Dissertations / Theses on the topic 'DECISION TREE TECHNIQUE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 48 dissertations / theses for your research on the topic 'DECISION TREE TECHNIQUE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Yedida, Venkata Rama Kumar Swamy. "Protein Function Prediction Using Decision Tree Technique." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1216313412.
Full textLi, Yunjie. "Applying Data Mining Techniques on Continuous Sensed Data : For daily living activity recognition." Thesis, Mittuniversitetet, Avdelningen för informations- och kommunikationssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-23424.
Full textThomas, Clifford S. "From 'tree' based Bayesian networks to mutual information classifiers : deriving a singly connected network classifier using an information theory based technique." Thesis, University of Stirling, 2005. http://hdl.handle.net/1893/2623.
Full textDalkiran, Evrim. "Discrete and Continuous Nonconvex Optimization: Decision Trees, Valid Inequalities, and Reduced Basis Techniques." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77366.
Full textPh. D.
Twala, Bhekisipho. "Effective techniques for handling incomplete data using decision trees." Thesis, Open University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418465.
Full textMillerand, Gaëtan. "Enhancing decision tree accuracy and compactness with improved categorical split and sampling techniques." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279454.
Full textBeslutsträd är en av de mest populära algoritmerna i den förklarbara AI-domänen. I själva verket är det från dess struktur verkligen enkelt att framställa en uppsättning beslutsregler som är helt förståeliga för en vanlig användare. Därför forskas det för närvarande på att förbättra beslut eller kartlägga andra modeller i ett träd. Beslutsträd genererat av C4.5 eller ID3-träd lider av två huvudproblem. Den första är att de ofta har lägre prestanda när det gäller noggrannhet för klassificeringsuppgifter eller medelkvadratfel för regressionsuppgiftens noggrannhet jämfört med modernaste modeller som XGBoost eller djupa neurala nätverk. I nästan varje uppgift finns det faktiskt ett viktigt gap mellan toppmodeller som XGboost och beslutsträd. Detta examensarbete tar upp detta problem genom att tillhandahålla en ny metod baserad på dataförstärkning med hjälp av modernaste modeller som överträffar de gamla när det gäller utvärderingsmätningar. Det andra problemet är beslutsträdets kompakthet, allteftersom djupet ökar, blir uppsättningen av regler exponentiellt stor, särskilt när det delade attributet är kategoriskt. Standardlösning för att hantera kategoriska värden är att förvandla dem till dummiesvariabler eller dela på varje värde som producerar komplexa modeller. En jämförande studie av nuvarande metoder för att dela kategoriska värden i klassificeringsproblem görs i detta examensarbete, en ny metod studeras också i fallet med regression.
Valente, Lorenzo. "Reconstruction of non-prompt charmed baryon Λc with boosted decision trees technique." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21033/.
Full textTownsend, Whitney Jeanne. "Discrete function representations utilizing decision diagrams and spectral techniques." Thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-07012002-160303.
Full textRavula, Ravindar Reddy. "Classification of Malware using Reverse Engineering and Data Mining Techniques." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1311042709.
Full textJia, Xiuping Electrical Engineering Australian Defence Force Academy UNSW. "Classification techniques for hyperspectral remote sensing image data." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Electrical Engineering, 1996. http://handle.unsw.edu.au/1959.4/38713.
Full textBuontempo, Frances Vivien. "Rapid toxicity prediction of organic chemicals using data mining techniques and SAR based on genetic programming for decision tree generation." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416813.
Full textPeng, Tian. "Structural system identification by dynamic observability technique." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672173.
Full textLa identificación del sistema estructural puede clasificarse como estático y dinámico según el tipo de excitación. Recientemente, se ha propuesto y analizado SSI mediante el Método de Observabilidad (OM) utilizando medidas experimentales de pruebas estáticas para abordar la observabilidad de los parámetros estimados. Este enfoque matemático se ha utilizado en otros campos como la hidráulica, la electricidad y las redes de energía o transporte. Por lo general, el comportamiento de las estructuras de ingeniería se puede identificar de acuerdo con características dinámicas como formas modales, frecuencias naturales y amortiguamiento. Sin embargo, hasta la fecha, no se han propuesto análisis de SSI por el método de observabilidad utilizando información dinámica. Esta tesis desarrolla el Método de Observabilidad Dinámico usando masas, frecuencias propias y modos de vibración para identificar los parámetros mecánicos de los elementos de una estructura. A tal fin, se desarrollan tres líneas de trabajo. En primer lugar, se propone la primera aplicación de técnicas de observabilidad restringida para la estimación paramétrica de estructuras utilizando información dinámica como frecuencias y modos de vibración. Se introducen nuevos algoritmos basados en la ecuación dinámica de valores propios. Se utilizan dos ejemplos paso a paso para ilustrar su l funcionamiento. Se obtienen con éxito expresiones paramétricas para las variables observadas, lo que permite estudiar la sensibilidad de cada una de las variables en el problema y la distribución del error, lo cual es una ventaja respecto a las técnicas SSI no paramétricas. Para la validación de esta nueva aplicación se utiliza una estructura compleja, cuyas propiedades estructurales se pueden obtener satisfactoriamente en el análisis total o local, y los resultados muestran que el conjunto de medidas requerido es menor que en el caso del análisis estático. Los capítulos 4 y 5 son las aplicaciones de COM para subsanar las deficiencias de la investigación actual, como la estrategia óptima de SHM + SSI y la cuantificación de la incertidumbre. En segundo lugar, se discute el papel que juega la estrategia SHM y el análisis SSI basado en el Método de Observabilidad Restringido (COM), con el objetivo reducir el error de estimación. Se propone una herramienta de decisión de aprendizaje automático para ayudar a construir la mejor estrategia combinada de SHM y SSI que puede resultar en estimaciones más precisas de las propiedades estructurales. Para ello, se utiliza la combinación de algoritmo COM dinámico y el método de los árboles de decisión por primera vez. Los árboles de decisión se presentan, en primer lugar, como una herramienta útil para investigar la influencia de las variables (tipología estructural del puente, longitud del vano, conjunto de medidas experimentales y pesos en la función objetivo) involucradas en el proceso SHM + SSI con el objetivo de minimizar el error en la identificación de la estructura. La verificación del método con un puente real con diferentes niveles de daño muestra que el método es robusto incluso para un nivel de daño importante, resultando en la estrategia SHM + SSI que arroja la estimación más precisa. Por último, es necesario un análisis de cuantificación de la incertidumbre (UQ) para evaluar el efecto de las incertidumbres sobre los parámetros estimados y proporcionar una forma de evaluar las incertidumbres en los parámetros identificados. Hay una gran cantidad de enfoques de UQ en ciencia e ingeniería. En primer lugar, se identifica que el Método de Observabilidad Restringido (COM) dinámico propuesto puede compensar algunas de las deficiencias de los métodos existentes. Posteriormente, el COM se utiliza para analizar un puente real. Se compara el resultado con un método existente basado, demostrando su aplicabilidad y correcto desempeño mediante la aplicación a una viga de hormigón armado. Además, se obtiene como resultado que el mejor conjunto de puntos de medición experimental dependerá de la incertidumbre epistémica incorporada en el modelo. Dado que la incertidumbre epistémica se puede eliminar a medida que aumenta el conocimiento de la estructura, la ubicación óptima de los sensores debe lograrse considerando no sólo la precisión de los mismos, sino también los modos de vibración de la estructura.
Chida, Anjum A. "Protein Tertiary Model Assessment Using Granular Machine Learning Techniques." Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/cs_diss/65.
Full textIzad, Shenas Seyed Abdolmotalleb. "Predicting High-cost Patients in General Population Using Data Mining Techniques." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23461.
Full textPark, Samuel M. "A Comparison of Machine Learning Techniques to Predict University Rates." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1564790014887692.
Full textAmein, Hussein Aly Abbass. "Computational intelligence techniques for decision making : with applications to the dairy industry." Thesis, Queensland University of Technology, 2000. https://eprints.qut.edu.au/36867/1/36867_Digitised%20Thesis.pdf.
Full textIrniger, Christophe-André. "Graph matching filtering databases of graphs using machine learning techniques." Berlin Aka, 2005. http://deposit.ddb.de/cgi-bin/dokserv?id=2677754&prov=M&dok_var=1&dok_ext=htm.
Full textMistry, Pritesh. "A Knowledge Based Approach of Toxicity Prediction for Drug Formulation. Modelling Drug Vehicle Relationships Using Soft Computing Techniques." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14440.
Full textPhadke, Amit Ashok. "Predicting open-source software quality using statistical and machine learning techniques." Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-11092004-105801.
Full textAFRASINEI, GABRIELA MIHAELA. "Study of land degradation and desertification dynamics in North Africa areas using remote sensing techniques." Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266730.
Full textPabarškaitė, Židrina. "Enhancements of pre-processing, analysis and presentation techniques in web log mining." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090713_142203-05841.
Full textInternetui skverbiantis į mūsų gyvenimą, vis didesnis dėmesys kreipiamas į informacijos pateikimo kokybę, bei į tai, kaip informacija yra pateikta. Disertacijos tyrimų sritis yra žiniatinklio serverių kaupiamų duomenų gavyba bei duomenų pateikimo galutiniam naudotojui gerinimo būdai. Tam reikalingos žinios išgaunamos iš žiniatinklio serverio žurnalo įrašų, kuriuose fiksuojama informacija apie išsiųstus vartotojams žiniatinklio puslapius. Darbo tyrimų objektas yra žiniatinklio įrašų gavyba, o su šiuo objektu susiję dalykai: žiniatinklio duomenų paruošimo etapų tobulinimas, žiniatinklio tekstų analizė, duomenų analizės algoritmai prognozavimo ir klasifikavimo uždaviniams spręsti. Pagrindinis disertacijos tikslas – perprasti svetainių naudotojų elgesio formas, tiriant žiniatinklio įrašus, tobulinti paruošimo, analizės ir rezultatų interpretavimo etapų metodologijas. Darbo tyrimai atskleidė naujas žiniatinklio duomenų analizės galimybes. Išsiaiškinta, kad internetinių duomenų – žiniatinklio įrašų švarinimui buvo skirtas nepakankamas dėmesys. Parodyta, kad sumažinus nereikšmingų įrašų kiekį, duomenų analizės procesas tampa efektyvesnis. Todėl buvo sukurtas naujas metodas, kurį pritaikius žinių pateikimas atitinka tikruosius vartotojų maršrutus. Tyrimo metu nustatyta, kad naudotojų naršymo istorija yra skirtingų ilgių, todėl atlikus specifinį duomenų paruošimą – suformavus fiksuoto ilgio vektorius, tikslinga taikyti iki šiol nenaudotus praktikoje sprendimų medžių algoritmus... [toliau žr. visą tekstą]
Smith, Eugene Herbie. "An analytical framework for monitoring and optimizing bank branch network efficiency / E.H. Smith." Thesis, North-West University, 2009. http://hdl.handle.net/10394/5029.
Full textThesis (M.Com. (Computer Science))--North-West University, Potchefstroom Campus, 2010.
Kuratomi, Alejandro. "GNSS Position Error Estimated by Machine Learning Techniques with Environmental Information Input." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262692.
Full textInom Intelligenta transportsystem (ITS), specifikt för självkörande fordon, så är en exakt fordonspositionering en nödvändighet för ökad trafiksäkerhet. Positionsnoggrannheten beror på estimering av både positionen samt positionsfelet. Olika tekniker och tillämpningar som siktar på att förbättra positionsfeluppskattningen behövs, vilket det nu forskas kring. Denna uppsats undersöker olika maskininlärningsalgoritmer inriktade på estimering av positionsfel. Algoritmerna utvärderar relevant information från en GNSS-mottagare, samt information från en kamera om den kringliggande miljön. En GNSS-mottagare och kamera monterades på en radiostyrd mobil testplattform för insamling av data. Examensarbetet består av två delar. Första delen innehåller träning och testning av valda maskininlärningsalgoritmer med GNSS-data tillhandahållen av Waysure från tester gjorda under 2016. Denna data inkluderar ingen information från den omkringliggande miljön runt GNSS-mottagaren. Andra delen består av träning och testning av valda maskininlärningsalgoritmer på GNSS-data som kommer från nya tester gjorda under maj 2019, vilka inkluderar miljöinformation runt GNSS-mottagaren. Resultaten från båda delar analyseras. De viktigaste egenskaper som erhålls från en trädbaserad modell, algoritmens beslutsträd, presenteras. Slutsatsen från denna rapport är att det inte går att statistiskt säkerställa att inkludering av information från den omkringliggande miljön från en kamera förbättrar noggrannheten vid estimering av positionsfelet med de valda maskininlärningsmodellerna.
Peroutka, Lukáš. "Návrh a implementace Data Mining modelu v technologii MS SQL Server." Master's thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-199081.
Full textGirard, Nathalie. "Vers une approche hybride mêlant arbre de classification et treillis de Galois pour de l'indexation d'images." Thesis, La Rochelle, 2013. http://www.theses.fr/2013LAROS402/document.
Full textImage classification is generally based on two steps namely the extraction of the image signature, followed by the extracted data analysis. Image signature is generally numerical. Many classification models have been proposed in the literature, among which most suitable choice is often guided by the classification performance and the model readability. Decision trees and Galois lattices are two symbolic models known for their readability. In her thesis {Guillas 2007}, Guillas efficiently used Galois lattices for image classification. Strong structural links between decision trees and Galois lattices have been highlighted. Accordingly, we are interested in comparing models in order to design a hybrid model between those two. The hybrid model will combine the advantages (robustness of the lattice, low memory space of the tree and readability of both). For this purpose, we study the links between the two models to highlight their differences. Firstly, the discretization type where decision trees generally use a local discretization while Galois lattices, originally defined for binary data, use a global discretization. From the study of the properties of dichotomic lattice (specific lattice defined after discretization), we propose a local discretization for lattice that allows us to improve its classification performances and reduces its structural complexity. Then, the process of post-pruning implemented in most of the decision trees aims to reduce the complexity of the latter, but also to improve their classification performances. Lattice filtering is solely motivated by a decrease in the structural complexity of the structures (exponential in the size of data in the worst case). By combining these two processes, we propose a simplification of the lattice structure constructed after our local discretization. This simplification leads to a hybrid classification model that takes advantage of both decision trees and Galois lattice. It is as readable as the last two, while being less complex than the lattice but also efficient
Roussel, Mylène. "Analyse et interprétation d'images appliquées aux algues microscopiques." Compiègne, 1993. http://www.theses.fr/1993COMP560S.
Full textZiani, Abdellatif. "Etude et réalisation d'un système d'analyse automatique du sommeil." Rouen, 1989. http://www.theses.fr/1989ROUES028.
Full textTeng, Sin Yong. "Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-433427.
Full textSyu, Hong-Cheng, and 許宏誠. "A Study on Applying Decision Tree Technique to Motorcycle Accidents." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/41582493817344070813.
Full text國立臺灣大學
工業工程學研究所
105
With the development of the economy and improvement of people’s living, Transportation has become more popularity and convenient. In recent years, the traffic accident rate has increased sharply. In Taipei, there are more than 13,000 traffic accidents every year, with the motor vehicle accident being one of the highest traffic proportion among all the car types. There are different factors of traffic accidents, including time, environment, weather…etc. Each traffic accident may cause different injure level. According to the traffic data from the Department of Transportation in Taipei City, there are 35 categories from traffic record including environmental factors, transport facilities and personal information. And it’s hard to analysize all the factors simultaneously. To better understand the traffic factors and prevent citizens from traffic accidents. This study will preprocessing the traffic accident data from 2008 to 2013 and use decision tree (CHAID) to analyize the traffic data, figure out the main factors of motor vehicle accidents in Taipei capital, and provide valuable information for the Department of Transportation in Taipei City to support their decision-making, transportation planning, reduce the traffic accidents.
Hu, Wan-Neng, and 胡萬能. "Research on Selecting Cases of Business Tax by Applying Decision Tree Technique." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/22640939803024615444.
Full text元智大學
資訊管理學系
99
Tax revenue is the major income gained by the government. Business tax income, however, is the major source of total tax revenue. Consequently, it is the first priority for taxation agency to curb business tax evasion effectively. As the business tax fillings has been transformed and stored in the central database since 1999, it is desirable and visible to apply information technologies for detecting tax evasion. This study applied data mining techniques, C&R Tree, C5.0 and CHAID, to find out the optimal patterns and models in the case selection for further intervention and investigation by humans. After carrying out the empirical research, in terms of the accuracy, the study recommended that C5.0 is much better than other data mining techniques used in this study. It seems that taxation agency will improve the efficiency of the manpower if data mining techniques are introduced into the tax evasion detection and investigation processes.
Lin, Yang-Tze, and 林楊澤. "Hiding Quasi-identifier on Decision Tree utilizing Swapping Technique for Preserving Privacy." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/40510420253466026628.
Full text國立臺灣科技大學
資訊工程系
97
Classification is an important issue in data mining, and decision tree is one of the most popular techniques for classification analysis. Some data sources contain private personal information that people are unwilling to reveal. The disclosure of person-specific data is possible to endanger thousands of people, and therefore the dataset should be protected before it is released for mining. However, techniques to hide private information usually modify the original dataset without considering influences on the prediction accuracy of a classification model. In this research, we propose an algorithm to protect personal privacy for classification model based on decision tree. Our goal is to hide all person-specific information with minimized data perturbation. Furthermore, the prediction capability of the decision tree classifier can be maintained. As demonstrated in the experiments, the proposed algorithm can successfully hide private information with fewer disturbances of the classifier.
YADAV, MAYANK. "USE OF ENSEMBLE LEARNERS TO PREDICT NUMBER OF DEFECTS IN A SOFTWARE." Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19838.
Full textLin, Ming-chieh, and 林明潔. "Application of Decision-tree Technique in Assessing Power Wheelchair for People with Disabilities." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/65107726207011353710.
Full text國立臺灣科技大學
工業管理系
100
According to the statistical report in Dec. 2012 by Department of Statistics, Ministry of the Interior, Taiwan, majority are the people with physical disability with a percentage of thirty-five. Some mobility impaired disable people can move about and complete functional task via power wheelchair. There are vast variety of power wheelchairs in structure and function which available the market, thus users in great need of professional assessment to avoid improper use causing harmful accident and abandonment of mobility devices of body deformity. Physical and occupational therapists does not encounter assistive technology training until work force. They acquire tacit assistive technology assessment decision making through experience and trial and error. This study transform tacit to explicit knowledge and establish power wheelchair assessment decision making principles. Decision tree is one of common classification methods, it is simple, clear and easy to use. This study divide power wheelchair into five categories, (1)Power base (2)Human machine interface (3)Tilt and Recline system(4)Standing and Elevating system(5)Seating system, and using leaf and node to classify and code to develop five decision trees. Furthermore, test decision tree feasibility using power wheelchair data from physical impaired high school and university students (Ministry of Education). The five decision trees are established to assist therapists in finding the fittest power wheelchair for people with physical disability.
LIU, YUN-SHOU, and 劉允守. "Harnessing the decision tree technique to the customer churn analysis for automobile repairs." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/m7ar85.
Full text國立中正大學
企業管理學系碩士在職專班
106
The work of Taiwan’s automotive after-sales service is belonging to a technical service-oriented industry; this is a high-labor-intensive industry as well. Due to the industry’s uniqueness, the degree of automation is quite low. In this study, our research subject is the service maintenance of authorized operations for the domestic brand automobile manufacturers. Since the number of new cars for Taiwan’s new car sales is declining year by year, the industry of aftermarket service is more difficult to be operated so that the sales price of new cars is fiercely competitive. As such, the revenue and profit generated by the after-sales service for the company are declined; the operation management is obviously turning into more important. We need to pay attention to the retention and churn of customers, which are particularly important for the business operations. How to maintain the customer’s turnover rate is one of the most important management issues. The technical level of maintenance personnel and the consumption of customers experience in the maintenance of after-sales service has the inseparable relationship. In addition, we also are able to find out the potential factors of the churn of service personnel and customer experience through the maintenance history records. According to the argument above, this study employs the C5.0 decision tree in data mining to find relevant factors and build models through building decision trees to address the issue − reducing customer churn.
Chen, Wei-Ting, and 陳韋廷. "Applying Decision Tree Data Mining Technique to Track the Concept Drift of Porn Web Filtering." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/90241852350617504678.
Full text國立東華大學
資訊管理碩士學位學程
99
With the development of the Internet, the proliferation of Internet pornography affects physical and mental development of young people seriously. How to filter porn web pages effectively becomes an issue worth exploring. The study proposed the filtering mechanism method: the porn web filter using a decision tree-based approach to tracking concept drift and the weighted sliding window to calculate concept drift weight score, which helps determine the decision tree concept drift porn web. Filtering mechanism is divided into training and implementation phase. In training phase, we extracted the features of porn web and gave each rule score. In implementation phase, we extracted the features of unknown porn web and scored this web. In this study, a higher frequency of a particular time will drift keyword in keyword library and give a higher weight partition. To take this approach allows the filter to adapt to real-world web page concept drift and improve the recognition accuracy of porn web pages. In this study, the filter can adapt the dynamic web environment that can improve traditional machine learning classification method. The results of experiment, the use of porn web pages with the keyword database and decision tree techniques concepts drift method, is accurate classification rate of 97.06%. This accuracy is not lower than other machine learning recognizing porn web pages using experimental methods.
Chou, Yu-Lin, and 周佑霖. "A Technique for Speaker Independent Automatic Speech Recognition Based on Decision Tree State Tying with GCVHMM." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/42812214292865347038.
Full text國立交通大學
電機與控制工程系
90
This paper proposed a new speech recognition technique for continuous speech-independent recognition of spoken Mandarin digits. One popular tool for solving such a problem is the HMM-based one-state algorithm, which is a connected word pattern matching method. However, two problems existing in this conventional method prevent it from practical use on our target problem. One is the lack of a proper selection mechanism for robust acoustic models for speaker-independent recognition. The other is the information of intersyllable co-articulatory effect in the acoustic model is contained or not. At first, a generalized common-vector (GCV) approach is developed based on the eigenanalysis of covariance matrix to extract an invariant feature over different speakers as well as the acoustical environment effects and the phase or temporal difference. The GCV scheme is then integrated into the conventional HMM to form the new GCV-based HMM, called GCVHMM, which is good at speaker-independent recognition. For the second problem, context-dependent model is done in order to account for the co-articulatory effects of neighboring phones. It is important because the co-articulatory effect for continuous speech is significantly stronger than that for isolated utterances. However, there must be numerous context-dependent models generated because of modeling the variations of sounds and pronunciations. Furthermore, if the parameters in those models are all distinct, the total number of model parameters would be very huge. To solve the problems above, the decision tree state tying technique is used to reduce the number of parameter, hence reduce the computation complexity. In our experiments on the recognition of speaker-independent continuous speech sentences, the proposed scheme is shown to increase the average recognition rate of the conventional HMM-based one-state algorithm by over 26.039% without using any grammar or lexical information.
(12214559), Sonal Chawda. "Determination of distance relay characteristics using an inductive learning system." Thesis, 1993. https://figshare.com/articles/thesis/Determination_of_distance_relay_characteristics_using_an_inductive_learning_system/19326599.
Full textYen, Ya-Ru, and 顏雅茹. "Automatic Analysis of Name Card Contents by Image Processing and Decision-Tree Classification Techniques." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/58750596392335149930.
Full text國立交通大學
資訊科學系
91
A system for automatic analysis of various contents of name card images using decision-tree classification techniques is proposed. Five major phases of name card content analysis are identified, including basic block extraction, logo extraction, card type classification, text line classification, and card image reconstruction. In the phase of basic block extraction, edge detection and region-growing techniques are applied to extract basic blocks in name card images. Then, a moment-preserving thresholding technique is used to reduce the colors in each basic block. In the phase of logo extraction, several effective features are proposed to classify extracted blocks into logo blocks and text blocks. In the phase of card type classification, the width/height radios of text blocks are used to classify card types into Chinese and English. In the phase of text line type classification for Chinese name cards, nine types of text lines are recognized, including name line, title line, e-mail line, web address line, mobile phone number line, fax number line, phone number line, government publications number line, and address line. And text line types in English name cards identical to those in Chinese name cards except the government publications number line are also recognized. Adaptive decision-tree methods for classifying these text line types both in Chinese and in English name cards are proposed. Finally, a suitable compression method is proposed to reduce the data volumes of the recognized name card contents to save storage space and display time. Good experimental results reveal the feasibility of the proposed methods.
Wang, Peiwen, and 王珮紋. "Using Data Mining Technique To Build Cash Prediction:An Application Of Decision Trees." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/87823544665254884322.
Full text國立中正大學
會計與資訊科技研究所
100
Cash is very important property for enterprises, but it pays less attention rather than all the assets in the enterprises.The enterprises choose to hold some cash in spite of assets have higher reward after investment. According to the statistics of previous study, especially high-tech electronics industry always has high cash holdings.The high-tech electronics industry spent huge expenses.That means the company may incur the situation of insufficient funds. It is necessary to prepare a certain amount of cash. This paper uses setpwise regression analysis to find suitable variables for cash holdings of high-tech electronics industry in Taiwan. The selected ratios include the cash dividend payout、rate of research costs、leverage、liability、operating cash flow、investment cash flow、financing cash flow、ratio of operating cash flow, ratio of cash flow, size of the company. Using decision tree methods (AD Tree、Decision stump、 J48、NB Tree、LMT、Random Forest、Random Tree、REP Tree、Simple CART) to predict the accurate rate after classification by decision tree methods.This study have three experiments, namely: (1) the predictive ability of the decision tree algorithm; (2) of the decision tree algorithm with performance improvement algorithm; (3) choose the best decision tree forecast rate comparison with the logistic regression model. In three experiments, the Random Forest is the highest and better rate than the prediction of the logistic regression model.
Kuo, Min-Hsien, and 郭敏賢. "A Study of Applying Decision Trees Techniques to Undergraduate Major Selection." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/56117109244459743652.
Full text中國文化大學
資訊管理學系
100
In recent years, a number of institutions in Taiwan have implemented the policy of “choice of major at the upper level of college” or “Degree Program”. It has become a trend that most of the universities enroll students regardless of department. However, due to lack of motivation of career exploration, and poor recognition of the declaration of major at sophomore or junior year, the major and department finally students chose often dose not exactly match their needs. Therefore, the purpose of this study is to base on students' learning motivation, and then analyze the gap between the motivation and personal personality. After that, an appropriate major is suggested according to students' motivation, they can follow it to choose their major through self-recognition exploration. In this way, chance of choosing a wrong major or occupation will be greatly reduced. Students are able to learn with correct direction of career development. This research's research base is advanced study class students on Chinese Culture University.By the analysis in this research, it is hoped that uncertainty of students selecting their major can be improved. With the help of data mining model, students' learning motivation can be increased and students will get assistance to find out the best learning direction by reviewing the suggestion. Students will find they then understand more about their personality and learning direction. In summary, result and implementation of this research will assist students precisely make their choice for their future life and exploring themselves. On the other hand, academic staff or teachers can have a solid base to guide students career planning.
Yu, Hao, and 余豪. "Fault diagnosis of an automotive starter motor using a decision tree and neural network techniques." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/96496501892465953541.
Full text國立彰化師範大學
車輛科技研究所
99
This study proposes an automotive starter motor fault diagnosis system using component analysis and fault conditions classification based on a decision tree and neural network. Traditionally, the fault diagnosis method depends on the technician's experience, but some faults might be judged inaccurately due to the experience of the technician making subjective decisions. The purpose of the start system in a vehicle is to rotate the crankshaft smoothly to start the engine. In the present study, a starter motor fault diagnosis system is proposed and developed for the classification of different fault conditions. The proposed system consists of feature extraction using principal component analysis (PCA) and Independent components analysis (ICA) to reduce the complexity of the feature vectors, together with classification using the decision tree and neural network techniques. In the output signal classification, three of the classification and regression trees (CART), Decision tree C4.5 and radial basis function networks (RBFN) are used to classify and compare the synthetic fault types in an experimental automotive starter motor platform. The experimental results indicate that the proposed fault diagnosis is effective and can be used for automotive starter motor of various fault operating conditions.
"Techniques in data mining: decision trees classification and constraint-based itemsets mining." 2001. http://library.cuhk.edu.hk/record=b5890757.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2001.
Includes bibliographical references (leaves 117-124).
Abstracts in English and Chinese.
Abstract --- p.ii
Acknowledgement --- p.iv
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Data Mining Techniques --- p.1
Chapter 1.1.1 --- Classification --- p.1
Chapter 1.1.2 --- Association Rules Mining --- p.2
Chapter 1.1.3 --- Estimation --- p.2
Chapter 1.1.4 --- Prediction --- p.2
Chapter 1.1.5 --- Clustering --- p.2
Chapter 1.1.6 --- Description --- p.3
Chapter 1.2 --- Problem Definition --- p.3
Chapter 1.3 --- Thesis Organization --- p.4
Chapter I --- Decision Tree Classifiers --- p.6
Chapter 2 --- Background --- p.7
Chapter 2.1 --- Introduction to Classification --- p.7
Chapter 2.2 --- Classification Using Decision Trees --- p.8
Chapter 2.2.1 --- Constructing a Decision Tree --- p.10
Chapter 2.2.2 --- Related Work --- p.11
Chapter 3 --- Strategies to Enhance the Performance in Building Decision Trees --- p.14
Chapter 3.1 --- Introduction --- p.15
Chapter 3.1.1 --- Related Work --- p.15
Chapter 3.1.2 --- Post-evaluation vs Pre-evaluation of Splitting Points --- p.19
Chapter 3.2 --- Schemes to Construct Decision Trees --- p.27
Chapter 3.2.1 --- One-to-many Hashing --- p.27
Chapter 3.2.2 --- Many-to-one and Horizontal Hashing --- p.28
Chapter 3.2.3 --- A Scheme using Paired Attribute Lists --- p.29
Chapter 3.2.4 --- A Scheme using Database Replication --- p.31
Chapter 3.3 --- Performance Analysis --- p.32
Chapter 3.4 --- Experimental Results --- p.38
Chapter 3.4.1 --- Performance --- p.38
Chapter 3.4.2 --- Test 1 : Smaller Decision Tree --- p.40
Chapter 3.4.3 --- Test 2: Bigger Decision Tree --- p.44
Chapter 3.5 --- Conclusion --- p.47
Chapter II --- Mining Association Rules --- p.48
Chapter 4 --- Background --- p.49
Chapter 4.1 --- Definition --- p.49
Chapter 4.2 --- Association Algorithms --- p.51
Chapter 4.2.1 --- Apriori-gen --- p.51
Chapter 4.2.2 --- Partition --- p.53
Chapter 4.2.3 --- DIC --- p.54
Chapter 4.2.4 --- FP-tree --- p.54
Chapter 4.2.5 --- Vertical Data Mining --- p.58
Chapter 4.3 --- Taxonomies of Association Rules --- p.58
Chapter 4.3.1 --- Multi-level Association Rules --- p.58
Chapter 4.3.2 --- Multi-dimensional Association Rules --- p.59
Chapter 4.3.3 --- Quantitative Association Rules --- p.59
Chapter 4.3.4 --- Random Sampling --- p.60
Chapter 4.3.5 --- Constraint-based Association Rules --- p.60
Chapter 5 --- Mining Association Rules without Support Thresholds --- p.62
Chapter 5.1 --- Introduction --- p.63
Chapter 5.1.1 --- Itemset-Loop --- p.66
Chapter 5.2 --- New Approaches --- p.67
Chapter 5.2.1 --- "A Build-Once and Mine-Once Approach, BOMO" --- p.68
Chapter 5.2.2 --- "A Loop-back Approach, LOOPBACK" --- p.74
Chapter 5.2.3 --- "A Build-Once and Loop-Back Approach, BOLB" --- p.77
Chapter 5.2.4 --- Discussion --- p.77
Chapter 5.3 --- Generalization: Varying Thresholds Nk for k-itemsets --- p.78
Chapter 5.4 --- Performance Evaluation --- p.78
Chapter 5.4.1 --- Generalization: Varying Nk for k-itemsets --- p.84
Chapter 5.4.2 --- Non-optimal Thresholds --- p.84
Chapter 5.4.3 --- "Different Decrease Factors,f" --- p.85
Chapter 5.5 --- Conclusion --- p.87
Chapter 6 --- Mining Interesting Itemsets with Item Constraints --- p.88
Chapter 6.1 --- Introduction --- p.88
Chapter 6.2 --- Proposed Algorithms --- p.91
Chapter 6.2.1 --- Single FP-tree Approach --- p.92
Chapter 6.2.2 --- Double FP-trees Approaches --- p.93
Chapter 6.3 --- Maximum Support Thresholds --- p.102
Chapter 6.4 --- Performance Evaluation --- p.103
Chapter 6.5 --- Conclusion --- p.109
Chapter 7 --- Conclusion --- p.110
Chapter A --- Probabilistic Analysis of Hashing Schemes --- p.112
Chapter B --- Hash Functions --- p.114
Bibliography --- p.117
MAO, HUI-WEN, and 毛慧雯. "Apply Data Mining Techniques to a Telecom for VIP and Churn Customers Prediction using Decision Tree." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/55133181218047318075.
Full text輔仁大學
資訊工程學系
96
In 2006 years, as the telecom industry more and fiercer. We lost very much revenue. We analyze various viewpoints and take two conclusions: One is that we fall out of more and more original customers. Another is that the customer’s contribution decreases. These two reasons result from that the customers have no truehearted attitude toward telcom industry. The quarter of customer amount run away to other telecom providers or break off contract. CRM (Customer Relationship Management) is very important because the customers understand their request and they know how to choose different product before they make decision. CRM raise the interaction between the customers and our services. More detailed we understand the customers’ requirement, more suitable is our product that we design for specific customers. Then we can promote our product to the vast market. This thesis proposed a customer prediction mechanism. Two core concepts are integrated into our research: prediction and customer relationship. There are many relations between customers and providers. For VIP customers we need to enhance the VIP customers’ interaction and for implicit-loss customers we need to struggle to increase the confidence to our product. Our research can reach the following purposes: 1. Our mechanism can predict if the customer is VIP or implicit-lost. 2. We can know if the customer is excellent or bad quality. Customer attribute can help us to analyze the customer’s behavior. Our research uses C4.5 decision-tree solution to classify the customer rank by analyzing the customers’ attributes and finding some rules then to finding our want to get customers Keywords: Decision Tree、Prediction、VIP、Churn、Data Mining
Wang, Po-chun, and 王泊鈞. "Combining Image Processing Techniques with Decision Tree Theory to Study the Vocal Fold Diseases Identification System." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/31203969053163705830.
Full text國立臺灣科技大學
自動化及控制研究所
100
Larynx is the main breathing channel and vocal mechanism. Clinically, otolaryngologists use strobo-laryngoscopes to observe the movements of vocal fold and diagnose vocal fold disorders. As the current diagnostic method is to select images on the computer screen manually, this study attempted to design a set of automatic vocal fold diseases identification system. Using the films taken by doctors as the samples for experimental analysis, this study used image processing techniques to capture the images of the vocal fold opening to the maximum position and closing to the minimum position in order to replace the manual image selection process and enhance diagnostic efficiency. As the filming process may involve human factors that cause blurred images and non-vocal fold image, this study included texture analysis to measure the image smoothness and entropy, in order to develop a set of selection and elimination system that can effectively enhance the accuracy of the capture images. Moreover, for the images of the vocal fold opening to the maximum position, image processing was used to automatically analyze the glottis images and vibration position of the vocal fold, in order to obtain physiological parameters and plot the mucosa fluctuation diagram as the references for vocal fold health promotion. The vocal fold diseases identification system can be used to obtain the physiological parameters for normal, vocal paralysis, and vocal nodules. Decision tree method was used as a classier to categorize the vocal fold diseases. The identification accuracy was proven to be 92.6%, and it could be improved to 98.7% after combining image processing. Finally, the study measures texture feature and establishes a statistic table in the area of lesions between vocal cancer and vocal polyp. This system can serve as a reference for clinical use.
Liao, Po-Sen, and 廖柏森. "Applying DEA and data reduction techniques to building decision trees for mutual fund selection." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/89116243577463232886.
Full text崑山科技大學
資訊管理研究所
99
Mutual funds are popular in the matured financial market of Taiwan. Many investors use it as a financial instrument because mutual funds management is not complicated and liquidity preference. However, with imposed risk, selecting a good mutual fund is always an important issue. As the financial market volatility is high, investors must avoid the risk through the investment portfolio to improve the stability. This study used a three-stage of data reduction combined with data envelopment analysis (DEA) to build decision tree models to help investors gain profits. Using data preprocessing for sample classification is the first stage, and then DEA is used to evaluate mutual funds performance with a single criterion, namely, the efficiency of a decision making unit.. The third stage of data reduction is proceeded using three data reduction methods, that is, PCA, wrap and common factors. All reduction data set are used to build decision tree models and compared with that of original raw data. The study finds that in the bull market size of data set will affect the accuracy of the decision tree model. The decision tree model built with original raw data set has the highest accuracy. For the bear market wrapper select less attributes in the five equal interval discretion case. The accuracy of tree model derived from wrapper is higher than those from the other two methods, even outperforms the TAL method. It means a decision tree with high accuracy is possible with a reduced data set through the proposed data reduction techniques.
LIAO, HUI-CHEN, and 廖慧臻. "Applications of Decision Tree Techniques to Predict College Students’ Career Directions: A Study in the Department of Information Management." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/58t57r.
Full text大葉大學
資訊管理學系碩士班
105
Due to information technology driving the society, industry sectors demand for information management professionals, however, many students struggle to choose their career directions. Past studies revealed factors affecting college students' career choices such as academic achievement, student club experiences, internships, gender, still not being adopted in a holistic model. The purpose of this study was to explore the factors affecting career choices for information management students in colleges. Based on data collected from MIS department students at a university in central Taiwan, decision tree algorithms, namely CART, CHAID and C5.0, were employed to test a predictive model for students’ career choice. Results showed that C5.0 performed better than other decision trees. According to the C5.0 classification, student’s gender, study interests, academic achievement, personality, vocational interests, parental education, parental occupation, family socio-economic status, perceived the occupational expectation of parents, student club experiences, part-time works and internship experiences were predictable to information management careers. Among them, the most significant predictor was student club experiences, followed by vocational interests. For those MIS students ever joined academic or autonomy student clubs or had social, enterprising, or conventional vocational interest types preferred to enterprise information management posts. If MIS students joined to recreational or autonomy types of student clubs or had investigative, enterprising, or conventional types of vocational interests preferred to network management posts. If MIS students joined to service or autonomy types of student clubs preferred to information support and services posts. If MIS students joined to academic, recreational, or sporting types of student clubs or had conventional type of vocational interest preferred to digital content and communication posts. If MIS students joined to recreational or fellowship types of student clubs or had realistic or investigative types of vocational interests preferred to software development and programming posts. If MIS students joined to recreational or fellowship types of student clubs or had social or enterprising types of vocational interests preferred to e-commerce and marketing posts. It is suggested that MIS students should participate more student club activities, and career consultants consider students’ club experiences when assist them to choose career directions.
Lu, Wen-Chi, and 呂文吉. "Applying Decision Tree Of Data Mining Techniques for Device Repair and Maintenance in a Hospital - Northern in a regional Hospital as an Example." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/ydx629.
Full text元培醫事科技大學
資訊管理系數位創新管理碩士班
104
In the tendency of the day, integrated medical service for improving the professional and health quality is a global trend in the future. Currently, the quality of Taiwan's medical service is in the top level in the world. Following the medical hardware system keep on upgrading, the IT system in hospital is getting important. No matter connect the information integrated system or the direct/indirect hardware instruments, we all need to rely on the IT department to plan and setup the related services. This study collect the real applied repair data in a regional hospital. Analyze the repair record data from IT department and using the data mining decision tree technology to collect total 942 records of IT system abnormal information from January to December in 2015. Start to do the decision analysis based on the repair categories, and use the C4.5 decision segment to find out usually failure hardware items. And then provide the repair suggestions in the future. We hope we can decrease the failure rate and improve the medical quality based on reducing the repair frequency and time. Our final goal is: A. Analyze the failure history of instrument and find out the corresponding solve methods. B. Using the decision tree to find out the high failure rate instrument and setup a solving model. C. Create the failure solving SOP (standard operation procedure) and upload into KM (knowledge management) platform for helping the users to solve problems easily. Focus on different hardware items and create different repair strategies to systemize/SOP the repair procedures.
Juozenaite, Ineta. "Application of machine learning techniques for solving real world business problems : the case study - target marketing of insurance policies." Master's thesis, 2018. http://hdl.handle.net/10362/32410.
Full textThe concept of machine learning has been around for decades, but now it is becoming more and more popular not only in the business, but everywhere else as well. It is because of increased amount of data, cheaper data storage, more powerful and affordable computational processing. The complexity of business environment leads companies to use data-driven decision making to work more efficiently. The most common machine learning methods, like Logistic Regression, Decision Tree, Artificial Neural Network and Support Vector Machine, with their applications are reviewed in this work. Insurance industry has one of the most competitive business environment and as a result, the use of machine learning techniques is growing in this industry. In this work, above mentioned machine learning methods are used to build predictive model for target marketing campaign of caravan insurance policies to achieve greater profitability. Information Gain and Chi-squared metrics, Regression Stepwise, R package “Boruta”, Spearman correlation analysis, distribution graphs by target variable, as well as basic statistics of all variables are used for feature selection. To solve this real-world business problem, the best final chosen predictive model is Multilayer Perceptron with backpropagation learning algorithm with 1 hidden layer and 12 hidden neurons.