes tipos de elementos presentes en un documento, como el fondo, texto, líneas horizontales y verticales, dibujos esquemáticos y imágenes. Entonces, cada elemento puede ser tratado de acuerdo a sus características. Por ejemplo, el fondo se elimina y no se procesa, mientras que las otras regiones serían comprimidas usando el algoritmo apropiado, JPEG con pérdida para las imágenes y un método sin pérdida para el resto, por ejemplo. Los primeros experimentos usando árboles de decisión mostraron que los árboles de decisión construidos eran demasiado grandes y que sufrían de sobre-entrenamiento. Entonces, se trató de aprovechar la redundancia espacial presente en las imágenes, utilizando una aproximación de resolución múltiple: si un bloque grande no puede ser correctamente clasificado, romperlo en cuatro sub-bloques y repetir el proceso recursivamente para cada sub-bloque, usando todo el conocimiento que se haya calculado con anterioridad. Los bloques que no pueden ser procesados para una medida de bloque dada se etiquetan como "mixed", por lo que la palabra progresivo toma sentido: una primera versión de poca resolución de la imagen clasificada se obtiene con el primer clasificador, y se refina por el segundo, el tercero, etc., hasta que una versión final es obtenida con el último clasificador del montaje. De hecho, el uso del esquema progresivo lleva al uso de árboles de decisión más pequeños, ya que ya no es necesario un clasificador complejo. En lugar de construir un clasificador grande y complejo para clasificar todo el conjunto de entrenamiento, sólo tratamos de resolver la parte más fácil del problema de clasificación, retardando el resto para un segundo clasificador, etc.
La idea básica de esta tesis es, entonces, un compromiso entre el coste y la precisión bajo una restricción de confianza. Una primera clasificación es efectuada a bajo coste; si un elemento es clasificado con una confianza elevada, se acepta, y si no lo es, se rechaza y se efectúa una segunda clasificación, etc. Es básicamente, una variación del paradigma de "cascading", donde un primer clasificador se usa para calcular información adicional para cada elemento de entrada, que será usada para mejorar la precisión de clasificación de un segundo clasificador, etc. Lo que presentamos en esta tesis es, básicamente, una extensión del paradigma de "cascading" y una evaluación empírica exhaustiva de los parámetros involucrados en la creación de árboles de decisión progresivos. Algunos aspectos teóricos relacionados con los árboles de decisión progresivos como la complejidad del sistema, por ejemplo, también son tratados.
Pisetta, Vincent. "New Insights into Decision Trees Ensembles." Thesis, Lyon 2, 2012. http://www.theses.fr/2012LYO20018/document.
Full textDecision trees ensembles are among the most popular tools in machine learning. Nevertheless, their theoretical properties as well as their empirical performances are subject to strong investigation up to date. In this thesis, we propose to shed light on these methods. More precisely, after having described the current theoretical aspects of three main ensemble schemes (chapter 1), we give an analysis supporting the existence of common reasons to the success of these three principles (chapter 2). This last takes into account the two first moments of the margin as an essential ingredient to obtain strong learning abilities. Starting from this rejoinder, we propose a new ensemble algorithm called OSS (Oriented Sub-Sampling) whose steps are in perfect accordance with the point of view we introduce. The empirical performances of OSS are superior to the ones of currently popular algorithms such as Random Forests and AdaBoost. In a third chapter (chapter 3), we analyze Random Forests adopting a “kernel” point of view. This last allows us to understand and observe the underlying regularization mechanism of these kinds of methods. Adopting the kernel point of view also enables us to improve the predictive performance of Random Forests using popular post-processing techniques such as SVM and multiple kernel learning. In conjunction with random Forests, they show greatly improved performances and are able to realize a pruning of the ensemble by conserving only a small fraction of the initial base learners
Wickramarachchi, Darshana Chitraka. "Oblique decision trees in transformed spaces." Thesis, University of Canterbury. Mathematics and Statistics, 2015. http://hdl.handle.net/10092/11051.
Full textHan, Qian. "Mining Shared Decision Trees between Datasets." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1274807201.
Full textParkhe, Vidyamani. "Randomized decision trees for data mining." [Florida] : State University System of Florida, 2000. http://etd.fcla.edu/etd/uf/2000/ane5962/thesis.pdf.
Full textTitle from first page of PDF file. Document formatted into pages; contains vi, 54 p.; also contains graphics. Vita. Includes bibliographical references (p. 52-53).
Boujari, Tahereh. "Instance-based ontology alignment using decision trees." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84918.
Full textLee, Hong, and 李匡. "Model-based decision trees for ranking data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45149707.
Full textBeck, Jason. "Implementation and Experimentation with C4.5 Decision Trees." Honors in the Major Thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1157.
Full textBachelors
Engineering and Computer Science
Computer Engineering
Badr, Bashar. "Implementation of decision trees for embedded systems." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/14711.
Full textSilva, Jesús, Palma Hugo Hernández, Núẽz William Niebles, Alex Ruiz-Lazaro, and Noel Varela. "Natural Language Explanation Model for Decision Trees." Institute of Physics Publishing, 2020. http://hdl.handle.net/10757/652131.
Full textRavi, Sumved Reddy. "Naturally Generated Decision Trees for Image Classification." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104884.
Full textMaster of Science
Many modern day applications make use of deep networks for image classification. Often these networks are incredibly complex in architecture, and applicable only for specific tasks and data. Standard approaches use just a neural network to produce predictions. However, the internal decision process of the network remains a black box due to the nature of the technique. As more complex human related applications, such as medical image diagnostic tools or autonomous driving software, are being created, they require an understanding of reasoning behind a prediction. To provide this insight into the prediction reasoning, we propose a technique which merges decision trees and deep networks. Tested on the MNIST image data set we were able to achieve an accuracy over 99.0%. We were also able to achieve an accuracy over 73.0% on the CIFAR-10 image data set. Our method is found to create decision trees that are easily understood and are reasonably capable of image classification.
Tadros, Alexandre. "Topological recursive fitting trees : A framework for interpretable regression extending decision trees." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272130.
Full textMånga verkliga maskininlärningsapplikationer behöver tolkning av resultatet från en algoritm. Enkelheten i några av de mest grundläggande maskininlärningsalgoritmerna för regression, såsom linjär regression eller beslutsträd, underlättar tolkningen. Men det räcker inte till när de möter komplexa (t.ex. högdimensionella, icke-linjära) förhållanden mellan variabler. Flera tillvägagångssätt som konstgjorda neurala nätverk och bagging eller att öka varianter av beslutsträd har kunnat övervinna denna fråga, men på bekostnad av tolkningen. Vi föreslår ett ramverk som heter Topologiskt Rekursiva Anpassning (Topological Recursive Fitting, TRF) där ett beslutsträd lärs utifrån datats topologiska egenskaper. Vi förväntar oss att trädstrukturen i vårt tillvägagångssätt möjliggör tolkning och samtidigt uppnår jämförbar prestanda med tidigare nämnda black-box-metoder. Resultaten visar att TRF kan uppnå jämförbar prestanda med dessa metoder, även om bekräftelse på ett mer betydande antal datamängder bör initieras.
Zhong, Mingyu. "AN ANALYSIS OF MISCLASSIFICATION RATES FOR DECISION TREES." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2496.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
Olsson, Magnus. "Behavior Trees for decision-making in Autonomous Driving." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183060.
Full textJenhani, Ilyes. "From possibilistic similarity measures to possibilistic decision trees." Thesis, Artois, 2010. http://www.theses.fr/2010ARTO0402/document.
Full textThis thesis concerns two important issues in machine learning and reasoning under uncertainty: how to evaluate a similarity relation between two uncertain pieces of information, and how to perform classification from uncertain data. Our first main contribution is to propose a so-called possibilistic decision tree which allows to induce decision trees from training data afflicted with imperfection. More precisely, it handles training data characterized by uncertain class labels where uncertainty is modeled within the quantitative possibility theory framework. We have developed three possibilistic decision tree approaches. For each approach, we were faced and solved typical questions for inducing possibilistic decision trees such as how to define an attribute selection measure when classes are represented by possibility distributions, how to find the stopping criteria and how leaves should be labeled in such uncertain context. The first approach, so-called, non-specificity-based possibilistic decision tree uses the concept of non-specificity relative to possibility theory in its attribute selection measure component. This approach keeps up the possibility distributions within all the stages of the building procedure and especially when evaluating the informativeness of the attributes in the attribute selection step. Conversely, the second and the third approaches, so-called similarity-based possibilistic decision tree and clustering-based possibilistic decision tree, automatically, get rid of possibility distributions in their attribute selection measure. This strategy has allowed them to extend the gain ratio criterion and hence to extend the C4.5 algorithm to handle possibilistic labeled data. These two possibilistic decision tree approaches are mainly based on the concept of similarity between possibility distributions.This latter issue constitutes our second main contribution in this thesis. In fact, an important challenge was to provide a property-based analysis of possibilistic similarity measures. After showing the important role that inconsistency could play in assessing possibilistic similarity, a new inconsistency-based possibilistic similarity measure, so-called information affinity has been proposed. This measure satisfies a set of natural properties that we have established. Finally, we have conducted experiments to show the feasibility and to compare the different possibilistic decision tree approaches developed in this thesis
Waldhauser, Christoph, and Ronald Hochreiter. "Shaking the trees: Abilities and Capabilities of Regression and Decision Trees for Political Science." edp sciences, 2017. http://dx.doi.org/10.1051/itmconf/20171400009.
Full textGerdes, Mike. "Predictive Health Monitoring for Aircraft Systems using Decision Trees." Licentiate thesis, Linköpings universitet, Fluida och mekatroniska system, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105843.
Full textTwala, Bhekisipho. "Effective techniques for handling incomplete data using decision trees." Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418465.
Full textPEREIRA, FELIPE DE ALBUQUERQUE MELLO. "A FRAMEWORK FOR GENERATING BINARY SPLITS IN DECISION TREES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35783@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Nesta dissertação é apresentado um framework para desenvolver critérios de split para lidar com atributos nominais multi-valorados em árvores de decisão. Critérios gerados por este framework podem ser implementados para rodar em tempo polinomial no número de classes e valores, com garantia teórica de produzir um split próximo do ótimo. Apresenta-se também um estudo experimental, utilizando datasets reais, onde o tempo de execução e acurácia de métodos oriundos do framework são avaliados.
In this dissertation we propose a framework for designing splitting criteria for handling multi-valued nominal attributes for decision trees. Criteria derived from our framework can be implemented to run in polynomial time in the number of classes and values, with theoretical guarantee of producing a split that is close to the optimal one. We also present an experimental study, using real datasets, where the running time and accuracy of the methods obtained from the framework are evaluated.
Gangadhara, Kanthi, and Dubbaka Sai Anusha Reddy. "Comparing Compound and Ordinary Diversity measures Using Decision Trees." Thesis, Högskolan i Borås, Institutionen Handels- och IT-högskolan, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-20385.
Full textProgram: Magisterutbildning i informatik
Manninger, Mátyás. "Optimizations for uncertainty prediction on streams with decision trees." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235490.
Full textMånga företag använder maskininlärning för att göra prediktioner som är kritiska för deras vardagliga verksamhet. I många fall kan kunska- pen om prediktionernas osäkerhet vara avgörande, eftersom beslut fattas utifrån beräknad risk. De flesta osäkerhetsestimeringsmetoder- na är inte utformade för strömmande data och kan inte hantera obe- gränsade dataströmmar eller datadrift. Denna studie föreslår optime- ringar till två beslutsträdsbaserade algoritmer som är speciellt utfor- made för att tillgodose osäkerhetsprediktioner för strömmande data. En av dem är conformal prediction medan den andra är onlineQRF. Två nya parametrar introduceras för conformal prediction för att by- ta ut hastighet och noggrannhet. Utbytet av histogrammen vid trä- dens löv för onlineQRF-algoritmen med online kvantilskisser föreslås också. De två parametrarna för conformal prediction hade ingen sig- nifikant effekt på algoritmen och förbättrade den inte på något me- ningsfullt sätt. Ersättningen av aggregationsmetoden vid löven för on- lineQRF minskade förutsägelsestiden signifikant och öppnade upp för ytterligare förbättringar i noggrannhet. Denna empiriska studie visar en förbättring av en state-of-the-art online maskininlärningsalgoritm som kunde vidtas genom många branscher.
Svantesson, David. "Implementing Streaming Parallel Decision Trees on Graphic Processing Units." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230953.
Full textBeslutsträd har länge varit ett betydande område inom maskininlärning. Strömmandedata och stora dataset har blivit allt vanligare, vilket har lett till att forskare utvecklat algoritmer för beslutsträd anpassade till dessa miljöer. En av dessa algoritmer är SPDT. Denna algoritm använder sig av flera arbetare i ett nätverk kombinerat med en dynamisk histogram-representation av data. Det existerar flera implementationer av beslutsträd på grafikkort, men inte många för strömmande data. I detta forskningsarbete, utfört på RISE SICS, undersöks möjligheten att snabba upp SPDT genom att accelerera beräkningar med hjälp av grafikkort. En lyckad implementation skriven i CUDA beskrivs. Implementationen anpassar sig till grafikkortsplattformen genom att använda sig utav ett bestämt antal datapunkter per lager. Experiment som undersöker effekten på noggrannhet och hastighet har genomförts. Resultaten visar att GPU-implementationen presterar lika väl som CPU-implementationen vad gäller noggrannhet, vilket påvisar att användandet av en mindre del av data i varje lager är tillräckligt för goda resultat. GPU-implementationen är upp till 113 gånger snabbare jämfört med en existerande CPU-implementation skriven i Scala, och är i medel 13 gånger snabbare. Svagheter i implementationen identifieras, och vidare förbättringar till implementationen föreslås för att förbättra både noggrannhet och hastighetsprestanda.
Kirkby, Richard Brendon. "Improving Hoeffding Trees." The University of Waikato, 2008. http://hdl.handle.net/10289/2568.
Full textKyper, Eric S. "An information criterion for use in predictive data mining /." View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3225319.
Full textBogdan, Vukobratović. "Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=102520&source=NDLTD&language=en.
Full textУ овоj дисертациjи, представљени су нови алгоритми EFTI и EEFTI заформирање стабала одлуке и њихових ансамбала неинкременталномметодом, као и разне могућности за њихову имплементациjу.Експерименти показуjу да jе предложени EFTI алгоритам у могућностида произведе драстично мања стабла без губитка тачности у односу напостојеће top-down инкременталне алгоритме, а стабла знатно већетачности у односу на постојеће неинкременталне алгоритме. Такође супредложене хардверске архитектуре за акцелерацију ових алгоритама(EFTIP и EEFTIP) и показано је да је уз помоћ ових архитектура могућеостварити знатна убрзања.
U ovoj disertaciji, predstavljeni su novi algoritmi EFTI i EEFTI zaformiranje stabala odluke i njihovih ansambala neinkrementalnommetodom, kao i razne mogućnosti za njihovu implementaciju.Eksperimenti pokazuju da je predloženi EFTI algoritam u mogućnostida proizvede drastično manja stabla bez gubitka tačnosti u odnosu napostojeće top-down inkrementalne algoritme, a stabla znatno većetačnosti u odnosu na postojeće neinkrementalne algoritme. Takođe supredložene hardverske arhitekture za akceleraciju ovih algoritama(EFTIP i EEFTIP) i pokazano je da je uz pomoć ovih arhitektura mogućeostvariti znatna ubrzanja.
Basgalupp, Márcio Porto. "LEGAL-Tree: um algoritmo genético multi-objetivo para indução de árvores de decisão." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12052010-165344/.
Full textAmong the several tasks evolutionary algorithms have been successfully employed, the induction of classification rules and decision trees has been shown to be a relevant approach for several application domains. Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, conventionally used decision trees induction algorithms present limitations due to the strategy they usually implement: recursive top-down data partitioning through a greedy split evaluation. The main problem with this strategy is quality loss during the partitioning process, which can lead to statistically insignificant rules. In this thesis we propose the LEGAL-Tree algorithm, a new GA-based algorithm for decision tree induction. The proposed algorithm aims to prevent the greedy strategy and to avoid converging to local optima. For such, it is based on a lexicographic multi-objective approach. In the experiments which were run in several classification problems, LEGAL-Tree\'s fitness function considers two of the most common measures to evaluate decision trees: accuracy and tree size. Results show that LEGAL-Tree performs similarly to SimpleCart (CART Java implementation) and outperforms J48 (C4.5 Java implementation) and the evolutionary algorithm GALE. LEGAL-Tree\'s main contribution is not to generate trees with the highest predictive accuracy possible, but to provide smaller (and thus more comprehensible) trees, keeping a competitive accuracy rate. LEGAL-Tree is able to provide both comprehensible and accurate trees, which shows that the lexicographic fitness evaluation is successful since its goal is to prioritize smaller trees (fewer number of nodes) when there is equivalency in terms of accuracy
Tsang, Pui-kwan Smith, and 曾沛坤. "Efficient decision tree building algorithms for uncertain data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41290719.
Full textTsang, Pui-kwan Smith. "Efficient decision tree building algorithms for uncertain data." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41290719.
Full textRoberts, Lucas R. "Variable Selection and Decision Trees: The DiVaS and ALoVaS Methods." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/70878.
Full textPh. D.
Revend, War. "Predicting House Prices on the Countryside using Boosted Decision Trees." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279849.
Full textDenna uppsats ämnar utvärdera genomförbarheten hos olika övervakade inlärningsmodeller för att förutse huspriser på landsbygden i Södra Sverige. Det är viktigt för bostadslånsgivare att ha noggranna algoritmer när de värderar bostäder, den nuvarande modellen som Booli erbjuder har dålig precision när det gäller värderingar av bostäder på landsbygden. Olika typer av boostade beslutsträd implementerades för att ta itu med denna fråga och deras prestanda jämfördes med traditionella maskininlärningsmetoder. Dessa olika typer av övervakad inlärningsmodeller implementerades för att hitta den bästa modellen med avseende på relevanta prestationsmått som t.ex. root-mean-squared error (RMSE) och mean absolute percentage error (MAPE). De övervakade inlärningsmodellerna var ridge regression, lasso regression, random forest, AdaBoost, gradient boosting, CatBoost, XGBoost, and LightGBM. Samtliga algoritmers prestanda jämförs med Boolis nuvarande bostadsvärderingsalgoritm, som är baserade på en k-NN modell. Resultatet från denna uppsats visar att LightGBM modellen är den optimala modellen för att värdera husen på landsbygden eftersom den hade den bästa totala prestandan med avseende på de utvalda utvärderingsmetoderna. LightGBM modellen jämfördes med Booli modellen där prestandan av LightGBM modellen var i överlag bättre, där LightGBM modellen hade ett RMSE värde på 0.330 jämfört med Booli modellen som hade ett RMSE värde på 0.358. Vilket indikerar att det finns en potential att använda boostade beslutsträd för att förbättra noggrannheten i förutsägelserna av huspriser på landsbygden.
KINSEY, MICHAEL LOY. "PRIVACY PRESERVING INDUCTION OF DECISION TREES FROM GEOGRAPHICALLY DISTRIBUTED DATABASES." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1123855448.
Full textAu, Manix. "Automatic State Construction using Decision Trees for Reinforcement Learning Agents." Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/15965/1/Manix_Au_Thesis.pdf.
Full textAu, Manix. "Automatic State Construction using Decision Trees for Reinforcement Learning Agents." Queensland University of Technology, 2005. http://eprints.qut.edu.au/15965/.
Full textSinsel, Erik W. "Ensemble learning for ranking interesting attributes." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4400.
Full textTitle from document title page. Document formatted into pages; contains viii, 81 p. : ill. Includes abstract. Includes bibliographical references (p. 72-74).
Alotaibi, Reem Moteab Sultan. "Learning versatile decision trees : towards context-awareness and multi-label classification." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723447.
Full textKerbs, Robert W. "The Extraction of Classification Rules and Decision Trees from Independence Diagrams." NSUWorks, 2001. http://nsuworks.nova.edu/gscis_etd/630.
Full textAhmed, Istiak. "An ensemble learning approach based on decision trees and probabilistic argumentation." Thesis, Umeå universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-175967.
Full textGerdes, Mike. "Health Monitoring for Aircraft Systems using Decision Trees and Genetic Evolution." Diss., Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2019. http://d-nb.info/1202830382.
Full textAndriyashin, Anton. "Stock picking via nonsymmetrically pruned binary decision trees with reject option." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2010. http://dx.doi.org/10.18452/16248.
Full textStock picking is the field of financial analysis that is of particular interest for many professional investors and researchers. There is a lot of research evidence supporting the fact that stock returns can effectively be forecasted. While various modeling techniques could be employed for stock price prediction, a critical analysis of popular methods including general equilibrium and asset pricing models; parametric, non- and semiparametric regression models; and popular black box classification approaches is provided. Due to advantageous properties of binary classification trees including excellent level of interpretability of decision rules, the trading algorithm core is built employing this modern nonparametric method. Optimal tree size is believed to be the crucial factor of forecasting performance of classification trees. While there exists a set of widely adopted alternative tree induction and pruning techniques, which are critically examined in the study, one of the main contributions of this work is a novel methodology of nonsymmetrical tree pruning with reject option called Best Node Selection (BNS). An important inverse propagation property of BNS is proven that provides an easy way to implement the search for the optimal tree size in practice. Traditional cost-complexity pruning shows similar performance in terms of tree accuracy when assessed against popular alternative techniques, and it is the default pruning method for many applications. BNS is compared with costcomplexity pruning empirically by composing two recursive portfolios out of DAX30 stocks. Performance forecasts for each of the stocks are provided by constructed decision trees that are updated when new market information becomes available. It is shown that BNS clearly outperforms the traditional approach according to the backtesting results and the Diebold-Mariano test for statistical significance of the performance difference between two forecasting methods. Another novel feature of this work is the use of individual decision rules for each stock as opposed to pooling of learning samples, which is done traditionally. Empirical data in the form of provided individual decision rules for a randomly selected time point in the backtesting set justify this approach.
Rangwala, Maimuna H. "Empirical investigation of decision tree extraction from neural networks." Ohio : Ohio University, 2006. http://www.ohiolink.edu/etd/view.cgi?ohiou1151608193.
Full textBremner, Alexandra P. "Localised splitting criteria for classification and regression trees." Thesis, Bremner, Alexandra P. (2004) Localised splitting criteria for classification and regression trees. PhD thesis, Murdoch University, 2004. https://researchrepository.murdoch.edu.au/id/eprint/440/.
Full textBremner, Alexandra P. "Localised splitting criteria for classification and regression trees /." Access via Murdoch University Digital Theses Project, 2004. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20040606.142949.
Full textBarros, Rodrigo Coelho. "On the automatic design of decision-tree induction algorithms." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032014-144814/.
Full textÁrvores de decisão são amplamente utilizadas como estratégia para extração de conhecimento de dados. Existem muitas estratégias diferentes para indução de árvores de decisão, cada qual com suas vantagens e desvantagens tendo em vista seu bias indutivo. Tais estratégias têm sido continuamente melhoradas por pesquisadores nos últimos 40 anos. Esta tese, em sintonia com recentes descobertas no campo de projeto automático de algoritmos de aprendizado de máquina, propõe a geração automática de algoritmos de indução de árvores de decisão. A abordagem proposta, chamada de HEAD-DT, é baseada no paradigma de algoritmos evolutivos. HEAD-DT evolui componentes de árvores de decisão que foram manualmente codificados e os combina da forma mais adequada ao problema em questão. HEAD-DT funciona conforme dois diferentes frameworks: i) evolução de algoritmos customizados para uma única base de dados (framework específico); e ii) evolução de algoritmos a partir de múltiplas bases (framework geral). O framework específico tem por objetivo gerar um algoritmo por base de dados, de forma que o algoritmo projetado não necessite de poder de generalização que vá além da base alvo. O framework geral tem um objetivo mais ambicioso: gerar um único algoritmo capaz de ser efetivamente executado em várias bases de dados. O framework específico é testado em 20 bases públicas da UCI, e os resultados mostram que os algoritmos específicos gerados por HEAD-DT apresentam desempenho preditivo significativamente melhor do que algoritmos como CART e C4.5. O framework geral é executado em dois cenários diferentes: i) projeto de algoritmo específico a um domínio de aplicação; e ii) projeto de um algoritmo livre-de-domínio, robusto a bases distintas. O primeiro cenário é testado em 35 bases de expressão gênica, e os resultados mostram que o algoritmo gerado por HEAD-DT consistentemente supera CART e C4.5 em diferentes configurações experimentais. O segundo cenário é testado em 67 bases de dados da UCI, e os resultados mostram que o algoritmo gerado por HEAD-DT é competitivo com CART e C4.5. No entanto, é mostrado que HEAD-DT é vulnerável a um caso particular de overfitting quando executado sobre o segundo cenário do framework geral, e indica-se assim possíveis soluções para tal problema. Por fim, é realizado uma análise detalhada para avaliação de diferentes funções de fitness de HEAD-DT, onde 5 medidas de desempenho são combinadas com três esquemas de agregação. As 15 versões são avaliadas em 67 bases da UCI e as melhores versões são utilizadas para geração de algoritmos customizados para bases balanceadas e desbalanceadas. Os resultados mostram que os algoritmos gerados por HEAD-DT apresentam desempenho preditivo significativamente melhor que CART e C4.5, em uma clara indicação que HEAD-DT também é capaz de gerar algoritmos customizados para certo perfil estatístico dos dados de classificação
Sendur, Zeynel. "Text Document Categorization by Machine Learning." Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_theses/209.
Full textSummad, Emad. "A Monte-Carlo approach to tool selection for sheet metal punching and nibbling." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/4137/.
Full textMacDonald, Calum Angus. "The development of an objective methodology for the prediction of helicopter pilot workload." Thesis, Glasgow Caledonian University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340607.
Full textMàrquez, Lluís. "Part-of-speech Tagging: A Machine Learning Approach based on Decision Trees." Doctoral thesis, Universitat Politècnica de Catalunya, 1999. http://hdl.handle.net/10803/6663.
Full textValente, Lorenzo. "Reconstruction of non-prompt charmed baryon Λc with boosted decision trees technique." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21033/.
Full text