Academic literature on the topic 'Decellularized matrix'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decellularized matrix.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Decellularized matrix"
Hashemi, Javad, Ghasem Barati, and Bahram Bibak. "Decellularized Matrix Bioscaffolds." Pancreas 50, no. 7 (August 2021): 942–51. http://dx.doi.org/10.1097/mpa.0000000000001868.
Full textHashemi, Javad, Ghasem Barati, and Bahram Bibak. "Decellularized Matrix Bioscaffolds." Pancreas 50, no. 7 (August 2021): 942–51. http://dx.doi.org/10.1097/mpa.0000000000001868.
Full textNakamura, Naoko, Ai Ito, Tsuyoshi Kimura, and Akio Kishida. "Extracellular Matrix Induces Periodontal Ligament Reconstruction In Vivo." International Journal of Molecular Sciences 20, no. 13 (July 3, 2019): 3277. http://dx.doi.org/10.3390/ijms20133277.
Full textMeyer, Tanja, Serghei Cebotari, Gudrun Brandes, Dagmar Hartung, Frank Wacker, Monika Theis, Tim Kaufeld, et al. "Decellularized Porcine Pericardium Enhances Autologous Vascularized Matrix as a Prosthesis for Left Ventricular Full-Wall Myocardial Reconstruction." Prosthesis 5, no. 1 (February 1, 2023): 113–29. http://dx.doi.org/10.3390/prosthesis5010010.
Full textBelviso, Immacolata, Anna Maria Sacco, Domenico Cozzolino, Daria Nurzynska, Franca Di Meglio, Clotilde Castaldo, and Veronica Romano. "Cardiac-derived extracellular matrix: A decellularization protocol for heart regeneration." PLOS ONE 17, no. 10 (October 19, 2022): e0276224. http://dx.doi.org/10.1371/journal.pone.0276224.
Full textWu, Jinglei, Jiazhu Xu, Yihui Huang, Liping Tang, and Yi Hong. "Regional-specific meniscal extracellular matrix hydrogels and their effects on cell–matrix interactions of fibrochondrocytes." Biomedical Materials 17, no. 1 (December 23, 2021): 014105. http://dx.doi.org/10.1088/1748-605x/ac4178.
Full textLing, You, Weikang Xu, Lifeng Yang, Changyan Liang, and Bin Xu. "Improved the biocompatibility of cancellous bone with compound physicochemical decellularization process." Regenerative Biomaterials 7, no. 5 (August 30, 2020): 443–51. http://dx.doi.org/10.1093/rb/rbaa024.
Full textRashidi, Farina, Mahdi Mohammadzadeh, Arash Abdolmaleki, Asadollah Asadi, and Mehrdad Sheikhlou. "Acellular carotid scaffold and evaluation the biological and biomechanical properties for tissue engineering." Journal of Cardiovascular and Thoracic Research 16, no. 1 (March 13, 2024): 28–37. http://dx.doi.org/10.34172/jcvtr.32899.
Full textBrennan, Jordan, Michael L. Lu, and Yunqing Kang. "A New Model of Esophageal Cancers by Using a Detergent-Free Decellularized Matrix in a Perfusion Bioreactor." Bioengineering 10, no. 1 (January 11, 2023): 96. http://dx.doi.org/10.3390/bioengineering10010096.
Full textBobrova, M. M., L. A. Safonova, O. I. Agapova, A. E. Efimov, and I. I. Agapov. "The analysis of the proliferative activity of cells on microparticles obtained from decellularized liver and kidney tissue." Russian Journal of Transplantology and Artificial Organs 20, no. 4 (January 31, 2019): 69–75. http://dx.doi.org/10.15825/1995-1191-2018-4-69-75.
Full textDissertations / Theses on the topic "Decellularized matrix"
Shah, Mickey. "Cardiac Repair Using A Decellularized Xenogeneic Extracellular Matrix." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1542631193281779.
Full textMarengo, Kaitlyn A. "The Incorporation of Decellularized Cardiac ECM into Fibrin Microthreads." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/843.
Full textYoung, Bethany M. "Novel Small Airway Model Using Electrospun Decellularized Lung Extracellular Matrix." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4273.
Full textLi, Zhaoying. "Adaptive fabrication of biofunctional decellularized extracellular matrix niche towards complex engineered tissues." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/270349.
Full textD'Angelo, Edoardo. "Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426811.
Full textI modelli tumorali tridimensionali (3D) si stanno affacciando sul panorama scientifico con l’obiettivo primario di superare le limitazioni di colture cellulari convenzionali (2D) e modelli animali negli approcci di ricerca clinica. In questa tesi di dottorato, si descrive un innovativo approccio di ingegneria tissutale applicata alla ricerca oncologica mediante il quale, partendo da una biopsia tissutale decellularizzata, si genera un modello organo-tipico 3D bioattivo. Questo modello 3D, ricapitola, in vitro, l’ambiente ultra-strutturale del tessuto nativo come dimostrato da indagini istologiche, immunoistochimiche, di immunofluorescenza e di microscopia elettronica a scansione. L’analisi del proteoma e del secretoma mediante spettrometria di massa ha confermato una differente composizione stromale tra la mucosa colica sana decellularizzata e quella della controparte tumorale (CRC) in termini di proteine strutturali (Collagene 1A1, Collagene 1A2, Collagene 3A1) e di proteine secrete, come la Defensina alfa 3. Abbiamo dimostrato che le nostre matrici 3D mantengono le loro proprietà biologiche dopo il processo di decellularizzazione: mediante la CAM, abbiamo osservato un decremento del potenziale angiogenico della matrice decellularizzata di CRC comparata con la mucosa colica sana, causata da un effetto diretto della Defensina alfa 3. Inoltre, abbiamo dimostrato che dopo 5 giorni di ricellularizzazione con cellule HT-29 (linea stabilizzata di cancro del colon), le matrici tumorali 3D (comparate con le rispettive mucose coliche sane ed il metodo di coltura 2D) hanno indotto una sovra-espressione di IL-8, una chemochina a valle del pathway della Defensina alfa 3, che gioca un ruolo molto importante nella crescita e proliferazione tumorale. In conclusione, avendo dimostrato la capacità dei delle nostre matrici acellulari 3D di mucosa colica sana e CRC di mimare gli stimoli ultra-strutturali e biologici dei rispettivi tessuti nativi, crediamo che questo approccio possa essere un efficace strumento per migliorare il livello delle ricerche precliniche e nei test di screening di farmaci.
KC, Pawan. "Development of a Cardiac Patch with Decellularized Myocardial Tissue and Stem Cells." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555413717363006.
Full textHansen, Ryan. "Functional and Structural Analysis of Decellularized Liver Tissue Matrix, with Potential Applications in Cancer Tissue Engineering." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1498650461817088.
Full textMiyauchi, Yuya. "A novel three-dimensional culture system maintaining the physiological extracellular matrix of fibrotic model livers accelerates progression of hepatocellular carcinoma cells." Kyoto University, 2018. http://hdl.handle.net/2433/232113.
Full textTrignol, Aurélie. "The extracellular matrix as a biomaterial to optimize skeletal muscle regeneration." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1029.
Full textSkeletal muscle exhibits high capacity for regeneration after an injury that relies on resident stem cells. Muscle regeneration is tightly regulated by both the immune response and other resident cells, as well as by cues from the local extracellular matrix (ECM), contributing to a coordinated repair process. Muscle ECM is a network of structural macromolecules with a large majority of collagens and trophic molecules such as glycosaminoglycans (GAGs). In the skeletal muscle tissue, ECM was overlooked due to its complex organization making investigations difficult. Muscle regenerative ability can be overtaken in large muscle wasting, such as in volumetric muscle loss (VML), leading to fibrosis formation and chronic inflammation. This type of injury predominantly occurs in traumatology and in war-wounded patients, with functional disability despite an optimal treatment. The use of biomaterials could provide the biochemical and physical cues that are missing in this pathologic repair. In this work we have focused on obtaining a biomaterial composed of skeletal muscle ECM. We have tested several decellularization protocols both to preserve the three-dimensional architecture of the muscle ECM and to completely remove cell components in order to avoid a deleterious immune response after implantation. However, the protocol did not allow the preservation of trophic molecules such as GAGs, in the scaffold.“ReGenerating Agents” (RGTA®) are functionally analogous of GAGs with a crucial property to resist enzymatic degradation. They function to restore a proper microenvironment for tissue healing with already a clinical application in skin and corneal repair. We have explored the effects of RGTA® in muscle regeneration using an in vivo model in mouse. At early time of regeneration (day 8), we performed histologic analysis. We showed that regenerating myofibers contained more nuclei in the treated animals, in favor of an increase of progenitor fusion, which has been validated in vitro in myogenic cultures. The number of capillaries was higher in favor of a better angiogenesis. Lipid droplets, a marker of impaired regeneration, were reduced by RGTA® administration. At later time of regeneration (day 28), capillary number was still improved in favor of a durable effect of RGTA® on angiogenesis. RGTA® could be incorporated into biomaterials and are particularly resistant in an inflammatory environment, such as that occurring after a VML injury. Chemokines and growth factors could also be added in ECM-based scaffolds to promote the migration of progenitors that are essential for myofiber neoformation. Therapeutic efficacy of these optimized biomaterials will require to be evaluated in an in vivo model of VML
Pouliot, Robert A. "DEVELOPMENT AND CHARACTERIZATION OF LUNG DERIVED EXTRACELLULAR MATRIX HYDROGELS." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4465.
Full textBooks on the topic "Decellularized matrix"
Yamaoka, Tetsuji, and Takashi Hoshiba, eds. Decellularized Extracellular Matrix. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998.
Full textYamaoka, Tetsuji, and Takashi Hoshiba. Decellularized Extracellular Matrix: Characterization, Fabrication and Applications. Royal Society of Chemistry, The, 2019.
Find full textBook chapters on the topic "Decellularized matrix"
Hoshiba, Takashi, and Tetsuji Yamaoka. "CHAPTER 1. Extracellular Matrix Scaffolds for Tissue Engineering and Biological Research." In Decellularized Extracellular Matrix, 1–14. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00001.
Full textYamaoka, Tetsuji. "CHAPTER 2. Preparation Methods for Tissue/Organ-derived dECMs – Effects on Cell Removal and ECM Changes." In Decellularized Extracellular Matrix, 15–28. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00015.
Full textHoshiba, T., N. Kawazoe, and G. Chen. "CHAPTER 3. Preparation of Cultured Cell-derived Decellularized Matrix (dECM) – Factors Influencing dECM Formation and Its Ability." In Decellularized Extracellular Matrix, 29–50. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00029.
Full textMochitate, Katsumi, Reiko Nagano, and Yukiko Toya-Nakajima. "CHAPTER 4. Bared Basement Membrane Substrata: Design, Cellular Assembly, Decellularization and Application to Tissue Regeneration and Stem Cell Differentiation." In Decellularized Extracellular Matrix, 51–76. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00051.
Full textMorimoto, Naoki, Atsushi Mahara, and Tetsuji Yamaoka. "CHAPTER 5. A Novel Treatment for Giant Congenital Melanocytic Nevi Combining Inactivated Nevus Tissue by Pressurization and Cultured Epidermal Autograft." In Decellularized Extracellular Matrix, 77–94. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00077.
Full textScanameo, Alexandra, and Nicholas P. Ziats. "CHAPTER 6. Immune Responses to Decellularized Matrices." In Decellularized Extracellular Matrix, 95–115. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00095.
Full textDuran, Pamela, Marianna Alperin, and Karen L. Christman. "CHAPTER 7. Decellularized Extracellular Matrix Hydrogels: Fabrication, Properties, Characterization, and Current Applications." In Decellularized Extracellular Matrix, 116–38. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00116.
Full textDas, Sanskrita, Anthony Safaa Mukhtar, Jinah Jang, and Jin-Hyung Shim. "CHAPTER 8. Decellularized Extracellular Matrix as Bioink for 3D-Bioprinting." In Decellularized Extracellular Matrix, 139–62. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00139.
Full textHwang, Mintai P., and Kwideok Park. "CHAPTER 9. Mechanical Property Tunable dECM and Their Regenerative Applications." In Decellularized Extracellular Matrix, 163–78. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00163.
Full textHodde, J. P. "CHAPTER 10. Use of Small Intestinal Submucosa dECM in Tissue Engineering and Regenerative Medicine." In Decellularized Extracellular Matrix, 179–98. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00179.
Full textConference papers on the topic "Decellularized matrix"
Shchotkina, Nataliia V., Anatoliy A. Sokol, Glib I. Yemets, Oleksandr Yu Galkin, Liudmyla V. Dolinchuk, Iryna M. Skorokhod, Olena V. Shepeleva, Nadiia M. Rudenko, and Iliia M. Yemets. "Microarchitectonic of Decellularized Bovine Pericardium Matrix." In The 7th World Congress on New Technologies. Avestia Publishing, 2021. http://dx.doi.org/10.11159/icbb21.167.
Full textTas, S., D. A. Bölükbas, H. N. Alsafadi, I. A. Da Silva, M. M. De Santis, E. Rehnberg, I. Tamargo, S. Mohlin, S. Lindstedt, and D. E. Wagner. "Decellularized extracellular matrix hydrogels for human airway organoid culture." In ERS Lung Science Conference 2021 abstracts. European Respiratory Society, 2021. http://dx.doi.org/10.1183/23120541.lsc-2021.101.
Full textKuhlin, B., J. Kern, D. Gvaramia, N. Rotter, H. Tritschler, Y. Jakob, L. Körber, R. Breiter, and RE Brenner. "Detection of matrix metalloproteinases after seeding a decellularized extracellular matrix with chondrogenic progenitor cells." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686890.
Full textGvaramia, D., J. Kern, Y. Jakob, L. Huber, and N. Rotter. "The Response of Primary Human Macrophages to Decellularized Cartilage Extracellular Matrix." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711446.
Full textPrice, AP, TR Metz, and A. Panoskaltsis-Mortari. "Decellularized Lung as a 3-D Matrix for Bioengineering the Lung." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5382.
Full textGvaramia, D., J. Kern, Y. Jakob, L. Huber, J. Kzhyshkowska, and N. Rotter. "The Response of Primary Human Macrophages to Decellularized Cartilage Extracellular Matrix." In 100 JAHRE DGHNO-KHC: WO KOMMEN WIR HER? WO STEHEN WIR? WO GEHEN WIR HIN? Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1728945.
Full textZhao, Shijia, Linxia Gu, James M. Hammel, and Haili Lang. "Mechanical Characterization of the Decellularized Porcine Small Intestinal Submucosa Extracellular Matrix." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65640.
Full textSinem, Tas, Deniz A. Bölükbas, Hani N. Alsafadi, Iran An Da Silva, Martina M. De Santis, Emil Rehnberg, Isabel Tamargo, Sophie Mohlin, Sandra Lindstedt, and Darcy E. Wagner. "LSC - 2021 - Decellularized extracellular matrix hydrogels for human airway organoid culture." In ERS International Congress 2021 abstracts. European Respiratory Society, 2021. http://dx.doi.org/10.1183/13993003.congress-2021.oa1614.
Full textWirtzfeld, L. A., E. S. L. Berndl, and M. C. Kolios. "Ultrasonic characterization of extra-cellular matrix in decellularized murine kidney and liver." In 2015 IEEE International Ultrasonics Symposium (IUS). IEEE, 2015. http://dx.doi.org/10.1109/ultsym.2015.0170.
Full textGodin, Lindsay M., Andrew P. Price, and Angela Panoskaltsis-Mortari. "Characterization Of Decellularized Lung Matrix After FITC-Induced Lung Injury In Mice." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1030.
Full text