Academic literature on the topic 'Decentralized Navigation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decentralized Navigation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Decentralized Navigation"

1

Zhang, Boyang, and Henri P. Gavin. "Decentralized Control of Multiagent Navigation Systems." IEEE/CAA Journal of Automatica Sinica 9, no. 5 (May 2022): 922–25. http://dx.doi.org/10.1109/jas.2022.105569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Boyang, and Henri P. Gavin. "Decentralized Control of Multiagent Navigation Systems." IEEE/CAA Journal of Automatica Sinica 9, no. 5 (May 2022): 922–25. http://dx.doi.org/10.1109/jas.2022.105569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Guohua, Juan Guan, Haiying Liu, and Chenlin Wang. "Multirobot Collaborative Navigation Algorithms Based on Odometer/Vision Information Fusion." Mathematical Problems in Engineering 2020 (August 27, 2020): 1–16. http://dx.doi.org/10.1155/2020/5819409.

Full text
Abstract:
Collaborative navigation is the key technology for multimobile robot system. In order to improve the performance of collaborative navigation system, the collaborative navigation algorithms based on odometer/vision multisource information fusion are presented in this paper. Firstly, the multisource information fusion collaborative navigation system model is established, including mobile robot model, odometry measurement model, lidar relative measurement model, UWB relative measurement model, and the SLAM model based on lidar measurement. Secondly, the frameworks of centralized and decentralized collaborative navigation based on odometer/vision fusion are given, and the SLAM algorithms based on vision are presented. Then, the centralized and decentralized odometer/vision collaborative navigation algorithms are derived, including the time update, single node measurement update, relative measurement update between nodes, and covariance cross filtering algorithm. Finally, different simulation experiments are designed to verify the effectiveness of the algorithms. Two kinds of multirobot collaborative navigation experimental scenes, which are relative measurement aided odometer and odometer/SLAM fusion, are designed, respectively. The advantages and disadvantages of centralized versus decentralized collaborative navigation algorithms in different experimental scenes are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
4

Kostaki, Maria, Argiro Vatakis, and Stavroula Samartzi. "Assisted spatial navigation: new directions." Homo Virtualis 2, no. 1 (March 27, 2019): 21. http://dx.doi.org/10.12681/homvir.20190.

Full text
Abstract:
Blockchain technology brings new possibilities in assisted spatial navigation. Decentralized map building enables collaboration between users around the world, while providing researchers with a common reference map for extending the capabilities of navigational systems towards more intuitive and accurate landmark navigation assistance. Research on landmark navigation has been mainly focused on the visual characteristics of landmarks. Human behavior, however, has systematically been shown to be enhanced in the presence of multisensory unified events. We propose, therefore, the enhancement of spatial assisted navigation by utilizing landmarks that are multisensory and semantically congruent. Further, our research will provide insights in terms of the auditory parameters that could be combined with a given visual landmark, so as to facilitate landmark retrieval algorithms and user satisfaction during assisted spatial navigation.
APA, Harvard, Vancouver, ISO, and other styles
5

Qin, Tong, Malcolm Macdonald, and Dong Qiao. "Fully Decentralized Cooperative Navigation for Spacecraft Constellations." IEEE Transactions on Aerospace and Electronic Systems 57, no. 4 (August 2021): 2383–94. http://dx.doi.org/10.1109/taes.2021.3060734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mavrogiannis, Christoforos, and Ross A. Knepper. "Hamiltonian coordination primitives for decentralized multiagent navigation." International Journal of Robotics Research 40, no. 10-11 (August 13, 2021): 1234–54. http://dx.doi.org/10.1177/02783649211037731.

Full text
Abstract:
We focus on decentralized navigation among multiple non-communicating agents in continuous domains without explicit traffic rules, such as sidewalks, hallways, or squares. Following collision-free motion in such domains requires effective mechanisms of multiagent behavior prediction. Although this prediction problem can be shown to be NP-hard, humans are often capable of solving it efficiently by leveraging sophisticated mechanisms of implicit coordination. Inspired by the human paradigm, we propose a novel topological formalism that explicitly models multiagent coordination. Our formalism features both geometric and algebraic descriptions enabling the use of standard gradient-based optimization techniques for trajectory generation but also symbolic inference over coordination strategies. In this article, we contribute (a) HCP (Hamiltonian Coordination Primitives), a novel multiagent trajectory-generation pipeline that accommodates spatiotemporal constraints formulated as symbolic topological specifications corresponding to a desired coordination strategy; (b) HCPnav, an online planning framework for decentralized collision avoidance that generates motion by following multiagent trajectory primitives corresponding to high-likelihood, low-cost coordination strategies. Through a series of challenging trajectory-generation experiments, we show that HCP outperforms a trajectory-optimization baseline in generating trajectories of desired topological specifications in terms of success rate and computational efficiency. Finally, through a variety of navigation experiments, we illustrate the efficacy of HCPnav in handling challenging multiagent navigation scenarios under homogeneous or heterogeneous agents across a series of environments of different geometry.
APA, Harvard, Vancouver, ISO, and other styles
7

Hoinville, Thierry, and Rüdiger Wehner. "Optimal multiguidance integration in insect navigation." Proceedings of the National Academy of Sciences 115, no. 11 (February 26, 2018): 2824–29. http://dx.doi.org/10.1073/pnas.1721668115.

Full text
Abstract:
In the last decades, desert ants have become model organisms for the study of insect navigation. In finding their way, they use two major navigational routines: path integration using a celestial compass and landmark guidance based on sets of panoramic views of the terrestrial environment. It has been claimed that this information would enable the insect to acquire and use a centralized cognitive map of its foraging terrain. Here, we present a decentralized architecture, in which the concurrently operating path integration and landmark guidance routines contribute optimally to the directions to be steered, with “optimal” meaning maximizing the certainty (reliability) of the combined information. At any one time during its journey, the animal computes a path integration (global) vector and landmark guidance (local) vector, in which the length of each vector is proportional to the certainty of the individual estimates. Hence, these vectors represent the limited knowledge that the navigator has at any one place about the direction of the goal. The sum of the global and local vectors indicates the navigator’s optimal directional estimate. Wherever applied, this decentralized model architecture is sufficient to simulate the results of quite a number of diverse cue-conflict experiments, which have recently been performed in various behavioral contexts by different authors in both desert ants and honeybees. They include even those experiments that have deliberately been designed by former authors to strengthen the evidence for a metric cognitive map in bees.
APA, Harvard, Vancouver, ISO, and other styles
8

Seguin, Caio, Martijn P. van den Heuvel, and Andrew Zalesky. "Navigation of brain networks." Proceedings of the National Academy of Sciences 115, no. 24 (May 30, 2018): 6297–302. http://dx.doi.org/10.1073/pnas.1801351115.

Full text
Abstract:
Understanding the mechanisms of neural communication in large-scale brain networks remains a major goal in neuroscience. We investigated whether navigation is a parsimonious routing model for connectomics. Navigating a network involves progressing to the next node that is closest in distance to a desired destination. We developed a measure to quantify navigation efficiency and found that connectomes in a range of mammalian species (human, mouse, and macaque) can be successfully navigated with near-optimal efficiency (>80% of optimal efficiency for typical connection densities). Rewiring network topology or repositioning network nodes resulted in 45–60% reductions in navigation performance. We found that the human connectome cannot be progressively randomized or clusterized to result in topologies with substantially improved navigation performance (>5%), suggesting a topological balance between regularity and randomness that is conducive to efficient navigation. Navigation was also found to (i) promote a resource-efficient distribution of the information traffic load, potentially relieving communication bottlenecks, and (ii) explain significant variation in functional connectivity. Unlike commonly studied communication strategies in connectomics, navigation does not mandate assumptions about global knowledge of network topology. We conclude that the topology and geometry of brain networks are conducive to efficient decentralized communication.
APA, Harvard, Vancouver, ISO, and other styles
9

Jiménez, Andrés C., Vicente García-Díaz, and Sandro Bolaños. "Decentralized navigation model for multiagent cooperative robotic systems." Journal of Ambient Intelligence and Smart Environments 12, no. 6 (November 26, 2020): 547–48. http://dx.doi.org/10.3233/ais-200583.

Full text
Abstract:
On November 20, 2018 at 11 am, Andrés Camilo Jiménez Alvarez defended his Ph.D. thesis entitled Decentralized navigation model for multiagent cooperative robotic systems at the Distrital University Francisco José de Caldas. Andrés Camilo Jiménez Alvarez presented his dissertation in a public open event held in the “Wise Caldas Auditory”, and was able to expose and defend all his research, it was approved by the committee. The thesis was supervised by his advisors, Vicente García-Díaz and Sandro Javier Bolaños, together with the thesis committee, Rubén Gonzáles Crespo, Oscar Fernando Avilés and Roberto Ferro Escobar. All the cited people were present at the event.
APA, Harvard, Vancouver, ISO, and other styles
10

GAO, Wenyun, Xi CHEN, Dexiu HU, and Haisheng XU. "Cooperative/Parallel Kalman Filtering for Decentralized Network Navigation." IEICE Transactions on Communications E99.B, no. 9 (2016): 2087–98. http://dx.doi.org/10.1587/transcom.2016ebp3006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Decentralized Navigation"

1

Khan, Imran. "Decentralized Navigation of Multiple Quad-rotors using Model Predictive Control." Thesis, KTH, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212560.

Full text
Abstract:
In this thesis, we develop a model predictive control (MPC) scheme for the navigationof multiple quadrotors in an environment with obstacles. The overall controlscheme is decentralized, since each quadrotor calculates its own signal based on localinformation. The MPC constraints take care of collision with the static obstacles,inter-agent collisions as well as input saturations. Firstly, we formulate and solvethe problem using a nonlinear MPC framework, where the agents and the obstaclesare modelled as 3D spheres. Secondly, to deal with complexity issues, we linearizethe model and constraints by employing polyhedral sets, and we solve the problemwith linear MPC. Thirdly, we use a mixed logical dynamical (MLD) framework tosolve our problem, which is then incorporated into a hybrid MPC problem. The performanceof the proposed solutions is demonstrated through computer simulationsand real-time experiments.
I denna uppsats utvecklar vi en modellprediktiv reglerstrategi (MPC) för navigeringav multipla quadrotor-drönare i en miljö med hinder. Den övergripande reglerstrateginär decentraliserad då varje quadrotor beräknar sin styrsignal baserad pålokal information. Bivillkoren i MPC-formuleringen tar hänsyn till kollisioner medstatiska objekt, kollisioner mellan agenter samt villkor för insignal. Reglerproblemetformuleras och löses genom ett olinjärt MPC-ramverk där agenterna samt hindrenär modellerade som 3D-sfärer. Vidare, för att hantera formuleringens komplexitet,linjäriseras modellen och bivillkoren uttrycks via polyhedra mängder vilket mojliggörför en linjär MPC. Slutligen används ett ramverk för system av typen mixed logicaldynamical (MLD) systems för att formulera regleringen som ett hybrid-MPCproblem.De föreslagna lösningarna är utvärderade genom datorsimuleringar ochrealtidsexperiment.
APA, Harvard, Vancouver, ISO, and other styles
2

Spaenlehauer, Ariane. "Decentralized monocular-inertial multi-UAV SLAM system." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2494.

Full text
Abstract:
Dans cette thèse, nous proposons un algorithme pour la localisation d’une flotte de UAVs autonomes dans le cadre de l’architecture des Systèmes-de-Systèmes. En particulier, notre objectif est que les UAVs autonomes puissent se localiser et générer une carte d’un environnement inconnu en utilisant le moins possible de capteurs embarqués sur chaque UAV : une caméra monoculaire dirigée vers l’avant et une centrale inertielle. Cette problématique est cruciale pour des applications telles que l’exploration de zones inconnues ou de missions de sauvetage et de reconnaissance. Les choix de conception algorithmique sont motivés par une étude de l’état de l’art dans les domaines des systèmes multi-robots réalisant de la localisation, de la cartographie, de la navigation et/ou de l’exploration, ainsi que des approches de SLAM visuel, monoculaire, temps réel et monoculaire-inertiel. Le traitement des mesures en vision monoculaire, par nature, n’est pas capable d’estimer des distances métriques à cause de la perte d’information sur la profondeur lors de la projection de l’environnement sur le plan image. Bien que cela ne représente pas un problème majeur pour la plupart des systèmes simple-robot, l’obtention de distances métriques est nécessaire pour permettre la collaboration inter-robots. De plus, lorsque les problématiques de contrôle, de navigation et d’exploration sont ajoutées au problème initial, les distances métriques deviennent d’autant plus importantes. Dans cette thèse, nous proposons une nouvelle approche pour estimer des distances métriques pour un système mobile embarquant seulement une caméra monoculaire et une centrale inertielle via une fusion lâche des mesures.Ce travail de recherche explore également la conception d’un système de localisation pour une flotte de UAVs soumise à des hypothèses minimales : pas de connaissance a priori sur les poses initiales et terminales, pas de connaissance sur l’environnement et pas de mesures absolues ou extérieures aux robots. De plus, notre système est capable de gérer des trajectoires agressives, des changements de vitesse et de cap abrupts ainsi que des mesures bruitées telles que des images floues. Dans les systèmes multi-robots, la gestion des repères est critique et nécessite une attention particulière. La plupart des travaux simplifie ce problème dans un premier temps, en représentant l’ensemble des repères par rapport à un repère « monde » arbitraire. Toutefois, ce genre d’hypothèse nécessite soit des mesures de capteurs que nous n’utilisons pas dans notre système car externes aux robots, soit une connaissance a priori sur l’environnement ou les conditions expérimentales que nous n’avons pas. Dans notre système, chaque robot évolue dans son propre repère, l’ensemble des relations entre les repères nécessaires à la collaboration inter-robots est estimé par notre algorithme. De ce fait, nous pouvons nous abstraire de système de positionnement absolu tel que le GPS. Dans ce but, nous proposons une généralisation du concept de fermeture de boucle bien connu dans le SLAM traditionnel (simple-robot) aux systèmes de SLAM multi-robots. Dans le cadre de cette généralisation, nous mettons en exergue les nouveaux phénomènes induits et leurs conséquences. Cela est démontré expérimentalement, et mis en correspondance avec un système simple-robot. De plus, nous présentons les résultats expérimentaux obtenus dans la recherche de l’amélioration de la localisation en intégrant les nouvelles contraintes de fermeture de boucle
In this thesis, we provide a scheme for localization of a fleet of autonomous UAVs (unmanned autonomous vehicles) within a Technological System-of-Systems architecture. Specifically, we aim for a fleet of autonomous UAVs to localize themselves and to obtain a map of an unknown environment using a minimal set of sensors on each UAV: A front monocular camera and an Inertial Measurement Unit. This is a critically important problem for applications such as exploration of unknown areas, or search and rescue missions. The choices for designing such a system are supported by an extensive study of the scientific literature on two broad fronts: First, about the multi-robot systems performing localization, mapping, navigation and exploration, and second, about the monocular, real-time and inertial-monocular SLAM (Simultaneous Localization and Mapping) algorithms. Processing monocular camera frames suffers the drawback of lacking the capability of providing metric estimates as the depth dimension is lost when the frames are photographed by the camera. Although, it is usually not a critical problem for single-robot systems, having accurate metric estimates is required for multi-robot systems. This requirement becomes critical if the system is designed for control, navigation and exploration purposes. In this thesis, we provide a novel approach to make the outputs of monocular SLAM algorithms metric through a loosely-coupled fusion scheme by using the inertial measurements. This work also explores a design for a fleet of UAVs to localize each robot with minimal requirements: No a priori knowledge about the environment, information about neither the position nor the moment in time the UAV takes off and land is required. Moreover, the system presented in the thesis handles aggressive UAV trajectories having dramatic changes in speed and altitude. In multi-robot systems, the question of the coordinate frames require more attention than in single robot systems. In many studies, the coordinate frame problem is simplified to the representation of the fleet and the expression of the measurements in a global coordinate frame. However, this kind of hypothesis implies either the use of additional sensors to be able to measure the transformations to the global coordinate frame or additional experimental constraints, for example about the starting position of the robots. Our system does not require absolute measurements like GNSS positioning or knowledge about the coordinate frame of each UAV. As each UAV of the fleet estimates its location and produces a map in its own coordinate frame, relations between those coordinate frames are found by our scheme. For that purpose, we extend the well known concept of loop-closures in single-robot SLAM approaches, to multi-robot systems. In this research work, we also provide an overview of the new effects due to the extended definition of loop-closures we provide in comparison with the loop-closures scheme that can be found in single robot SLAM algorithms. In addition to the coordinate frame problem, we provide experimental results about the possibilities for improving the location estimate of a fleet by considering the places visited by several UAVs. By searching for similar places using each UAV imagery, using the 2-D information encapsulated in the images of the same sceneryfrom different view points, and the 3-D map locally estimated by each UAV, we add new constraints to the SLAM problem that is the main scheme that can be used to improve the UAV location estimates. We included experiments to assess the accuracy of the inter-UAV location estimation. The system was tested using datasets with measurements recorded on board UAVs in similar conditions as the ones we target
APA, Harvard, Vancouver, ISO, and other styles
3

Yazbeck, Jano. "Accrochage immatériel sûr et précis de véhicules automatiques." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0070/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons au problème du suivi en convoi, désigné en anglais par le terme platooning, où un train de robots essaie de suivre un chemin décrit par le leader. Ce chemin, n'étant pas prédéfini mais généré au cours du suivi, est inconnu de tous les robots suiveurs. Dans ce travail, nous choisissons une approche décentralisée locale où chaque robot du convoi observe son voisinage et calcule son contrôle de façon à avoir un suivi stable (absence d'oscillations) et précis (erreur latérale aussi faible que possible). Cette thèse étudie plus précisément le comportement latéral d'un robot du convoi et propose deux contrôleurs s'appuyant sur la mémorisation du chemin suivi par son prédécesseur. Un premier algorithme de contrôle Memo-LAT (Memorization and Look-Ahead Target) calcule une commande latérale continue en utilisant une loi de contrôle analytique. La stabilité de Memo-LAT n'étant pas toujours garantie, nous proposons l'algorithme de contrôle NOC (Non-Oscillatory Convergence) qui prend en compte la courbure du chemin à suivre dans le calcul du comportement latéral. NOC combine une approche géométrique avec une recherche heuristique pour calculer une commande discrète permettant au robot de suivre avec précision le chemin de son prédécesseur sans oscillation
This thesis deals with the platooning problem which aims to concieve a control algorithm allowing a convoy of vehicles to follow their leader's path. This path, which is initially undefined and unknown to all the following robots, is generated as the leader moves. In this thesis, we choose a local decentralized approach in which each robot of the platoon uses its local perceptions to compute its own commands aiming to achieve a stable (no oscillations) and precise (with a lateral error as small as possible) platooning. More precisely, this thesis studies the lateral behavior of a platoon's robot and introduces two controllers based on the memorization of the robot's predecessor's path. The first algorithm, Memo-LAT (Memorization and Look-Ahead Target), computes a continuous lateral command using an analytic control law. As the stability of Memo-LAT is not always guaranteed, we present NOC (Non-Oscillatory Convergence), a control algorithm which takes into account the path's curvature in the robot's lateral behavior's computation. NOC combines a geometric approach to a heuristic search method to compute a discrete command allowing the robot to follow precisely and without oscillations its predecessor's path
APA, Harvard, Vancouver, ISO, and other styles
4

Demesure, Guillaume. "Coordination et planification de systèmes multi-agents dans un environnement manufacturier." Thesis, Valenciennes, 2016. http://www.theses.fr/2016VALE0029/document.

Full text
Abstract:
Cette thèse porte sur la navigation d'agents dans un environnement manufacturier. Le cadre général du travail relève de la navigation d'AGVs (véhicules autoguidés), transportant librement et intelligemment leur produit. L'objectif est de proposer des outils permettant la navigation autonome et coopérative d’une flotte d’AGVs dans des systèmes de production manufacturiers où les contraintes temporelles sont importantes. Après la présentation d'un état de l'art sur chaque domaine (systèmes manufacturiers et navigation d'agents), les impacts de la mutualisation entre ceux-ci sont présentés. Ensuite, deux problématiques, liées à la navigation d'agents mobiles dans des environnements manufacturiers, sont étudiées. La première problématique est centrée sur la planification de trajectoire décentralisée où une fonction d'ordonnancement est combinée au planificateur pour chaque agent. Cette fonction permet de choisir une ressource lors de la navigation afin d'achever l'opération du produit transporté le plus tôt possible. La première solution consiste en une architecture hétérarchique où les AGVs doivent planifier (ou mettre à jour) leur trajectoire, ordonnancer leur produit pour l'opération en cours et résoudre leurs propres conflits avec les agents à portée de communication. Pour la seconde approche, une architecture hybride à l'aide d'un superviseur, permettant d'assister les agents durant leur navigation, est proposée. L'algorithme de planification de trajectoire se fait en deux étapes. La première étape utilise des informations globales fournies par le superviseur pour anticiper les collisions. La seconde étape, plus locale, utilise les données par rapport aux AGVs à portée de communication afin d'assurer l'évitement de collisions. Afin de réduire les temps de calcul des trajectoires, une optimisation par essaims particulaires est introduite. La seconde problématique se focalise sur la commande coopérative permettant un rendez-vous d'agents non holonomes à une configuration spécifique. Ce rendez-vous doit être atteint en un temps donné par un cahier des charges, fourni par le haut-niveau de contrôle. Pour résoudre ce problème de rendez-vous, nous proposons une loi de commande à temps fixe (i.e. indépendant des conditions initiales) par commutation permettant de faire converger l’état des AGVs vers une resource. Des résultats numériques et expérimentaux sont fournis afin de montrer la faisabilité des solutions proposées
This thesis is focused on agent navigation in a manufacturing environment. The proposed framework deals with the navigation of AGVs (Automated Guided Vehicles), which freely and smartly transport their product. The objective is to propose some tools allowing the autonomous and cooperative navigation of AGV fleets in manufacturing systems for which temporal constraints are important. After presenting the state of the art of each field (manufacturing systems and agent navigation), the impacts of the cross-fertilization between these two fields are presented. Then, two issues, related to the navigation of mobile agents in manufacturing systems, are studied. The first issue focuses on decentralized motion planning where a scheduling function is combined with the planner for each agent. This function allows choosing a resource during the navigation to complete the ongoing operation of the transported product at the soonest date. The first proposed approach consists in a heterarchical architecture where the AGVs have to plan (or update) their trajectory, schedule their product and solve their own conflict with communicating agents. For the second approach, hybrid architecture with a supervisor, which assists agents during the navigation, is proposed. The motion planning scheme is divided into two steps. The first step uses global information provided by the supervisor to anticipate the future collisions. The second step is local and uses information from communicating agents to ensure the collision avoidance. In order to reduce the computational times, a particle swarm optimization is introduced. The second issue is focused on the cooperative control, allowing a rendezvous of nonholomic agents at a specific configuration. This rendezvous must be achieved in a prescribed time, provided by the higher level of control. To solve this rendezvous, a fixed time (i.e. independent of initial conditions) switching control law is proposed, allowing the convergence of agent states towards a resource configuration. Some numerical and experimental results are provided to show the feasibility of the proposed methods
APA, Harvard, Vancouver, ISO, and other styles
5

Sunny, Ajin. "SINGLE-DEGREE-OF-FREEDOM EXPERIMENTS DEMONSTRATING ELECTROMAGNETIC FORMATION FLYING FOR SMALL SATELLITE SWARMS USING PIECEWISE-SINUSOIDAL CONTROLS." UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/146.

Full text
Abstract:
This thesis presents a decentralized electromagnetic formation flying (EMFF) control method using frequency-multiplexed sinusoidal control signals. We demonstrate the EMFF control approach in open-loop and closed-loop control experiments using a single-degree-of-freedom testbed with an electromagnetic actuation system (EAS). The EAS sense the relative position and velocity between satellites and implement a frequency-multiplexed sinusoidal control signal. We use a laser-rangefinder device to capture the relative position and an ARM-based microcontroller to implement the closed-loop control algorithm. We custom-design and build the EAS that implements the formation control in one dimension. The experimental results in this thesis demonstrate the feasibility of the decentralized formation control algorithm between two satellites.
APA, Harvard, Vancouver, ISO, and other styles
6

Tsao, Kuo-Yang, and 曹國暘. "The Decentralized Extended Kalman Filtering for Multisensor Navigation." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/69159191870198946212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Low, May Peng Emily Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "Vision-based navigation and decentralized control of mobile robots." 2007. http://handle.unsw.edu.au/1959.4/40885.

Full text
Abstract:
The first part of this thesis documents experimental investigation into the use of vision for wheeled robot navigation problems. Specifically, using a video camera as a source of feedback to control a wheeled robot toward a static and a moving object in an environment in real-time. The wheeled robot control algorithms are dependent on information from a vision system and an estimator. The vision system design consists of a pan video camera and a visual gaze algorithm which attempts to search and continuously maintain an object of interest within limited camera field of view. Several vision-based algorithms are presented to recognize simple objects of interest in an environment and to calculate relevant parameters required by the control algorithms. An estimator is designed for state estimation of the motion of an object using visual measurements. The estimator uses noisy measurements of relative bearing to an object and object's size on an image plane formed by perspective projection. These measurements can be obtained from the vision system. A set of algorithms have been designed and experimentally investigated using a pan video camera and two wheeled robots in real-time in a laboratory setting. Experimental results and discussion are presented on the performance of the vision-based control algorithms where a wheeled robot successfully approached an object in various motions. The second part of this thesis investigates the coordination problem of flocking in multi-robot system using concepts from graph theory. New control laws are presented for flocking motion of groups of mobile robots based on several leaders. Simulation results are provided to illustrate the control laws and its applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Chi-Fan, and 楊棋帆. "Design of the Tracking Loop Using the Decentralized Pre-filters for the Ultra-Tightly Coupled GPS/INS Navigation System." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/08509085883390259788.

Full text
Abstract:
碩士
國立臺灣海洋大學
通訊與導航工程學系
100
Tracking dynamics on the GPS signal is still a big challenge to the receiver designer as the operating conditions are becoming more volatile. Optimizing the stand-alone system for high dynamics generally degrades the accuracy of measurement. Therefore, the GPS is aided with inertial navigation system (INS) to address this issue. Several researchers proposed an Unscented Kalman Filter design approach for the ultra-tight GPS/INS integration. Based on this structure, INS error models are discussed. Through analyzing the relationship between GPS (I&;Q) measurement and INS (position and velocity) states I/Q estimate method is proposed. Traditionally, the signals from each satellite are processed independently. The ultra-tight GPS/INS integration system uses a bank of pre-filters to estimate code delay error and Doppler frequency error for each satellite. This vector-based method can perform better than traditional methods. However, the changes of Doppler frequency are violent in the high dynamic situation. For improving the performance of pre-filter, this paper employed the Fuzzy Logic Adaptive UKF. Based on the proposed structure, the parameters of UKF will be tuned more smartly. Accordingly, the effect of high dynamic can be reduced.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Decentralized Navigation"

1

Hutton, Joseph J. An investigation of decentralized Kalman filtering as applied to integrated navigation. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hutton, Joseph J. An investigation of decentralized Kalman filtering as applied to integrated navigation. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Solstin, Bryan. Srv Itinerary Optimization and Av Navigation: Combining SRVs with Decentralized Bitcoin Protocol. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Decentralized Navigation"

1

Mavrogiannis, Christoforos I., and Ross A. Knepper. "Decentralized Multi-Agent Navigation Planning with Braids." In Springer Proceedings in Advanced Robotics, 880–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43089-4_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aminev, D. A., R. F. Azizov, and D. Yu Kudryavtsev. "Relative Navigation for Node of Wireless Decentralized Network." In Communications in Computer and Information Science, 157–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30843-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cruse, Holk, and Rüdiger Wehner. "An Insect-Inspired, Decentralized Memory for Robot Navigation." In Intelligent Robotics and Applications, 65–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25489-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Inácio, Fabrício R., Douglas G. Macharet, and Luiz Chaimowicz. "United We Move: Decentralized Segregated Robotic Swarm Navigation." In Distributed Autonomous Robotic Systems, 313–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73008-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Indra, Saurabh, and Louise Travé-Massuyès. "Spacecraft Fault Detection and Isolation System Design Using Decentralized Analytical Redundancy." In Advances in Aerospace Guidance, Navigation and Control, 247–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38253-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sunada, Yasushi, Takahide Sato, Takeshi Kano, Akio Ishiguro, and Ryo Kobayashi. "Intuitive Navigation of Snake-Like Robot with Autonomous Decentralized Control." In Biomimetic and Biohybrid Systems, 398–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31525-1_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roussos, Giannis, and Kostas J. Kyriakopoulos. "Decentralized and Prioritized Navigation and Collision Avoidance for Multiple Mobile Robots." In Springer Tracts in Advanced Robotics, 189–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32723-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tanaka, Shota, Takahiro Endo, and Fumitoshi Matsuno. "Decentralized Navigation in 3D Space of a Robotic Swarm with Heterogeneous Abilities." In Distributed Autonomous Robotic Systems, 389–400. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92790-5_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peery, Christopher, Francisco Matias Cuenca-Acuna, Richard P. Martin, and Thu D. Nguyen. "Wayfinder: Navigating and Sharing Information in a Decentralized World." In Databases, Information Systems, and Peer-to-Peer Computing, 200–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31838-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Distributed Navigation for Swarming with a Given Geometric Pattern." In Decentralized Coverage Control Problems for Mobile Robotic Sensor and Actuator Networks, 157–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119058052.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Decentralized Navigation"

1

Nicosia, Joseph. "Decentralized Cooperative Navigation for Spacecraft." In 2007 IEEE Aerospace Conference. IEEE, 2007. http://dx.doi.org/10.1109/aero.2007.352659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schierman, John, and David Schmidt. "Limitations of decentralized control laws." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-3198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

WAGDI, M., and A. KADER. "A stochastic decentralized flight control system." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

OZGUNER, U., F. KHORRAMI, and A. IFTAR. "Two controller design approaches for decentralized systems." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-4083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Defoort, Michael, Thierry Floquet, Annemarie Kokosy, and Wilfrid Perruquetti. "Decentralized robust control for multi-vehicle navigation." In European Control Conference 2007 (ECC). IEEE, 2007. http://dx.doi.org/10.23919/ecc.2007.7068958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Craparo, Emily, Jonathan How, Daniela Pucci de Farias, and Nicholas Roy. "Decentralized Estimation Under Communication Constraints." In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-6751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

CAGLE, A., and U. OZGUNER. "Optimal decentralized feedback control for a truss structure." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-3570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wolfe, J., D. Chichka, and J. Speyer. "Decentralized controllers for unmanned aerial vehicle formation flight." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-3833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adams, Milton, Stephan Kolitz, and Amedeo Adani. "Evolutionary concepts for decentralized air traffic flow management." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-3857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robertson, Clay J., Andrew J. Sinclair, and Emily Doucette. "Decentralized LQT in a Limited Information Environment." In AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1252.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Decentralized Navigation"

1

Stilwell, Daniel J., and Bradley E. Bishop. Decentralized Guidance, Navigation, and Control for Platoons of Cooperating UUVs. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada625233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bishop, Bradley E. Decentralized Guidance, Navigation, and Control for Platoons of Cooperating UUVs. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada627048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography