Journal articles on the topic 'Deaminases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deaminases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rogozin, Igor, Abiel Roche-Lima, Artem Lada, Frida Belinky, Ivan Sidorenko, Galina Glazko, Vladimir Babenko, David Cooper, and Youri Pavlov. "Nucleotide Weight Matrices Reveal Ubiquitous Mutational Footprints of AID/APOBEC Deaminases in Human Cancer Genomes." Cancers 11, no. 2 (February 12, 2019): 211. http://dx.doi.org/10.3390/cancers11020211.
Full textSeffernick, Jennifer L., Anthony G. Dodge, Michael J. Sadowsky, John A. Bumpus, and Lawrence P. Wackett. "Bacterial Ammeline Metabolism via Guanine Deaminase." Journal of Bacteriology 192, no. 4 (December 18, 2009): 1106–12. http://dx.doi.org/10.1128/jb.01243-09.
Full textVasudevan, Ananda Ayyappan Jaguva, Sander H. J. Smits, Astrid Höppner, Dieter Häussinger, Bernd W. Koenig, and Carsten Münk. "Structural features of antiviral DNA cytidine deaminases." Biological Chemistry 394, no. 11 (November 1, 2013): 1357–70. http://dx.doi.org/10.1515/hsz-2013-0165.
Full textTeperek-Tkacz, Marta, Vincent Pasque, George Gentsch, and Anne C. Ferguson-Smith. "Epigenetic reprogramming: is deamination key to active DNA demethylation?" REPRODUCTION 142, no. 5 (November 2011): 621–32. http://dx.doi.org/10.1530/rep-11-0148.
Full textRoth, E. Jr, N. Ogasawara, and S. Schulman. "The deamination of adenosine and adenosine monophosphate in Plasmodium falciparum-infected human erythrocytes: in vitro use of 2'deoxycoformycin and AMP deaminase-deficient red cells." Blood 74, no. 3 (August 15, 1989): 1121–25. http://dx.doi.org/10.1182/blood.v74.3.1121.1121.
Full textRoth, E. Jr, N. Ogasawara, and S. Schulman. "The deamination of adenosine and adenosine monophosphate in Plasmodium falciparum-infected human erythrocytes: in vitro use of 2'deoxycoformycin and AMP deaminase-deficient red cells." Blood 74, no. 3 (August 15, 1989): 1121–25. http://dx.doi.org/10.1182/blood.v74.3.1121.bloodjournal7431121.
Full textJost, Stéphanie, Priscilla Turelli, Bastien Mangeat, Ulrike Protzer, and Didier Trono. "Induction of Antiviral Cytidine Deaminases Does Not Explain the Inhibition of Hepatitis B Virus Replication by Interferons." Journal of Virology 81, no. 19 (July 25, 2007): 10588–96. http://dx.doi.org/10.1128/jvi.02489-06.
Full textLiu, Lei, Jian-Feng Wu, Ying-Fei Ma, Sheng-Yue Wang, Guo-Ping Zhao, and Shuang-Jiang Liu. "A Novel Deaminase Involved in Chloronitrobenzene and Nitrobenzene Degradation with Comamonas sp. Strain CNB-1." Journal of Bacteriology 189, no. 7 (January 26, 2007): 2677–82. http://dx.doi.org/10.1128/jb.01762-06.
Full textMahieux, Renaud, Rodolphe Suspène, Frédéric Delebecque, Michel Henry, Olivier Schwartz, Simon Wain-Hobson, and Jean-Pierre Vartanian. "Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases." Journal of General Virology 86, no. 9 (September 1, 2005): 2489–94. http://dx.doi.org/10.1099/vir.0.80973-0.
Full textMorgan, Hugh D., Wendy Dean, Heather A. Coker, Wolf Reik, and Svend K. Petersen-Mahrt. "Activation-induced Cytidine Deaminase Deaminates 5-Methylcytosine in DNA and Is Expressed in Pluripotent Tissues." Journal of Biological Chemistry 279, no. 50 (September 24, 2004): 52353–60. http://dx.doi.org/10.1074/jbc.m407695200.
Full textBrezgin, Sergey, Anastasiya Kostyusheva, Natalia Ponomareva, Viktoriia Volia, Irina Goptar, Anastasiya Nikiforova, Igor Shilovskiy, Valery Smirnov, Dmitry Kostyushev, and Vladimir Chulanov. "Clearing of Foreign Episomal DNA from Human Cells by CRISPRa-Mediated Activation of Cytidine Deaminases." International Journal of Molecular Sciences 21, no. 18 (September 18, 2020): 6865. http://dx.doi.org/10.3390/ijms21186865.
Full textDelviks-Frankenberry, Krista A., Belete A. Desimmie, and Vinay K. Pathak. "Structural Insights into APOBEC3-Mediated Lentiviral Restriction." Viruses 12, no. 6 (May 27, 2020): 587. http://dx.doi.org/10.3390/v12060587.
Full textBitra, Aruna, and Ruchi Anand. "Structure based protein engineering to confer selectivity of guanine deaminase." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C437. http://dx.doi.org/10.1107/s205327331409562x.
Full textConticello, Silvestro G., Marc-Andre Langlois, and Michael S. Neuberger. "Insights into DNA deaminases." Nature Structural & Molecular Biology 14, no. 1 (January 2007): 7–9. http://dx.doi.org/10.1038/nsmb0107-7.
Full textHakata, Yoshiyuki, and Masaaki Miyazawa. "Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins." Microorganisms 8, no. 12 (December 12, 2020): 1976. http://dx.doi.org/10.3390/microorganisms8121976.
Full textKeegan, Liam P., André P. Gerber, Jim Brindle, Ronny Leemans, Angela Gallo, Walter Keller, and Mary A. O'Connell. "The Properties of a tRNA-Specific Adenosine Deaminase from Drosophila melanogaster Support an Evolutionary Link between Pre-mRNA Editing and tRNA Modification." Molecular and Cellular Biology 20, no. 3 (February 1, 2000): 825–33. http://dx.doi.org/10.1128/mcb.20.3.825-833.2000.
Full textBonvin, Marianne, and Jobst Greeve. "Effects of point mutations in the cytidine deaminase domains of APOBEC3B on replication and hypermutation of hepatitis B virus in vitro." Journal of General Virology 88, no. 12 (December 1, 2007): 3270–74. http://dx.doi.org/10.1099/vir.0.83149-0.
Full textHernández-Camarero, Pablo, Elena López-Ruiz, Juan Antonio Marchal, and Macarena Perán. "Unifying Different Cancer Theories in a Unique Tumour Model: Chronic Inflammation and Deaminases as Meeting Points." International Journal of Molecular Sciences 23, no. 15 (August 5, 2022): 8720. http://dx.doi.org/10.3390/ijms23158720.
Full textSpychała, J., K. Kaletha, and W. Makarewicz. "Developmental changes of chicken liver AMP deaminase." Biochemical Journal 231, no. 2 (October 15, 1985): 329–33. http://dx.doi.org/10.1042/bj2310329.
Full textMiyagi, Eri, Charles R. Brown, Sandrine Opi, Mohammad Khan, Ritu Goila-Gaur, Sandra Kao, Robert C. Walker, Vanessa Hirsch, and Klaus Strebel. "Stably Expressed APOBEC3F Has Negligible Antiviral Activity." Journal of Virology 84, no. 21 (August 11, 2010): 11067–75. http://dx.doi.org/10.1128/jvi.01249-10.
Full textNavaratnam, Naveenan, and Rizwan Sarwar. "An Overview of Cytidine Deaminases." International Journal of Hematology 83, no. 3 (April 1, 2006): 195–200. http://dx.doi.org/10.1532/ijh97.06032.
Full textRebhandl, Stefan, Michael Huemer, Richard Greil, and Roland Geisberger. "AID/APOBEC deaminases and cancer." Oncoscience 2, no. 4 (April 28, 2015): 320–33. http://dx.doi.org/10.18632/oncoscience.155.
Full textFritz, E. L., and F. N. Papavasiliou. "Cytidine deaminases: AIDing DNA demethylation?" Genes & Development 24, no. 19 (October 1, 2010): 2107–14. http://dx.doi.org/10.1101/gad.1963010.
Full textBuchumenski, Ilana, Shalom Hillel Roth, Eli Kopel, Efrat Katsman, Ariel Feiglin, Erez Y. Levanon, and Eli Eisenberg. "Global quantification exposes abundant low-level off-target activity by base editors." Genome Research 31, no. 12 (October 19, 2021): 2354–61. http://dx.doi.org/10.1101/gr.275770.121.
Full textBavelloni, Alberto, Enrico Focaccia, Manuela Piazzi, Mirco Raffini, Valeriana Cesarini, Sara Tomaselli, Arianna Orsini, et al. "AKT‐dependent phosphorylation of the adenosine deaminases ADAR‐1 and ‐2 inhibits deaminase activity." FASEB Journal 33, no. 8 (May 16, 2019): 9044–61. http://dx.doi.org/10.1096/fj.201800490rr.
Full textSchatz, David G. "DNA deaminases converge on adaptive immunity." Nature Immunology 8, no. 6 (June 2007): 551–53. http://dx.doi.org/10.1038/ni0607-551.
Full textSpychałek, Józef, Jarosław Marszałek, and Ewa Kucharczyk. "AMP deaminases of rat small intestine." Biochimica et Biophysica Acta (BBA) - General Subjects 880, no. 2-3 (February 1986): 123–30. http://dx.doi.org/10.1016/0304-4165(86)90071-1.
Full textDi Giorgio, Salvatore, Filippo Martignano, Maria Gabriella Torcia, Giorgio Mattiuz, and Silvestro G. Conticello. "Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2." Science Advances 6, no. 25 (May 18, 2020): eabb5813. http://dx.doi.org/10.1126/sciadv.abb5813.
Full textNiewiadomska, Anna Maria, Chunjuan Tian, Lindi Tan, Tao Wang, Phuong Thi Nguyen Sarkis, and Xiao-Fang Yu. "Differential Inhibition of Long Interspersed Element 1 by APOBEC3 Does Not Correlate with High-Molecular-Mass-Complex Formation or P-Body Association." Journal of Virology 81, no. 17 (June 20, 2006): 9577–83. http://dx.doi.org/10.1128/jvi.02800-06.
Full textZhang, Wenyan, Juan Du, Kevin Yu, Tao Wang, Xiong Yong, and Xiao-Fang Yu. "Association of Potent Human Antiviral Cytidine Deaminases with 7SL RNA and Viral RNP in HIV-1 Virions." Journal of Virology 84, no. 24 (October 6, 2010): 12903–13. http://dx.doi.org/10.1128/jvi.01632-10.
Full textWu, Jian-feng, Cheng-ying Jiang, Bao-jun Wang, Ying-fei Ma, Zhi-pei Liu, and Shuang-jiang Liu. "Novel Partial Reductive Pathway for 4-Chloronitrobenzene and Nitrobenzene Degradation in Comamonas sp. Strain CNB-1." Applied and Environmental Microbiology 72, no. 3 (March 2006): 1759–65. http://dx.doi.org/10.1128/aem.72.3.1759-1765.2006.
Full textGajula, Kiran S., Peter J. Huwe, Charlie Y. Mo, Daniel J. Crawford, James T. Stivers, Ravi Radhakrishnan, and Rahul M. Kohli. "High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase." Nucleic Acids Research 42, no. 15 (July 26, 2014): 9964–75. http://dx.doi.org/10.1093/nar/gku689.
Full textMaas, Stefan, Thorsten Melcher, and Peter H. Seeburg. "Mammalian RNA-dependent deaminases and edited mRNAs." Current Opinion in Cell Biology 9, no. 3 (June 1997): 343–49. http://dx.doi.org/10.1016/s0955-0674(97)80006-3.
Full textChiu, Ya-Lin, and Warner C. Greene. "Multifaceted antiviral actions of APOBEC3 cytidine deaminases." Trends in Immunology 27, no. 6 (June 2006): 291–97. http://dx.doi.org/10.1016/j.it.2006.04.003.
Full textKöck, Josef, and Hubert E. Blum. "Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H." Journal of General Virology 89, no. 5 (May 1, 2008): 1184–91. http://dx.doi.org/10.1099/vir.0.83507-0.
Full textHossain, Gazi Sakir, Hyun-dong Shin, Jianghua Li, Miao Wang, Guocheng Du, Long Liu, and Jian Chen. "Integrating error-prone PCR and DNA shuffling as an effective molecular evolution strategy for the production of α-ketoglutaric acid byl-amino acid deaminase." RSC Advances 6, no. 52 (2016): 46149–58. http://dx.doi.org/10.1039/c6ra02940j.
Full textGaded, Vandana, and Ruchi Anand. "Nucleobase deaminases: a potential enzyme system for new therapies." RSC Advances 8, no. 42 (2018): 23567–77. http://dx.doi.org/10.1039/c8ra04112a.
Full textBishop, Kate N., Rebecca K. Holmes, and Michael H. Malim. "Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination." Journal of Virology 80, no. 17 (September 1, 2006): 8450–58. http://dx.doi.org/10.1128/jvi.00839-06.
Full textBrowne, Edward P., and Dan R. Littman. "Species-Specific Restriction of Apobec3-Mediated Hypermutation." Journal of Virology 82, no. 3 (November 21, 2007): 1305–13. http://dx.doi.org/10.1128/jvi.01371-07.
Full textBzowska, Agnieszka, and David Shugar. "Properties of 5′-AMP Deaminase and its Inhibitors with the Aid of a Continuous Fluorimetric Assay with Formycin-5′-phosphate as Substrate." Zeitschrift für Naturforschung C 44, no. 7-8 (August 1, 1989): 581–89. http://dx.doi.org/10.1515/znc-1989-7-808.
Full textGreenwell-Wild, Teresa, Nancy Vázquez, Wenwen Jin, Zoila Rangel, Peter J. Munson, and Sharon M. Wahl. "Interleukin-27 inhibition of HIV-1 involves an intermediate induction of type I interferon." Blood 114, no. 9 (August 27, 2009): 1864–74. http://dx.doi.org/10.1182/blood-2009-03-211540.
Full textDafou, Dimitra, Eirini Kanata, Spyros Pettas, Nikolaos Bekas, Athanasios Dimitriadis, Garyfalia Kempapidou, Roza Lagoudaki, et al. "RNA Editing Alterations Define Disease Manifestations in the Progression of Experimental Autoimmune Encephalomyelitis (EAE)." Cells 11, no. 22 (November 12, 2022): 3582. http://dx.doi.org/10.3390/cells11223582.
Full textLIU, Chengqian, Yulia Mukienko, Chengxiang Wu, and Andrey Zavialov. "Human adenosine deaminases control the immune cell responses to activation signals by reducing extracellular adenosine concentration." Journal of Immunology 196, no. 1_Supplement (May 1, 2016): 124.63. http://dx.doi.org/10.4049/jimmunol.196.supp.124.63.
Full textVieira, Valdimara C., and Marcelo A. Soares. "The Role of Cytidine Deaminases on Innate Immune Responses against Human Viral Infections." BioMed Research International 2013 (2013): 1–18. http://dx.doi.org/10.1155/2013/683095.
Full textThuy-Boun, Alexander S., Justin M. Thomas, Herra L. Grajo, Cody M. Palumbo, SeHee Park, Luan T. Nguyen, Andrew J. Fisher, and Peter A. Beal. "Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition." Nucleic Acids Research 48, no. 14 (June 29, 2020): 7958–72. http://dx.doi.org/10.1093/nar/gkaa532.
Full textEid, Ayman, Sahar Alshareef, and Magdy M. Mahfouz. "CRISPR base editors: genome editing without double-stranded breaks." Biochemical Journal 475, no. 11 (June 11, 2018): 1955–64. http://dx.doi.org/10.1042/bcj20170793.
Full textIsquith, Jane Marie, Adam Mark, Jessica Pham, Mary Donohoe, Luisa Ladel, and Catriona Jamieson. "Abstract 899: Effects of innate immune deaminase deregulation on initiation and progression of myeloproliferative neoplasms." Cancer Research 82, no. 12_Supplement (June 15, 2022): 899. http://dx.doi.org/10.1158/1538-7445.am2022-899.
Full textMartín, Susana, José M. Cuevas, Ana Grande-Pérez, and Santiago F. Elena. "A putative antiviral role of plant cytidine deaminases." F1000Research 6 (May 3, 2017): 622. http://dx.doi.org/10.12688/f1000research.11111.1.
Full textMartín, Susana, José M. Cuevas, Ana Grande-Pérez, and Santiago F. Elena. "A putative antiviral role of plant cytidine deaminases." F1000Research 6 (June 15, 2017): 622. http://dx.doi.org/10.12688/f1000research.11111.2.
Full textNabel, Christopher S., Emily K. Schutsky, and Rahul M. Kohli. "Molecular targeting of mutagenic AID and APOBEC deaminases." Cell Cycle 13, no. 2 (November 15, 2013): 171–72. http://dx.doi.org/10.4161/cc.27036.
Full text