To see the other types of publications on this topic, follow the link: DC conductivity.

Dissertations / Theses on the topic 'DC conductivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'DC conductivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Bhat, Shreyas. "Salinity (conductivity) sensor based on parallel plate capacitors." [Tampa, Fla] : University of South Florida, 2005. http://purl.fcla.edu/usf/dc/et/SFE0001381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Inho. "Defect structure and DC electrical conductivity of titanium dioxide-niobium dioxide solid solution." Case Western Reserve University School of Graduate Studies / OhioLINK, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=case1054571769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Edakkara, A. J., J. J. Mathen, J. Sebastian, G. Ramalingam, and G. P. Joseph. "Electrical Behaviour of Polyethylene Vinyl Acetate / ZnO Nanocomposite." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35634.

Full text
Abstract:
Recently, nanoscale materials have attracted material scientists because of their unique size depend-ent magnetic, optical, electrical and thermal properties. Homogeneous dispersion of nanoparticles in the polymer matrix and control of their size are vital to achieve many of these properties. In the present work, Zinc Oxide (ZnO) nanoparticles were prepared by solvothermal route. Chemical replacement reaction was chosen for the homogeneous dispersion of prepared ZnO nanoparticles into polymer matrix. Zinc oxide is an inorganic material with a large direct band gap (3.34 eV), high exciton binding energy (60 meV) and having a unique combination of properties. In inorganic/polymetric composite, the semiconducting nanoclusters enhances the electrical and thermal properties. The dielectric properties of the composites were studied using HIOKI 3532-50 LCR Hitester. The dielectric constant was found to increase with in-creasing the concentration of nano filler. DC electrical conductivity as a function of temperature was stud-ied using Keithley picoammeter 6485. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35634
APA, Harvard, Vancouver, ISO, and other styles
4

Fowler, Grant E. "Assessing the role of filler atoms in skutterudites and synthesis and characterization of new filled skutterudites." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mbah, Jonathan Chinwendu. "Endurance materials for hydrogen sulfide splitting in electrolytic cell." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martin, Joshua. "Methods of thermoelectric enhancement in silicon-germanium alloy type I clathrates and in nanostructured lead chalcogenides." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Runkles, Brian David. "A study on the calibration and accuracy of the one-step TDR method." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Horsfield, Brendan. "The application of microwave sensing to the measurement of cheese curd moisture." University of Southern Queensland, Faculty of Sciences, 2001. http://eprints.usq.edu.au/archive/00001446/.

Full text
Abstract:
There is a need in the dairy industry for instrumentation capable of providing on-line information about the moisture content of cheese during manufacture. Present measurement techniques are usually performed off-line and can be susceptible to human error. It is demonstrated that microwave-based moisture sensing techniques offer a number of potential advantages over conventional methods due to the strong interaction of microwaves with water. The permittivity of cream cheese curd and low-fat cheddar cheese curd has been measured over a range of frequencies and moisture contents in order to establish the relationship between these variables. A vector reflection coefficient measurement engine based on a six-port reflectometer has been built and tested. A suitable sensing head has been fabricated from a short length of microstrip transmission line. Two sensor characterisation models have been developed and compared with measured data. A novel algorithm has been developed to resolve the ambiguity inherent in many permittivity measurement techniques. It has been discovered that surface waves can propagate on a grounded dielectric slab covered by a material with a higher dielectric constant, provided the loss factor of the covering medium is greater than zero. It has also been found that the dominant mode of microstrip can radiate when the line is covered by a high-permittivity material, although this can be suppressed if the covering material is sufficiently lossy. There are three principal conclusions to draw from the investigation in this thesis. Firstly, changes in the moisture content of cheese curd during manufacture produce measurable variations in permittivity. Secondly, these changes can be measured accurately and cheaply using off-the-shelf microwave hardware. Finally, considerable attention must be paid to the characterisation of the sensing head if the instrument is to achieve its full potential. Promising results have been obtained in this area, however certain issues pertaining to the propagation of multiple dominant modes and higher order modes have not been fully resolved and would repay further theoretical analysis.
APA, Harvard, Vancouver, ISO, and other styles
9

Fawcett, Timothy J. "Investigation into the hydrogen gas sensing mechanism of 3C-SiC resistive gas sensors." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kovalchuk, Nataliya. "Advances in Magnetic Resonance Electrical Impedance Mammography." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Abtew, Tesfaye Ayalew. "Structure and Carrier Transport in Amorphous Semiconductors." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1174329920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Metjari, Anas. "Méthodologie de calibration DC/AC de sondes thermorésistives pour la microscopie thermique. Applications à la quantification des échanges pointe/environnements et à la mesure de résistances thermiques de contact." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0291.

Full text
Abstract:
Ce travail de thèse porte sur la caractérisation du transport de la chaleur dans les nanomatériaux par microscopie thermique à balayage (SThM). Cette technique est utilisée pour la mesure des propriétés thermiques de micro-objets à l’échelle de quelques dizaines de nanomètres. Parvenir à des mesures quantitatives à ces échelles demeure un défi du fait de la complexité des échanges à l’interface entre la sonde et l’échantillon. Pour répondre à ces problématiques, nous avons développé un banc expérimental permettant de contrôler l’environnement et ainsi contrôler les modes de transfert. Nous avons également mis en place une approche fréquentielle (3ω) pour l’étude thermique. Les signaux expérimentaux obtenus sur ce banc ont été comparés et analysés à l’aide d’une modélisation détaillée de la pointe SThM par éléments finis. Dans ce cadre nous avons démontré la fiabilité du banc pour étudier des matériaux qui ont une conductivité thermique comprise entre 0.1 et 100 W/m.K
This PhD-thesis work focuses on the characterization of heat transport in nanomaterials by scanning thermal microscopy (SThM). This technique is used to measure the thermal properties of micro-objects at the scale of a few tens of nanometers. Achieving quantitative measurements at these scales remains a challenge due to the complexity of the heat exchanges at the interface between the probe and the sample. To address these issues, we have developed an experimental bench to control the environment and thus control the heat transfer modes. We have also set up a frequency approach (3ω) for the thermal study. The experimental signals obtained on this bench were compared and analyzed using detailed finite element modeling of the SThM tip. In this framework we have demonstrated the reliability of our bench to study materials with a thermal conductivity between 0.1 and 100 W/m.K
APA, Harvard, Vancouver, ISO, and other styles
13

Diarra, Alimata. "Mesures de propriétés thermiques des métaux par procédé électromagnétique." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI019/document.

Full text
Abstract:
L’industrie de métallurgie est demandeuse de propriétés thermophysiques essentielles pour la modélisation et l’optimisation des procédés d’élaborations.Les propriétés thermophysiques des métaux et des alliages métalliques à l’état liquide sont mal connues. Ces propriétés dépendent de la température et sont difficiles à mesurer surtout à haute température. A l’état liquide, le métal est réactif et facilement polluable. Dans les années 1980, Egry a développé un lévitateur électromagnétique TEMPUS pour mesurer en apesanteur sans contact matériel les propriétés thermophysiques des métaux et alliages en fusion. Dans l’espace, les effets du brassage électromagnétique et de la déformation des échantillons fondus sont beaucoup plus faibles que sur terre.L’emploi de cet outil spatial est coûteux. C’est pour, à terme, diminuer les coûts tout en maintenant voire améliorant la qualité des mesures, que nous avons souhaité remplacer la microgravité par un champ magnétique continu.Les travaux réalisés dans cette thèse consistent à mesurer les propriétés thermiques des métaux par procédé électromagnétique en utilisant une méthode de calorimétrie modulée.Elle comporte deux parties.-Une partie numérique dans laquelle nous avons simulé d’une part le lévitateur spatial TEMPUS et d’autre part le lévitateur terrestre AEXAM.La simulation du lévitateur spatial TEMPUS a pour but de déterminer l’effet de la superposition de courants inducteurs de fréquences différentes (courants de chauffage et de centrage) sur les comportements hydrodynamique et thermique de la goutte. Les résultats des calculs nous ont montré que le courant de centrage est susceptible d’agir sur les mesures.La simulation du lévitateur terrestre AEXAM consiste à déterminer la fréquence d’oscillation verticale de la goutte, la puissance Joule dissipée dans celle-ci, les champs de vitesse et de température. La goutte prend la forme d’une poire et elle oscille à une fréquence de 7 Hz. La puissance Joule dissipée dans la charge est maximale vers le bas de la charge dans les premiers millimètres à mi-hauteur entre l’équateur et le pôle. Elle diminue en pénétrant dans la charge et est nul sur l’axe de symétrie. La convection dans la goutte crée un brassage électromagnétique et homogénéise le champ de température.-Une partie expérimentale dans laquelle le lévitateur AEXAM a été placé dans un champ magnétique continu horizontal pour amortir l’oscillation verticale et le brassage électro-magnétique de la goutte mentionnée dans les calculs. Ceci nous a permis la mise en œuvre d’un protocole de mesure original sur un métal liquide. Ce protocole est un programme de traitement des donnés basé sur le comportement du champ de température lorsque les sources thermiques internes à l’échantillon sont instationnaires. Dans ce programme, nous avons utilisé une fonction d’identification qui permet d’obtenir un modèle mathématique à partir de mesures. Pour obtenir un modèle mathématique consistant, il est important d'exciter le système avec toutes les fréquences de sa plage de fonctionnement. C’est ce que nous faisons quand nous appliquons un bruit blanc sur la consigne d’entrée du générateur. Nous avons précédemment validé le protocole sur du solide en remontant aux valeurs de la capacité calorifique et de la conductivité thermique.Pour optimiser les pertes de masse, les instabilités sur les mesures du courant inducteur et la bonne reproductivité des mesures sur une goutte, nous avons choisi une masse initiale de 3,5 g pour faire les mesures avec modulation du courant inducteur dans un champ magnétique continu de 1 Tesla. Nous avons obtenu les valeurs de la capacité calorifique et de la conductivité thermique de la goutte. Celles-ci sont voisines des valeurs données par la littérature. Ce qui nous a permis de valider en partie le protocole de traitement des mesures.Dans le futur, ce protocole peut être appliqué sur des alliages métalliques
The metal industry is requesting essential thermophysical properties for modeling and optimizing elaboration processes.Thermophysical properties of metals and metal alloys in liquid state are well known. These properties depend on the temperature and are difficult to measure especially at high temperature. In the liquid state, the metal is reactive and easily contaminated .In the 1980s, Egry developed an electromagnetic levitator TEMPUS developed an electromagnetic levitator TEMPUS to measure thermophysical properties of molten metals and alloys using a contactless technique under microgravity conditions. In space, the effects of electromagnetic stirring and deformation in molten samples are much lower than on Earth.The use of this space tool is expensive. In order to reduce the cost while maintaining or even improving the quality of measurements, we wanted to replace microgravity by a continuous magnetic field.The work in this thesis includes measuring the thermal properties of metals by electromagnetic method using a modulated calorimetry technique.The work has been divided in two parts:-The first consisted in the numerical simulation of space levitator TEMPUS and a terrestrial levitator AEXAM.The numerical simulation of space levitator TEMPUS aims to determine the effect of the superposition currents of different induction frequencies (heating currents and centering) on the hydrodynamic and thermal behavior of the drop. Calculation results showed that in some cases the centering current is likely to act on the measures and therefore it should be taking into account.The numerical simulation of terrestrial levitator AEXAM was destined to determine the vertical oscillation frequency of the drop, the power dissipated, the velocity fields developed inside and temperature. The drop takes the form of a pear and oscillates at a frequency of 7 Hz. The Joule power dissipated in the load is maximum on the lower part of the drop and decreases towards the interior of the drop vanishing at the center. Convection in the drop creates an electromagnetic stirring and homogenizing the temperature field.-The second part present the experiments performed using the levitator AEXAM placed in a horizontal continuous magnetic field for dampening the vertical oscillation and the turbulence produced by the effect of the electromagnetic stirring as it was mentioned in the calculations.This allowed us the implementation of a new protocol for measuring thermal properties in liquid metals.The protocol is a post processing program based on the temperature field variation resulting from unsteady joule power dissipation in the charge. An implemented identification function provides a mathematical model based on performed measurements. The use of a wide range of system frequencies was required to obtain a robust mathematical model. This was achieved by using pseudo-white noise perturbation at the generator inlet. The program has been validated successfully on solid matter by reverse determination of thermal conductivity and heat capacity.The preliminary studies under continuous magnetic field without modulation have mounted for a maximum initial weight of 3.5, we have less mass loss and improved measurement stability of the inductor current, as well as the reproductivity of the measurements.The protocol was validated successfully on the liquid charge using modulated perturbation under a continuous magnetic field of 1 Tesla. The obtained values of the heat capacity and thermal conductivity were comparable to the values given by the literature which partially validates the protocol.As a perspective, this protocol can be applied to a wide range of metal alloys
APA, Harvard, Vancouver, ISO, and other styles
14

Börner, Jana H. "Electrical phenomena during CO2–rock interaction under reservoir conditions : experimental investigations and their implications for electromagnetic monitoring applications." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2016. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-206674.

Full text
Abstract:
Geophysical methods are essential for exploration and monitoring of subsurface formations, e.g. in carbon dioxide sequestration or enhanced geothermal energy. One of the keys to their successful application is the knowledge of how the measured physical quantities are related to the desired reservoir parameters. The work presented in this thesis shows that the presence of carbon dioxide (CO2) in pore space gives rise to multiple processes all of which contribute to the electrical rock conductivity variation. Basically, three mechanisms take place: (1) CO2 partially replaces the pore water, which is equivalent to a decrease in water saturation. (2) CO2 chemically interacts with the pore water by dissolution and dissociation. These processes change both the chemical composition and the pH of the pore filling fluid. (3) The low-pH environment can give rise to mineral dissolution and/or precipitation processes and changes the properties of the grain-water interface. Investigations on the pore water phase show that the reactive nature of CO2 in all physical states significantly acts on the electrical conductivity of saline pore waters. The physico-chemical interaction appears in different manifestations depending mainly on the pore water composition (salinity, ion types) but also on both temperature and pressure. The complex behaviour includes a low- and a high-salinity regime originating from the conductivity increasing effect of CO2 dissociation, which is opposed by the conductivity decreasing effect of reduced ion activity caused by the enhanced mutual impediment of all solutes. These results are fundamental since the properties of the water phase significantly act on all conduction mechanisms in porous media. In order to predict the variation of pore water conductivity, both a semi-analytical formulation and an empirical relationship for correcting the pore water conductivity, which depends on salinity, pressure and temperature, are derived. The central part of the laboratory experiments covers the spectral complex conductivity of water-bearing sand during exposure to and flow-through by CO2 at pressures up to 30MPa and temperatures up to 80°C. It is shown that the impact of CO2 on the real part of conductivity of a clean quartz sand is dominated by the low- and high-salinity regime of the pore water. The obtained data further show that chemical interaction causes a reduction of interface conductivity, which could be related to the low pH in the acidic environment. This effect is described by a correction term, which is a constant value as a first approximation. When the impact of CO2 is taken into account, a correct reconstruction of fluid saturation from electrical measurements is possible. In addition, changes of the inner surface area, which are related to mineral dissolution or precipitation processes, can be quantified. Both the knowledge gained from the laboratory experiments and a new workflow for the description and incorporation of geological geometry models enable realistic finite element simulations. Those were conducted for three different electromagnetic methods applied in the geological scenario of a fictitious carbon dioxide sequestration site. The results show that electromagnetic methods can play an important role in monitoring CO2 sequestration. Compared to other geophysical methods, electromagnetic techniques are generally very sensitive to pore fluids. The proper configuration of sources and receivers for a suitable electromagnetic method that generates the appropriate current systems is essential. Its reactive nature causes CO2 to interact with a water-bearing porous rock in a much more complex manner than non-reactive gases. Without knowledge of the specific interactions between CO2 and rock, a determination of saturation and, consequently, a successful monitoring are possible only to a limited extend. The presented work provides fundamental laboratory investigations for the understanding of the electrical properties of rocks when the reactive gas CO2 enters the rock-water system. All laboratory results are put in the context of potential monitoring applications. The transfer from petrophysical investigations to the planning of an operational monitoring design by means of close-to-reality 3D FE simulations is accomplished.
APA, Harvard, Vancouver, ISO, and other styles
15

Chen, Yong-yi, and 陳勇邑. "Growth of Diamond Films by DC-PECVD and Conductivity Measurement of Hydrogenated Diamond Surface." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/57543633440533563414.

Full text
Abstract:
碩士
國立成功大學
微電子工程研究所碩博士班
97
We have grown poly-crystalline diamond films by means of a home-built DC-PECVD. We observed the film variation by fine-tuning the growth parameters such as discharge current density, feeding gas concentration, substrate materials etc. Diamond films can be grown without water cooling when electrodes made of Molybdenum were added with a 60 Hz AC power superimposed with a DC voltage. We found that vacuum O-rings were melted at high growth temperature. To avoid the drawback, the connector material between the power supply and the Molybdenum electrode needs to be stainless steel because of its low thermal conductivity which decreases the heat transfer to O-rings. Molybdenum’s high melting point of 2600℃ avoided the thermal induced electrode breakdown. Because a high input power can still cause thermal induced system breakdown, the growth rate of diamond films was still limited. We found that this drawback can be improved by adding a water cooling system that removed heat effectively. Thus, we can use a higher input power which increases the diamond film growth rate. By a systematic study, the best growth condition was found. Hydrogen terminated diamond films were grown by feeding an adequate hydrogen flow into the gas mixture for plasma generation. There is a conductive layer on the surface of a diamond film, after the sample was exposed to ambient air. The conductive layers were found on both poly- and single- crystalline diamond films. The conductive layer disappeared after the sample was exposed to Air- or Ar- plasma. When the sample was treated with a hydrogen plasma again and then exposed to ambient air for about 30 minutes, the conductive layer was restored again. This conductive film has potential for application to many new electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
16

Lin, Rueide, and 林瑞德. "Investigation of the Ionic Conductivity of ZrO2-Based Nano-Films Grown by Pulsed-DC Sputtering." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/16589365374557307998.

Full text
Abstract:
碩士
明志科技大學
材料工程研究所
101
The microstructure and ionic conductivity of reactively sputtered yttria-stabilized zirconia (YSZ) films in various sputtering modes are systematically studied using a closed-loop controlled system with plasma emission monitoring. A transition-mode sputtering corresponding to 45% of target poisoning produces a microstructure with ultrafine crystallites embedded in the amorphous matrix, which undergoes an abnormal grain growth upon annealing. The ionic conductivity of such a film is found to be higher than that of poisoning mode by about a half order of magnitude, which in turn higher than the YSZ bulk by about one order of magnitude. Formation of an ultra-large grained YSZ film is believed to be responsible for the former comparison due to the suppression of the grain boundary blocking effect, while the latter comparison can be attributed to the interface effect. The residual stress of YSZ film is evaluated by cos2αsin2ψ methodology. The XRD data result in that an in-plane compressive stress is applied to the as-deposited and annealed film. Oxygen vacancy provides a diffusion site and dictates the diffusivity of oxygen ions, while the radius of oxygen vacancy is dependent on the residual stress surrounding it. When the residual stress is shifted from a compressive to a tensile mode by thermal annealing, the radius of oxygen vacancy will be increased and the ionic conductivity will thus be enhanced. In addition, variations of ionic conductivities of amorphous Al2O3/ YSZ (30 nm) hetero-structures with different Al2O3 coating were also investigated in this work. We found that aluminum ion bombardment induced enhancement of film crystallinity, eliminate of dislocation and release of interfacial residual stress in a nano-YSZ film near the surface of the quartz substrate during deposition of a-Al2O3 layer. After annealed at 800oC for 2hrs, the ionic conductivity of specimens is observed to increase with an increase of amorphous Al2O3 film thickness from 10 to 30 um, because of increasing of tensile stress at the interface. However, the ionic conductivities of (Al2O3/YSZ)n nano-films on quartz substrate are found to periodically decrease with an increase of Al2O3 layer amount and all lower than that of single YSZ film. It due to that Al atom diffuses to YSZ layer to restrict oxygen ion migration, based upon analyses of TEM and EDS observations.
APA, Harvard, Vancouver, ISO, and other styles
17

Vakili, Fatemeh. "High Resolution Geophysical Characterization of a Gasoline Release into a Sand Column." Thesis, 2008. http://hdl.handle.net/10012/4066.

Full text
Abstract:
A controlled column experiment was conducted to investigate the geophysical response of gasoline spills into the partially saturated sand column. The column was 0.61 diameter (ID) and 2 m high cylindrical polyvinyl chloride, which was packed with the Borden sand to a height of 1.95 m, flushed with CO2, saturated, and drained to a height of 0.73 m. The monitoring techniques used for this experiment was DC resistivity and time domain reflectometry (TDR) methods. The column was equipped with resistivity electrodes and TDR probes, which were placed on the column wall vertically with 3 cm intervals, on opposite sides, two monitoring wells, an injection well, a manometer, an outlet/inlet system, and a vent. A total amount of 5 liters of standard API 91-01 gasoline was added to the system in steps of 1, 2, and 2 liters to examine the geophysical response to different amounts of gasoline. Measurements were taken before and after each injection and also during subsequent fluctuation of the water table. Both monitoring techniques were able to record even the minor changes in the trend of conductivity and permittivity profiles due to the addition of the small amount of gasoline during the first spill. The conductivity and permittivity profiles obtained before lowering the water level below the original level and those obtained after the water level reached to the original level do not match, which is an indication of entrapped gasoline inside the pores. Two core samples was taken from the sand symmetrically after each water table fluctuation and analyzed for total petroleum hydrocarbon (TPH) analysis and the results were compared to the conductivity and permittivity results. The conductivity profile obtained using DC resistivity method was compared to that of obtained using TDR method. The profiles match in the saturated zone where all of the pores are connected with water and therefore electrolytic conduction is predominant. In the unsaturated zone, where there is low pore water connectivity, TDR measured conductivity values are higher than those measured using the resistivity method. Water saturation values were calculated using conductivity and permittivity values before and after each injection. Different values of saturation exponent (n) were tested for Archie’s law until an appropriate value was found which gave the best water saturation from conductivity data for clean Borden sand. Then, the water saturation obtained from permittivity values using Topp’s equations for different materials were compared to that of obtained from conductivity values using Archie’s equation. Topp’s equation for 30 µm glass beads provided the best match. Furthermore, other equations developed by other researchers were examined to obtain water saturation profiles from the permittivity values; all of them overestimate the water saturation for Borden sand. The water saturation profiles after the gasoline spills obtained using both Archie’s law and Topp’s equation do not match, perhaps because both equations were developed for three-phase (water-solid-air) systems.
APA, Harvard, Vancouver, ISO, and other styles
18

(9533396), Goon mo Koo. "On the development of Macroscale Modeling Strategies for AC/DC Transport-Deformation Coupling in Self-Sensing Piezoresistive Materials." Thesis, 2020.

Find full text
Abstract:
Sensing of mechanical state is critical in diverse fields including biomedical implants, intelligent robotics, consumer technology interfaces, and integrated structural health monitoring among many others. Recently, materials that are self-sensing via the piezoresistive effect (i.e. having deformation-dependent electrical conductivity) have received much attention due to their potential to enable intrinsic, material-level strain sensing with lesser dependence on external/ad hoc sensor arrays. In order to effectively use piezoresistive materials for strain-sensing, however, it is necessary to understand the deformation-resistivity change relationship. To that end, many studies have been conducted to model the piezoresistive effect, particularly in nanocomposites which have been modified with high aspect-ratio carbonaceous fillers such as carbon nanotubes or carbon nanofibers. However, prevailing piezoresistivity models have important limitations such as being limited to microscales and therefore being computationally prohibitive for macroscale analyses, considering only simple deformations, and having limited accuracy. These are important issues because small errors or delays due to these challenges can substantially mitigate the effectiveness of strain-sensing via piezoresistivity. Therefore, the first objective of this thesis is to develop a conceptual framework for a piezoresistive tensorial relation that is amenable to arbitrary deformation, macroscale analyses, and a wide range of piezoresistive material systems. This was achieved by postulating a general higher-order resistivity-strain relation and fitting the general model to experimental data for carbon nanofiber-modified epoxy (as a representative piezoresistive material with non-linear resistivity-strain relations) through the determination of piezoresistive constants. Lastly, the proposed relation was validated experimentally against discrete resistance changes collected over a complex shape and spatially distributed resistivity changes imaged via electrical impedance tomography (EIT) with very good correspondence. Because of the generality of the proposed higher-order tensorial relation, it can be applied to a wide variety of material systems (e.g. piezoresistive polymers, cementitious, and ceramic composites) thereby lending significant potential for broader impacts to this work.

Despite the expansive body of work on direct current (DC) transport, DC-based methods have important limitations which can be overcome via alternating current (AC)-based self-sensing. Unfortunately, comparatively little work has been done on AC transport-deformation modeling in self-sensing materials. Therefore, the second objective of this thesis is to establish a conceptual framework for the macroscale modeling of AC conductivity-strain coupling in piezoresistive materials. For this, the universal dielectric response (UDR) as described by Joncsher's power law for AC conductivity was fit to AC conductivity versus strain data for CNF/epoxy (again serving as a representative self-sensing material). It was found that this power law does indeed accurately describe deformation-dependent AC conductivity and power-law fitting constants are non-linear in both normal and shear strain. Curiously, a piezoresistive switching behavior was also observed during this testing. That is, positive piezoresistivity (i.e. decreasing AC conductivity with increasing tensile strain) was observed at low frequencies and negative piezoresistivity (i.e. increasing AC conductivity with increasing tensile strain) was observed at high frequencies. Consequently, there exists a point of zero piezoresistivity (i.e. frequency at which AC conductivity does not change with deformation) between these behaviors. Via microscale computational modeling, it was discovered that changing inter-filler tunneling resistance acting in parallel with inter-filler capacitance is the physical mechanism of this switching behavior.
APA, Harvard, Vancouver, ISO, and other styles
19

Varga, Martin. "Studium stejnosměrných a střídavých charakteristik polyanilinu v závislosti na technologii přípravy." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-295914.

Full text
Abstract:
Our aim in the present work is to provide and evaluate AC and DC characteristics of the polyaniline based materials. Different experiemtal techniques and devices have been used to achieve this goal. An introduction to the theoretical concepts of conductivity is given as well. The core of this thesis is an investigation of temperature and low pressure dependences, as well as the ageing effects for two systems (composites) in respect of the different preparation conditions such as dopants and their molar concentration, origin and the content of inorganic component and the way of polymerisation. An agreement with theoretical models is discussed.
APA, Harvard, Vancouver, ISO, and other styles
20

Παλιάτσας, Νικόλαος. "Μελέτη θερμικής γήρανσης λεπτών υμενίων PEDOT:PSS με μετρήσεις ειδικής αγωγιμότητας συνεχούς ρεύματος." Thesis, 2008. http://nemertes.lis.upatras.gr/jspui/handle/10889/944.

Full text
Abstract:
Στην παρούσα εργασία μελετήθηκε η θερμική γήρανση του poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS), με μετρήσεις ειδικής αγωγιμότητας συνεχούς ρεύματος, φασματοσκοπίας φωτοηλεκτρονίων και ηλεκτρονίων Auger από ακτίνες-Χ (XPS και ΧΑΕS) και φασματοσκοπίας φωτο-ηλεκτρονίων από υπεριώδη ακτινοβολία (UPS). Για τη μελέτη αυτή χρησιμοποιήθηκαν δείγματα PET (Polyethylene terephthalate) PEDOT:PSS, υπό μορφή λεπτών υμενίων (films), πάχους επίστρωσης 50 nm και 180 nm. Οι θερμοκρασίες στις οποίες καταπονήθηκαν τα δείγματα ήταν οι 120οC, 150οC και 170οC, ενώ οι χρόνοι καταπόνησης κυμάνθηκαν από 0 έως 100 ώρες περίπου. Για την επεξεργασία των μετρήσεων θερμικής γήρανσης, χρησιμοποιήθηκε το μοντέλο Variable Range Hopping (VRH) του Mott που προβλέπει μια εξάρτηση της σ(Τ) της μορφής: (VRH) Στη σχέση αυτή σ είναι η ειδική ηλεκτρική αγωγιμότητα, Τ η θερμοκρασία, σο, Το σταθερές που εξαρτώνται από το υλικό και α εκθέτης που σχετίζεται με τον αριθμό των διαστάσεων που πραγματοποιείται η μετάβαση με άλματα ενός φορέα ηλεκτρικού φορτίου στις αλυσίδες του PEDOT. Τα αποτελέσματα αυτών των μετρήσεων έδειξαν ότι η θερμική ταλαιπωρία, οδηγεί στη θερμική γήρανση των δειγμάτων, με ταχύτερο ρυθμό στα λεπτότερα υμένια των 50 nm, καταδεικνύοντας ότι το πάχος επίστρωσης αποτελεί σημαντικό παράγοντα στην επιβράδυνση της γήρανσης. Οι φασματοσκοπικές μετρήσεις έδειξαν ότι η θερμική καταπόνηση οδηγεί στην μείωση του ποσοστού PSS στην επιφάνεια του δείγματος. Επίσης βρέθηκε ότι μειώνεται η τιμή του έργου εξόδου. Στην συνέχεια εξετάσθηκε η επίδραση παραγόντων, όπως ο χρόνος και ρυθμός θέρμανσης, καθώς και η περιβάλλουσα ατμόσφαιρα στην ηλεκτρική αγωγιμότητα. Παρατηρήθηκε ότι σε όλες τις περιπτώσεις κοντά στους 400 Κ σημειώνεται μετάβαση μονωτή-μετάλλου (Insulator-Metal Transition, IMT). Διαπιστώθηκε ότι το σημείο μετάβασης εξαρτάται σημαντικά από τις αλλαγές που προκαλούνται στη δομή των υμενίων. Από τις καμπύλες που προέκυψαν μετά από σταθερή θέρμανση δειγμάτων πάχους 120 nm, σε θερμοκρασίες από 100 oC έως 190 οC, παρατηρήθηκε ότι ανάλογα το χρόνο και τη θερμοκρασία καταπόνησης, είναι δυνατόν να σημειωθεί άλλοτε υποβάθμιση και άλλοτε βελτίωση της αγωγιμότητας. Τα φαινόμενα αυτά αποδόθηκαν στη δράση δύο ανταγωνιστικών μηχανισμών. Τέλος, η σύγκριση αποτελεσμάτων θερμικής καταπόνησης σε ατμοσφαιρικές συνθήκες και σε αδρανή ατμόσφαιρα He, έδειξε ότι η θερμική γήρανση ήταν πιο έντονη στην περίπτωση δειγμάτων που καταπονήθηκαν στον ατμοσφαιρικό αέρα, οφειλόμενη στις μη αντιστρεπτές δομικές αλλαγές που επιφέρει η οξείδωση παρουσία του οξυγόνου στις αλυσίδες του PEDOT. Αντίθετα, σε αδρανή ατμόσφαιρα Ηe οι ηλεκτρικές ιδιότητες βελτιώνονται σημαντικά με τη θέρμανση.
In this work the thermal aging of the copolymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been investigated by measuring the d.c. conductivity σ and photoelectron spectroscopy data (XPS, XAES, UPS). For this study thin films of PET PEDOT:PSS of 50 and 180 nm of thickness were used. The temperatures of the thermal treatment were 120 0C, 150 0C and 170 0C and the times of this process varied between 0 and 100 hours approximately. For the d.c. conductivity data, the Mott’s variable range hopping model was used, described by the following relation: (VRH) where T is the absolute temperature, σ0, T0 parameters depending on the material and α an exponent, which is related to the number of dimensions of the transport by hopping of a carrier in and between the PEDOT chains. These measurements showed that the thermal treatment has as a result the aging of the samples, which was more intense for the 50 nm films, proving that the increase of the samples thickness reduces significantly the thermal aging. The spectroscopic measurements showed that the thermal treatment leads to the removal the PSS percentage on the surface of the specimen. It was found also, that the value of the work function of the samples decreases with aging. Finally, the effect of the stability of d.c. conductivity value during prolonged heating at constant temperature, as well as the rate of the thermal treatment and the composition of the surrounding atmosphere on the electrical conductivity were investigated. It was found that in all cases, an insulator – metal transition (IMT) was taking place near the temperature of 400 K. The exact temperature of this transition depends on the changes taking place in the structure of the films. From the experimental curves after heating the 120 nm samples with constant rate for temperatures between 100 0C and 190 0C, it was found that it is possible to have either, deterioration or improvement of the conductivity. These phenomena were attributed to two different competitive mechanisms. Finally, the comparison of the results of the thermal treatment under atmospheric conditions and under inert atmosphere of He, showed that thermal aging is more intense in the first case, due to irreversible structural changes brought about by oxidization in the presence of moisture and oxygen in the PEDOT chains. On the other hand, it was found that the electrical properties were improved significantly by heating under the inert atmosphere of He.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography