Academic literature on the topic 'Decarbonizes layer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Decarbonizes layer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Decarbonizes layer"

1

Rasid, Nur Nadhira Abdul, Abdul Rahman Mohd Sam, Azman Mohamed, Nor Hasanah Abdul Shukor Lim, Zaiton Abdul Majid, and Nur Hafizah A. Khalid. "The Effect of Eggshell Powder as an Accelerator for Blended Cement Concrete." Journal of Computational and Theoretical Nanoscience 17, no. 2 (February 1, 2020): 1032–36. http://dx.doi.org/10.1166/jctn.2020.8762.

Full text
Abstract:
Blended concrete has later strength development with long maturity strength development. An accelerator is thus needed to enhance the early strength development of concrete. This paper shows the combination of ground palm oil fuel ash and eggshell powder that was designed for later and early strength development, respectively. Two types of eggshell powder were utilised in concrete: uncarbonised eggshell powder and decarbonised eggshell powder. The study was initiated with compression test for concrete curing at age 1, 3, 7, and 28 days followed by rapid evaluation test of setting time to investigate the preliminary performance between materials. The results revealed decarbonised eggshell powder as a high accelerator that can improve the early age of concrete strength development. Meanwhile, despite showing the best performance, uncarbonised eggshell powder is a very low accelerator thus not fit the purpose. In conclusion, the combination of ground palm oil fuel ash (rich with silica oxide) and decarbonised eggshell powder (rich with calcium oxide) provided dual function, where ground palm oil fuel ash and decarbonised eggshell powder took later and early strength development, respectively. The combination between silica oxide and calcium oxide in cementitious materials has potential to be utilised to enhance the early age of a blended concrete strength development.
APA, Harvard, Vancouver, ISO, and other styles
2

Widomski, Paweł, Maciej Zwierzchowski, Artur Barełkowski, and Mateusz Tympalski. "Case Study of the Effect of Precoating on the Decarburization of the Surface Layer of Forged Parts during the Hot Die Forging Process." Materials 14, no. 2 (January 16, 2021): 422. http://dx.doi.org/10.3390/ma14020422.

Full text
Abstract:
This paper aims to evaluate the effect of pre-coating of forged parts on decarburization in the die forging process. The studies consisted of three stages. In the first instance, different coatings were tested under laboratory conditions by heating steel samples to the temperature of 1200 °C for over five minutes to model the preheating conditions of the induction. Next, testing continued in a commercial forging stand where we tested the effects of different coatings on the rods decarburization during the induction heating process, usually performed before forging. Once completed testing, the measurements and observations of the decarbonized layer were made. The third stage involved analysis of the decarburization of the forged parts after forging. The forged parts were made using precoating of pre-forging elements; pieces cut off a metal rod. Based on tests results, the possibility of using this solution in the technique of industrial hot forging was evaluated. The results of laboratory tests have confirmed that lubrication of metal pieces is sufficient, as well as proved it to be effective in reducing decarburization of the surface layer. Research works conducted in an induction heater showed differences in decarburization depending on a substance and concentration of lubricants that were used. These differences become more apparent when observing the surface layer of the forged parts. Results indicate that decarburization may be reduced to a minimum when we use Bonderite product in a concentration of 66% and 50%. Another lubricant, Berulit 913, may also be used. However, due to burning graphite in high temperatures, reduction of decarburization goes only as far as half of the thickness of the decarbonized layer. Condursal has no significant effect; nevertheless, it protects over the induction heating stage.
APA, Harvard, Vancouver, ISO, and other styles
3

Nimko, M. O. "Influence of welding parameters on decarburization in heat affected zone of dissimilar weldments after post weld heat treatment." Archives of Materials Science and Engineering 112, no. 1 (November 1, 2021): 23–31. http://dx.doi.org/10.5604/01.3001.0015.5929.

Full text
Abstract:
Purpose: This paper aims to assess an influence of thermal welding parameters on microstructural evolution in the weld adjacent zone of P91 steel, overlayed by austenitic consumables, after post weld heat treatment. Design/methodology/approach: Analysis of the width of decarburized layer on microphotographs of overlayed specimens after tempering 750°C, 7 and 18 hours. Specimens were made by using different heat input and preheating temperature parameters. Findings: It is shown that with increase of the heat input energy, the width of the resulting decarbonized layer decreases linearly; the effect of heating temperature on the layer width is parabolic with a minimum at a temperature of ~195°C. Research limitations/implications: Future research may include comparison of the creep rupture strength of the weldments, made with different welding parameters, to assess the influence of kinetics of decarburization and variation of the parameters on creep rupture strength. Practical implications: Results permit to achieve minimization of rate of carbon diffusion in the weld adjacent zone of the HAZ by means of variation of welded parameters. Originality/value: Experimentally was confirmed a role of high-diffusivity paths (grain boundaries) on carbon diffusion in the HAZ of dissimilar weldments; found correlation between welding parameters and the rate of the diffusion during high temperature exposure.
APA, Harvard, Vancouver, ISO, and other styles
4

Richter, Marc, Pio Lombardi, Bartlomiej Arendarski, André Naumann, Andreas Hoepfner, Przemyslaw Komarnicki, and Antonio Pantaleo. "A Vision for Energy Decarbonization: Planning Sustainable Tertiary Sites as Net-Zero Energy Systems." Energies 14, no. 17 (September 6, 2021): 5577. http://dx.doi.org/10.3390/en14175577.

Full text
Abstract:
The power system is changing towards a decarbonized one. The Kyoto protocol and the Paris climate agreement have prompted many nations to approve energy policies based on volatile renewable energy sources (RESs). However, the integration into the grid of the power generated by RESs as well as the electrification of the heating, gas and transportation sectors is becoming a huge challenge. Planning industrial and tertiary sites as net-zero energy systems (NZESs) might contribute to advance the solutions of fully integrating volatile RESs into the power system. This study aims to point out the importance of planning large energy consumer sites such as NZESs, and to depict a holistic modeling approach for this. The methodology is based on a multi-layer approach, which focuses on on-site power generation by RESs, on the improvement of energy efficiency, and on the increase of system flexibility. A qualitative case study has been conducted. It considers the planning of a Net-Zero Energy Data Center located in Germany. Results point out that new interdisciplinary and in particular social analysis methods are necessary. They might be used for accelerating the decision making process during the planning of RES-based on-site power generation systems. Besides, for computation and cooling systems, new technologies that are continuously emerging in the market should be taken into account. If well designed, they contribute to significantly decrease the whole energy demand of data center. Finally, optimal sizing of energy storage systems (electric and thermal) as well as an expedient choice of performance indicators to evaluate technology options are identified as the key factor for decreasing the external energy demand of tertiary sites, such as data center.
APA, Harvard, Vancouver, ISO, and other styles
5

Van Gent, Dominique, Sandeep Sharma, Allison Hortle, and Linda Stalker. "The Lesueur Formation storage complex in South Western Australia: safe, secure long-term storage of CO2." APPEA Journal 60, no. 2 (2020): 789. http://dx.doi.org/10.1071/aj19107.

Full text
Abstract:
Carbon capture, utilisation and storage remain critical components of a decarbonised future. The West Australian Department of Mines, Industry Regulation and Safety with research partners CSIRO, Curtin University and the University of Western Australia, have assessed the suitability of storing carbon dioxide in the deep saline aquifers of the Triassic Lesueur Formation (Southern Perth Basin) through the South West Hub Carbon Storage Project (SW Hub). The SW Hub has now concluded its acquisition of pre-competitive data and research. Extensive evaluation and multiple peer reviews by industry concluded that the site is ready for the next stage of characterisation – drilling and testing to confirm or refine the predictions for a suitable commercial-scale geological storage site, enabling acreage release for commercial exploration and appraisal leading to a storage licence. The data package includes extensive geological and dynamic modelling, providing confidence in the storage complex. Four wells have been drilled and multiple seismic data acquisition surveys (including 115 km2 3D seismic) are supported by four generations of reservoir models of increasing complexity built over the last decade of investigations. The site is unique in that there is no regional shale layer above the reservoir to provide a conventional seal for injected carbon dioxide. Results indicate that secure storage is obtained via vertical trapping across the extensive storage formation thickness; if proven, this mechanism can increase storage options around the world. This paper discusses the significance of the site, the geological setting, technical workflow, monitoring strategy and community and stakeholder management activities undertaken.
APA, Harvard, Vancouver, ISO, and other styles
6

d’Adamo, Alessandro, Giuseppe Corda, Stefano Fontanesi, and Massimo Borghi. "On the Effect of Complex Permeability and Thermal Material Properties for 3D-CFD Simulation of PEM Fuel Cells." TECNICA ITALIANA-Italian Journal of Engineering Science 65, no. 2-4 (July 30, 2021): 378–85. http://dx.doi.org/10.18280/ti-ijes.652-435.

Full text
Abstract:
Fuel cells are considered a key technology to decarbonize the power generation sector, thanks to the absence of pollutants emissions related to the direct chemical-electric energy conversion, their high global efficiency, and the possibility for on-board electricity production, overcoming the storage limits of batteries. An example of the renewed interest towards fuel cells is the research in Proton Exchange Membrane Fuel Cell (PEMFC) in the automotive sector, as a candidate alternative to fossil fuels-fed internal combustion engines (ICEs). The complex interplay of electrochemical and physical phenomena concurring in PEMFC makes their understanding and optimization a challenging task. This is a field of active research thanks to the development of advanced CAE tools, e.g., 3D-CFD simulations of non-isothermal reactive flows, in which all the relevant physics is numerically solved, allowing to identify governing mechanisms as well as system bottlenecks. Among the multiple complex aspects, the material property characterization of PEMFC components is one of the major modelling challenges for modern CAE tools. This is usually provided as a set of boundary conditions for the numerical model, having a large impact on the simulated results which is often motivated by an oversimplification of materials characteristics. Examples of commonly overlooked aspects are direction-independent thermal/flow properties for fibrous materials, the neglection on the deformed (compressed) status, and the simplified contact approach. All of these might alter the key parameters (e.g., water management) and mislead designers’ conclusions on PEMFC optimization. In this paper three-dimensional CFD simulations are used to weight the impact of orthotropic diffusion layer properties on both flow distribution and heat transfer. In the first part, a simplified test case from literature is created and used to investigate the flow convection/diffusion balance in the gas diffusion layer considering the orthotropic permeability typical of pressed fibrous layers. Differences with respect to the still widely used isotropic permeability will be assessed, and implications on channel bypass and mass transport to the catalyst layer will be provided. In the second part, the analysis moves to the use of orthotropic thermal conductivity for the fibrous gas diffusion layers, which is another commonly discarded aspect despite being well documented in literature. A critical analysis of heat transfer routes between parts of different heat capacity (membrane, diffusion layers, solid plates) and thermal field for all the components will be assessed. Finally, thermal contact resistance between adjacent pressed materials will be applied. The altered thermal pathways for heat removal will be critically analyzed, as well as the differences in temperature distribution and their implication on electricity production and water management. This hierarchical flow/thermal analysis will provide guidelines for more accurate 3D-CFD models for a deeper understanding of flow and heat dynamics in PEMFC.
APA, Harvard, Vancouver, ISO, and other styles
7

Savickis, J., L. Zemite, N. Zeltins, I. Bode, L. Jansons, E. Dzelzitis, A. Koposovs, A. Selickis, and A. Ansone. "The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path." Latvian Journal of Physics and Technical Sciences 57, no. 4 (August 1, 2020): 34–50. http://dx.doi.org/10.2478/lpts-2020-0020.

Full text
Abstract:
AbstractBiomethane is one of the most promising renewable gases (hereafter – RG) – a flexible and easily storable fuel, and, when used along with the natural gas in any mixing proportion, no adjustments on equipment designed to use natural gas are required. In regions where natural gas grids already exist, there is a system suitable for distribution of the biomethane as well. Moreover, improving energy efficiency and sustainability of the gas infrastructure, it can be used as total substitute for natural gas. Since it has the same chemical properties as natural gas, with methane content level greater than 96 %, biomethane is suitable both for heat and electricity generation, and the use in transport.Biomethane is injected into the natural gas networks of many Member States of the European Union (hereafter – the EU) on a regular basis for more than a decade, with the Netherlands, Germany, Austria, Sweden and France being among pioneers in this field. In most early cases, permission to inject biomethane into the natural gas grids came as part of a policy to decarbonize the road transport sector and was granted on a case-by-case basis. The intention to legally frame and standardise the EU’s biomethane injection into the natural gas networks came much later and was fulfilled in the second half of the present decade.This paper addresses the biomethane injection into the natural gas grids in some EU countries, highlights a few crucial aspects in this process, including but not limited to trends in standardisation and legal framework, injection conditions and pressure levels, as well as centralised biogas feedstock collection points and the biomethane injection facilities. In a wider context, the paper deals with the role of biomethane in the EU energy transition and further use of the existing natural gas networks.
APA, Harvard, Vancouver, ISO, and other styles
8

Beloin-Saint-Pierre, Didier, and Roland Hischier. "Towards a more environmentally sustainable production of graphene-based materials." International Journal of Life Cycle Assessment 26, no. 2 (February 2021): 327–43. http://dx.doi.org/10.1007/s11367-020-01864-z.

Full text
Abstract:
Abstract Purpose This study compares prior life cycle assessment (LCA) studies on graphene-based materials (GBMs) with new results from original data on ball milling of few-layer graphene. The analysis thus offers an overview of the current state of knowledge on the environmental sustainability of GBM production. Possible future development pathways and knowledge gaps are identified and explained to provide guidance for the future development of GBMs. Methods Comparable scopes, aggregation levels, and impact assessment methods are used to analyse diverse GBMs with three different functional units for graphene oxide, pristine graphene, and other GBMs with different carbon/oxygen ratios or thickness. The ecoinvent v3.4 cut-off database is used for background data in all models to provide a common basis of comparison. Furthermore, uncertainty calculations are carried out to give insights on the current level of knowledge and to check if GBM production methods can be differentiated. Finally, a sensitivity analysis is performed on the energy inputs with a detailed description of three future scenarios for the European electricity mix. Results and discussion The general analysis of all results highlights three key strategies to improve the environmental sustainability of GBM production. (1) The use of decarbonised energy sources reduces substantially the impacts of GBMs. This benefit is decreased, however, when conservative forecasts of the future European electricity mix are considered. (2) Increased energy efficiency of production is useful mainly for the processes of electrochemical exfoliation and chemical vapour deposition. (3) The principles of green chemistry provide relevant ideas to reduce the impacts of GBMs mainly for the processes of chemical and thermal reduction and for the production of graphene oxide. Furthermore, the analysis of new data on ball milling production reveals that transforming GBM solutions into dry-mass can substantially increase the environmental impacts because of the energy-intensive nature of this conversion. The uncertainty analysis then shows that it is still difficult to differentiate all production methods with the current knowledge on this emerging technology. Conclusions With our current level of knowledge on GBMs, it is clear that more accurate data is needed on different production methods to identify frontrunners. Nevertheless, it seems that unknowns, like the state of future electricity mixes, might not often hinder such comparisons because conservative forecasts bring similar changes on many production options. Additionally, functional properties and toxicity for GBMs will require further attention to improve our confidence in the comparison of production methods in the future.
APA, Harvard, Vancouver, ISO, and other styles
9

Bothien, Mirko R., Andrea Ciani, John P. Wood, and Gerhard Fruechtel. "Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen." Journal of Engineering for Gas Turbines and Power 141, no. 12 (November 15, 2019). http://dx.doi.org/10.1115/1.4045256.

Full text
Abstract:
Abstract Excess energy generation from renewables can be conveniently stored as hydrogen for later use as a gas turbine fuel. Also, the strategy to sequestrate CO2 from natural gas (NG) will require gas turbines to run with hydrogen-based fuels. In such scenarios, high temperature low emission combustion of hydrogen is a key requirement for the future gas turbine market. Ansaldo Energia's gas turbines featuring sequential combustion have an intrinsic advantage when it comes to fuel flexibility and in particular hydrogen-based fuels. The sequential combustion system is composed of two complementary combustion stages in series: one premix stage followed by an auto-ignited second stage overcoming the limits of traditional premix combustion systems through a highly effective extra tuning parameter, i.e., the temperature between the first and the second stage. The standard constant pressure sequential combustion (CPSC) system as applied in the GT36 engine is tested, at high pressure, demonstrating that a modified operation concept allows stable combustion with no changes in combustor hardware for the whole range of NG and hydrogen blends. It is shown that in the range from 0% to 70% (vol.) hydrogen, stable combustion is achieved at full nominal exit temperature, i.e., without any derating and thus clearly outperforming other available conventional premixed combustors. Operation between 70% and 100% is possible as well and only requires a mild reduction of the combustor exit temperature. By proving the transferability of the single-can high pressure results to the engine, this paper demonstrates the practicality of operating the Ansaldo Energia GT36 H-Class gas turbine on fuels containing unprecedented concentrations of hydrogen while maintaining excellent performance and low emissions both in terms of NOx and CO2.
APA, Harvard, Vancouver, ISO, and other styles
10

Victoria, Marta, Kun Zhu, Tom Brown, Gorm B. Andresen, and Martin Greiner. "Early decarbonisation of the European energy system pays off." Nature Communications 11, no. 1 (December 2020). http://dx.doi.org/10.1038/s41467-020-20015-4.

Full text
Abstract:
AbstractFor a given carbon budget over several decades, different transformation rates for the energy system yield starkly different results. Here we consider a budget of 33 GtCO2 for the cumulative carbon dioxide emissions from the European electricity, heating, and transport sectors between 2020 and 2050, which represents Europe’s contribution to the Paris Agreement. We have found that following an early and steady path in which emissions are strongly reduced in the first decade is more cost-effective than following a late and rapid path in which low initial reduction targets quickly deplete the carbon budget and require a sharp reduction later. We show that solar photovoltaic, onshore and offshore wind can become the cornerstone of a fully decarbonised energy system and that installation rates similar to historical maxima are required to achieve timely decarbonisation. Key to those results is a proper representation of existing balancing strategies through an open, hourly-resolved, networked model of the sector-coupled European energy system.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Decarbonizes layer"

1

Луценко, Владислав Анатолійович, Владислав Анатольевич Луценко, and Vladyslav A. Lutsenko. "Наукові основи вдосконалення термомеханічної обробки катанки для сталевого дроту малого діаметру." Thesis, Запорізький національний технічний університет, 2015. http://eir.zntu.edu.ua/handle/123456789/417.

Full text
Abstract:
Луценко, В.А. Наукові основи вдосконаленнятермомеханічної обробки катанки для сталевого дроту малого діаметру [Текст]: дис. … докт. техн. наук: 05.16.01 : захищена ....: затверджена…. /Луценко Владислав Анатолійович. – Запоріжжя, 2015. – 353 с.
UK: Дисертаційна робота присвячена підвищенню в процесі ТМО пластичних властивостей сталевої катанки. Отримана сталева катанка має структуру: високовуглецева – дисперсний перліт із відсутністю замкнутої цементитної сітки, мінімальний зневуглецьований шар, який рівномірно розподілений по периметру; низьковуглецева – рівномірну структуру фериту з мінімальною кількістю перліту; легована – наявність бейніто-мартенситних ділянок до 10% в змішаній структурі. Результати використані на дротових станах ВАТ «БМЗ» та ПАТ «АрселорМіттал Кривий Ріг». Підвищення пластичності катанки забезпечило виготовлення сталевого дроту малого діаметру без проміжної термічної обробки, що дозволило знизити видатковий коефіцієнт металу в середньому на 10%. EN: The dissertation is devoted of increasing in thermo-mechanical processing the plastic properties of steel wire rod. The obtained steel wire rod has the structure: high carbon – the dispersion of perlite without closed cementite net, the minimum depth of equable decarburized layer; low carbon – uniform structure of ferrite with a minimum of perlite; alloy – the occurrence of bainite-martensite areas up to 10% in the mixed structure. The results were used on the rod mills OJSC “Byelorussian steel works” and РJSC “ArcelorMittalKryvyiRih“. The increasing of plasticity provided the production of steel wire of small diameter without intermediate heat treatment, thus reducing the expenditure coefficient of metal by 10% in average. RU: В диссертационной работе решена актуальная научно-техническая проблема – повышение после высокотемпературной прокатки пластических свойств металла путем развития научных основ о влиянии процессов ТМО на структурообразование и качественные характеристики стальной катанки. Установленные закономерности позволили совершенствовать технологию ТМО катанки и при экономии материальных ресурсов обеспечить производство стальной проволоки малого диаметра для металлокорда (в том числе сверхвысокопрочного), высокопрочной бортовой, канатной, легированной сварочной и низкоуглеродистой. Изучена кинетика превращения аустенита непрерывнолитой стали 90 при непрерывном охлаждении и в изотермических условиях. Установлено, что выделения цементита по границам зерен подавляются и полностью отсутствуют при скоростях более 10°С/с и при изотермическом распаде. Определено, что величина эффекта рекалесценции в стали 90 зависит от времени превращения. Установлено, что при ТМО снижение температуры после горячей деформации с 1050…1100°С до 900…950°С в результате принудительного охлаждения при повышении дробности деформации (на 20%) приводит к увеличению пластических свойств высокоуглеродистой стали. Полученная катанка для стальной проволоки, в отличие от традиционной, имеет повышенные пластические свойства. Основу структуры катанки составляет: высокоуглеродистой – сорбитообразный перлит (более 70%) с отсутствием избыточных структур (замкнутой цементитной сетки), минимальный обезуглероженный слой равномерно распределен по периметру; низкоуглеродистой – равномерная структура феррита с минимальным количеством пластинчатого перлита; легированной – наличие бейнито-мартенситных участков до 10% в смешанной структуре. Повышены требования к микроструктуре и свойствам высокоуглеродистой катанки и проволоки, которые отражены в изменении №11 к ЗТУ 840-03-2006 «Катанка стальная сорбитизированная для металлокорда, бортовой проволоки и проволоки для рукавов высокого давления» и ТУ У 276.3-23365425-638.2008 «Проволока стальная термически обработанная». Результаты использованы на ПАО «АрселорМиттал Кривой Рог» при разработке СТИ 228-112-2008 «Производство катанки из легированных сталей для сварочной проволоки ответственного назначения», изменения №3 к режимам охлаждения проката в потоке проволочного стана 150-1 СПЦ-1. Разработаны и внедрены на ОАО «БМЗ» режимы ТМО стальной катанки, в том числе для сверхвысокопрочной проволоки и металлокордапо ЗТУ 840-03-2006 (Изменения к ТК 840-П13-01-2002 и ТК 840-П3-01-2007 на режимы двухстадийного охлаждения катанки различного марочного сортамента в потоке стана 150). Повышение пластичности после высокотемпературной прокатки обеспечило изготовление стальной проволоки малого диаметра различного назначения без промежуточной термической обработки с сохранением требуемых конечных характеристик. Катанка, изготовленная по новому режиму ТМО, переработанная на проволоку малого диаметра, имеет лучшую технологичность в сравнении с базовой. Так, при производстве высокопрочногометаллокорда обрывность снизилась на 34%, а сверхвысокопрочного – на 23%. Освоение усовершенствованных режимов ТМО позволило снизить расходный коэффициент металла в среднем на 10%. Общий фактический экономический эффект от внедренных новых технологических решений составляет 31,7 миллиона гривен, доля автора – 4,44 миллиона гривен.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Decarbonizes layer"

1

Berry, Chris. "Taming the Hydra: Funding the Lithium Ion Supply Chain in an Era of Unprecedented Volatility." In Energy Storage Battery Systems - Fundamentals and Applications [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92891.

Full text
Abstract:
The lithium ion supply chain is set to grow in both size and importance over the coming decade due to government-led efforts to decarbonize economies and declining costs of lithium ion batteries used in electronics and transportation. With forecasts of demand for lithium chemicals alone forecast to grow by three times later this decade, at least $10B USD is needed to flow into the upstream supply chain to ensure an efficient and timely build-out. Significant additional capital is needed for other portions of the supply chain such as other raw materials, cathode or anode production, and battery cell manufacturing. Recent exogenous shocks such as the US-China trade war and coronavirus disease 2019 (COVID-19) pandemic have made securing adequate capital for the supply chain a difficult challenge. Without the steady stream of funding for new mine and chemical conversion capacity, widespread adoption of electric vehicles (EVs) could be put at risk. This paper discusses the current structure of the lithium ion supply chain with a focus on raw material production and the need for and challenges associated with securing adequate capital in an industry that has, to date, not experienced such a robust growth profile.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Decarbonizes layer"

1

Chichenev, N. A. "Improving the Thermal Fatigue Strength of Hot-Working Tools by Laser Treatment." In Modern Trends in Manufacturing Technologies and Equipment. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901755-8.

Full text
Abstract:
Abstract. A method for increasing the thermal fatigue strength of a tool used in hot forming of bearing rings by applying circular laser tracks to the working surfaces is considered. Laser treatment is carried out with a power of 2.0...2.5 kW by applying on the end face working surface of the tool in the direction from the center to the periphery of the circular tracks with a common center coinciding with the center of the circumference of the end face; the tool is rotated at a constant angular rate, the spot diameter ds for each track is selected according to the dependence ds,i+1/ds,i = 0.85...0.90, and the laser radiation spots of adjacent tracks have a common point of contact. The results of pilot testing are presented, which confirmed the high technical and economic efficiency of the use of laser quenching for ejectors and punches. A tool made by machining, for example, an ejector of an AMP-70 automatic press, is subjected to volume quenching and tempering. The ejector material was steel 3Kh3M3F, quenching temperature in oil – 1030...1050 °С, tempering temperature – 580...610 °С. After volume quenching, additional machining is carried out, usually grinding, in order to remove the decarbonized layer of material formed during heat treatment and to give the working surface the required roughness class. The final stage in the tool manufacturing is the quenching of its working surface by laser treatment. Pilot testing showed that the use of laser treatment made it possible to increase the durability of ejectors of various types by 2 ... 3 times, of deforming punches – by 2.2 times.
APA, Harvard, Vancouver, ISO, and other styles
2

Harman, Neil F., Guy S. Anderson, John N. Lillington, and Russ V. Booler. "Safety Assessment Principles Applied to Small Modular Reactors." In ASME 2011 Small Modular Reactors Symposium. ASMEDC, 2011. http://dx.doi.org/10.1115/smr2011-6580.

Full text
Abstract:
Much of the attention on small modular reactors (SMRs) has to date been focused on the technology or novel applications, however, this paper tries to set out some thoughts on some of the other issues, or “externalities” within which any SMR proposal must be brought to market. The Paper outlines the UK regulatory regime highlighting differences from that in the US. Regulation in the UK is based on Safety Assessment Principles rather than a prescriptive set of requirements; the amenability of such a regime to assessing novel reactor designs and applications is discussed in general terms. The Paper summarizes the licensing arrangement for nuclear facilities used by the UK nuclear regulator. It goes on to summarize the recent Generic Design Assessment (GDA) programme for new build in the UK in which Serco has been heavily involved. The Safety Assessment Principles reach further than just into the technicalities of engineering design. Two particular areas of interest are picked out: the availability of qualified and experienced personnel and the impact on plant as a result of grid and transmission system issues. With regard to the first of these, in the early days of nuclear power, the UK considered many different reactor designs including gas cooled reactors, fast reactors, heavy water reactors, high temperature reactors and later a small reactor design — the SIR (Safe Integral Reactor) — although this was never built; these are briefly described highlighting any similarities to current proposed small reactor designs and concepts and discussing any lessons that could be learned. Staff in Serco have been involved with all these developments as well as undertaking research in Generation IV concepts. To begin to address the impact on the plant from its interface with the external electricity grid system, the Paper discusses the energy market in the UK (one of the most deregulated), the state of the nuclear industry, the current political landscape as far as nuclear power is concerned, and the prospects for deploying small modular reactors in the UK. It then considers the implications of the European Union’s challenge to decarbonize electricity supply by 2050. Finally, the Paper considers other pertinent issues associated with small reactor concepts and the Safety Assessment Principles. It discusses some of the issues around inspection, given that many of the small reactor concepts are based on underground reactors. Given the smaller size of SMRs, the opportunities for association with novel non-power generating applications are greater than for conventional plant. Some differences associated with these proposals, compared to traditional nuclear power generation, are examined. The paper then also discusses the advantages and disadvantages, as far as safety is concerned, of a farm of small modular reactors compared with a single large reactor.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography