Academic literature on the topic 'Decision tree'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decision tree.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Decision tree"
TOFAN, Cezarina Adina. "Optimization Techniques of Decision Making - Decision Tree." Advances in Social Sciences Research Journal 1, no. 5 (September 30, 2014): 142–48. http://dx.doi.org/10.14738/assrj.15.437.
Full textBabar, Kiran Nitin. "Performance Evaluation of Decision Trees with Machine Learning Algorithm." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (May 17, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem34179.
Full textSullivan, Colin, Mo Tiwari, and Sebastian Thrun. "MAPTree: Beating “Optimal” Decision Trees with Bayesian Decision Trees." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (March 24, 2024): 9019–26. http://dx.doi.org/10.1609/aaai.v38i8.28751.
Full textGuidotti, Riccardo, Anna Monreale, Mattia Setzu, and Giulia Volpi. "Generative Model for Decision Trees." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 19 (March 24, 2024): 21116–24. http://dx.doi.org/10.1609/aaai.v38i19.30104.
Full textNaylor, Mike. "Decision Tree." Mathematics Teacher: Learning and Teaching PK-12 113, no. 7 (July 2020): 612. http://dx.doi.org/10.5951/mtlt.2020.0081.
Full textBRESLOW, LEONARD A., and DAVID W. AHA. "Simplifying decision trees: A survey." Knowledge Engineering Review 12, no. 01 (January 1997): 1–40. http://dx.doi.org/10.1017/s0269888997000015.
Full textZANTEMA, HANS, and HANS L. BODLAENDER. "SIZES OF ORDERED DECISION TREES." International Journal of Foundations of Computer Science 13, no. 03 (June 2002): 445–58. http://dx.doi.org/10.1142/s0129054102001205.
Full textOo, Aung Nway, and Thin Naing. "Decision Tree Models for Medical Diagnosis." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 1697–99. http://dx.doi.org/10.31142/ijtsrd23510.
Full textOstonov, Azimkhon, and Mikhail Moshkov. "Comparative Analysis of Deterministic and Nondeterministic Decision Trees for Decision Tables from Closed Classes." Entropy 26, no. 6 (June 17, 2024): 519. http://dx.doi.org/10.3390/e26060519.
Full textCockett, J. R. B. "Decision Expression Optimization1." Fundamenta Informaticae 10, no. 1 (January 1, 1987): 93–114. http://dx.doi.org/10.3233/fi-1987-10107.
Full textDissertations / Theses on the topic "Decision tree"
Yu, Peng. "Improving Decision Tree Learning." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAT037.
Full textDecision tree models are widely recognized for their efficiency and interpretability, particularly when working with structured data. This thesis addresses two main challenges: improving the interpretability of deep tree-based models and handling categorical variables. We introduce the Linear TreeShap algorithm, which illuminates the model’s decision processby assigning importance scores to each node and feature. In parallel, we propose a methodological framework enabling decision trees to split directly on categorical variables, enhancing both accuracy and robustness. Our approach includes the stochastic BSplitZ method, designed to efficiently handle large sets of categories, and provides a thorough investigation ofthe Mean Absolute Error (MAE) criterion. In particular, we prove that no optimal numerical encoding exists under MAE and solve a related optimization problem (the unimodal cost 2-median) central to tree splitting.Our contributions advance the theoretical foundations and real-world applicability of decision tree models,paving the way for more robust and interpretable solutions in machine learning
Shi, Haijian. "Best-first Decision Tree Learning." The University of Waikato, 2007. http://hdl.handle.net/10289/2317.
Full textVella, Alan. "Hyper-heuristic decision tree induction." Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2540.
Full textBogdan, Vukobratović. "Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=102520&source=NDLTD&language=en.
Full textУ овоj дисертациjи, представљени су нови алгоритми EFTI и EEFTI заформирање стабала одлуке и њихових ансамбала неинкременталномметодом, као и разне могућности за њихову имплементациjу.Експерименти показуjу да jе предложени EFTI алгоритам у могућностида произведе драстично мања стабла без губитка тачности у односу напостојеће top-down инкременталне алгоритме, а стабла знатно већетачности у односу на постојеће неинкременталне алгоритме. Такође супредложене хардверске архитектуре за акцелерацију ових алгоритама(EFTIP и EEFTIP) и показано је да је уз помоћ ових архитектура могућеостварити знатна убрзања.
U ovoj disertaciji, predstavljeni su novi algoritmi EFTI i EEFTI zaformiranje stabala odluke i njihovih ansambala neinkrementalnommetodom, kao i razne mogućnosti za njihovu implementaciju.Eksperimenti pokazuju da je predloženi EFTI algoritam u mogućnostida proizvede drastično manja stabla bez gubitka tačnosti u odnosu napostojeće top-down inkrementalne algoritme, a stabla znatno većetačnosti u odnosu na postojeće neinkrementalne algoritme. Takođe supredložene hardverske arhitekture za akceleraciju ovih algoritama(EFTIP i EEFTIP) i pokazano je da je uz pomoć ovih arhitektura mogućeostvariti znatna ubrzanja.
Qureshi, Taimur. "Contributions to decision tree based learning." Thesis, Lyon 2, 2010. http://www.theses.fr/2010LYO20051/document.
Full textLa recherche avancée dans les méthodes d'acquisition de données ainsi que les méthodes de stockage et les technologies d'apprentissage, s'attaquent défi d'automatiser de manière systématique les techniques d'apprentissage de données en vue d'extraire des connaissances valides et utilisables.La procédure de découverte de connaissances s'effectue selon les étapes suivants: la sélection des données, la préparation de ces données, leurs transformation, le fouille de données et finalement l'interprétation et validation des résultats trouvés. Dans ce travail de thèse, nous avons développé des techniques qui contribuent à la préparation et la transformation des données ainsi qu'a des méthodes de fouille des données pour extraire les connaissances. A travers ces travaux, on a essayé d'améliorer l'exactitude de la prédiction durant tout le processus d'apprentissage. Les travaux de cette thèse se basent sur les arbres de décision. On a alors introduit plusieurs approches de prétraitement et des techniques de transformation; comme le discrétisation, le partitionnement flou et la réduction des dimensions afin d'améliorer les performances des arbres de décision. Cependant, ces techniques peuvent être utilisées dans d'autres méthodes d'apprentissage comme la discrétisation qui peut être utilisées pour la classification bayesienne.Dans le processus de fouille de données, la phase de préparation de données occupe généralement 80 percent du temps. En autre, elle est critique pour la qualité de la modélisation. La discrétisation des attributs continus demeure ainsi un problème très important qui affecte la précision, la complexité, la variance et la compréhension des modèles d'induction. Dans cette thèse, nous avons proposes et développé des techniques qui ce basent sur le ré-échantillonnage. Nous avons également étudié d'autres alternatives comme le partitionnement flou pour une induction floue des arbres de décision. Ainsi la logique floue est incorporée dans le processus d'induction pour augmenter la précision des modèles et réduire la variance, en maintenant l'interprétabilité.Finalement, nous adoptons un schéma d'apprentissage topologique qui vise à effectuer une réduction de dimensions non-linéaire. Nous modifions une technique d'apprentissage à base de variété topologiques `manifolds' pour savoir si on peut augmenter la précision et l'interprétabilité de la classification
Ardeshir, G. "Decision tree simplification for classifier ensembles." Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/843022/.
Full textAhmad, Amir. "Data Transformation for Decision Tree Ensembles." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508528.
Full textCai, Jingfeng. "Decision Tree Pruning Using Expert Knowledge." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1158279616.
Full textWu, Shuning. "Optimal instance selection for improved decision tree." [Ames, Iowa : Iowa State University], 2007.
Find full textSinnamon, Roslyn M. "Binary decision diagrams for fault tree analysis." Thesis, Loughborough University, 1996. https://dspace.lboro.ac.uk/2134/7424.
Full textBooks on the topic "Decision tree"
Gladwin, Christina H. Ethnographic decision tree modeling. Newbury Park: Sage, 1989.
Find full textEuler, Bryan L. EDDT: Emotional Disturbance Decision Tree. Lutz, FL: Psychological Assessment Resources, 2007.
Find full textGrąbczewski, Krzysztof. Meta-Learning in Decision Tree Induction. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00960-5.
Full textAssociation, American Bankers. Analyzing financial statements: A decision tree approach. Washington, D.C: American Bankers Association, 2013.
Find full textBarros, Rodrigo C., André C. P. L. F. de Carvalho, and Alex A. Freitas. Automatic Design of Decision-Tree Induction Algorithms. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14231-9.
Full textDavid, Landgrebe, and United States. National Aeronautics and Space Administration., eds. A survey of decision tree classifier methodology. West Lafayatte, Ind: School of Electrical Engineering, Purdue University, 1990.
Find full textNational Flood Proofing Committee (U.S.), ed. Flood proofing: How to evaluate your options : decision tree. [Fort Belvoir, Va.?]: US Army Corps of Engineers, National Flood Proofing Committee, 1995.
Find full textNational Flood Proofing Committee (U.S.), ed. Flood proofing: How to evaluate your options : decision tree. [Fort Belvoir, Va.?]: US Army Corps of Engineers, National Flood Proofing Committee, 1995.
Find full textBook chapters on the topic "Decision tree"
Ayyadevara, V. Kishore. "Decision Tree." In Pro Machine Learning Algorithms, 71–103. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3564-5_4.
Full textNahler, Gerhard. "decision tree." In Dictionary of Pharmaceutical Medicine, 48. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89836-9_366.
Full textWebb, Geoffrey I., Johannes Fürnkranz, Johannes Fürnkranz, Johannes Fürnkranz, Geoffrey Hinton, Claude Sammut, Joerg Sander, et al. "Decision Tree." In Encyclopedia of Machine Learning, 263–67. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_204.
Full textBerrar, Daniel, and Werner Dubitzky. "Decision Tree." In Encyclopedia of Systems Biology, 551–55. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_611.
Full textLi, Hang. "Decision Tree." In Machine Learning Methods, 77–102. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3917-6_5.
Full textPanda, Rajendra Mohan, and B. S. Daya Sagar. "Decision Tree." In Encyclopedia of Mathematical Geosciences, 1–7. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-26050-7_81-2.
Full textPanda, Rajendra Mohan, and B. S. Daya Sagar. "Decision Tree." In Encyclopedia of Mathematical Geosciences, 1–6. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-26050-7_81-1.
Full textJo, Taeho. "Decision Tree." In Machine Learning Foundations, 141–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65900-4_7.
Full textFürnkranz, Johannes. "Decision Tree." In Encyclopedia of Machine Learning and Data Mining, 1–5. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7_66-1.
Full textFürnkranz, Johannes. "Decision Tree." In Encyclopedia of Machine Learning and Data Mining, 330–35. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_66.
Full textConference papers on the topic "Decision tree"
Agrawal, Kartikay, Ayon Borthakur, Ayush Kumar Singh, Perambuduri Srikaran, Digjoy Nandi, and Omkaradithya Pujari. "Neural Decision Tree for Bio-TinyML." In 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–5. IEEE, 2024. https://doi.org/10.1109/biocas61083.2024.10798396.
Full textLiu, Lidong, Rui Huang, Xiaoqin Li, Yongbin Luo, and Rong Zhang. "Analysis of mini program user usage market based on decision tree classification and decision tree regression algorithm." In Fourth International Conference on Advanced Algorithms and Signal Image Processing (AASIP 2024), edited by Grigorios Beligiannis and Daniel-Ioan Curiac, 25. SPIE, 2024. http://dx.doi.org/10.1117/12.3045543.
Full textVos, Daniël, and Sicco Verwer. "Optimal Decision Tree Policies for Markov Decision Processes." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/606.
Full textYawata, Koichiro, Yoshihiro Osakabe, Takuya Okuyama, and Akinori Asahara. "QUBO Decision Tree: Annealing Machine Extends Decision Tree Splitting." In 2022 IEEE International Conference on Knowledge Graph (ICKG). IEEE, 2022. http://dx.doi.org/10.1109/ickg55886.2022.00052.
Full textDesai, Ankit, and Sanjay Chaudhary. "Distributed Decision Tree." In ACM COMPUTE '16: Ninth Annual ACM India Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2998476.2998478.
Full textNowozin, Sebastian, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, and Pushmeet Kohli. "Decision tree fields." In 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, 2011. http://dx.doi.org/10.1109/iccv.2011.6126429.
Full textGavankar, Sachin S., and Sudhirkumar D. Sawarkar. "Eager decision tree." In 2017 2nd International Conference for Convergence in Technology (I2CT). IEEE, 2017. http://dx.doi.org/10.1109/i2ct.2017.8226246.
Full textMeng, Qing-wu, Qiang He, Ning Li, Xiang-ran Du, and Li-na Su. "Crisp Decision Tree Induction Based on Fuzzy Decision Tree Algorithm." In 2009 First International Conference on Information Science and Engineering. IEEE, 2009. http://dx.doi.org/10.1109/icise.2009.440.
Full textHuang, Sieh-Chuen, Hsuan-Lei Shao, and Robert B. Leflar. "Applying decision tree analysis to family court decisions." In ICAIL '21: Eighteenth International Conference for Artificial Intelligence and Law. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3462757.3466076.
Full textCOUVREUR, Jean-Michel, and Duy-Tung NGUYEN. "Tree Data Decision Diagrams." In Second International Workshop on Verification and Evaluation of Computer and Communication Systems (VECoS 2008). BCS Learning & Development, 2008. http://dx.doi.org/10.14236/ewic/vecos2008.3.
Full textReports on the topic "Decision tree"
Hamilton, Jill, and Tuan Nguyen. Asbestos Inspection/Reinspection Decision Tree. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370454.
Full textNarlikar, Girija J. A Parallel, Multithreaded Decision Tree Builder. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada363531.
Full textQuiller, Ryan. Decision Tree Technique for Particle Identification. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815649.
Full textMughal, Mohamed. Biological Weapons Response Template and Decision Tree. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada385897.
Full textDakin, Gordon, and Sankar Virdhagriswaran. Misleading Information Detection Through Probabilistic Decision Tree Classifiers. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada406823.
Full textKwon, Theresa Hyunjin, Erin Cho, and Youn-Kyung Kim. Identifying Sustainable Style Consumers with Decision Tree Predictive Model. Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1366.
Full textEccleston, C. H. The decision - identification tree: A new EIS scoping tool. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/16876.
Full textMikulski, Dariusz G. Rough Set Based Splitting Criterion for Binary Decision Tree Classifiers. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada489077.
Full textSong, So Young, Erin Cho, Youn-Kyung Kim, and Theresa Hyunjin Kwon. Clothing Communication via Social Media: A Decision Tree Predictive Model. Ames: Iowa State University, Digital Repository, November 2015. http://dx.doi.org/10.31274/itaa_proceedings-180814-102.
Full textZaman, Md Mostafa, Theresa Hyunjin Kwon, Katrina Laemmerhirt, and Youn-Kyung Kim. Profiling Second-hand Clothing Shoppers with Decision Tree Predictive Model. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-407.
Full text