Dissertations / Theses on the topic 'DBN (Deep Belief Network)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 dissertations / theses for your research on the topic 'DBN (Deep Belief Network).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Faulkner, Ryan. "Dyna learning with deep belief networks." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97177.
Full textL'objectif de l'apprentissage par renforcement est de choisir de bonnes actions dansun environnement où les informations sont fournies par une récompense numérique, etl'état actuel (données sensorielles) est supposé être disponible à chaque pas de temps. Lanotion de "correct" est définie comme étant la maximisation des rendements attendus cumulatifsdans le temps. Il est parfois utile de construire des modèles de l'environnementpour aider à résoudre le problème. Nous étudions l'apprentissage par renforcement destyleDyna, une approche performante dans les situations où les données réelles disponiblesne sont pas nombreuses. L'idée principale est de compléter les trajectoires réelles aveccelles simulées échantillonnées partir d'un modèle appri de l'environnement. Toutefois,dans les domaines à plusieurs états, le problème de l'apprentissage d'un bon modèlegénératif de l'environnement est jusqu'à présent resté ouvert. Nous proposons d'utiliserles réseaux profonds de croyance pour apprendre un modèle de l'environnement. Lesréseaux de croyance profonds (Hinton, 2006) sont des modèles génératifs qui sont efficaces pourl'apprentissage des relations de dépendance temporelle parmi des données complexes. Ila été démontré que de tels modèles peuvent être appris dans un laps de temps raisonnablequand ils sont construits en utilisant des modèles de l'énergie. Nous présentons notre algorithmepour l'utilisation des réseaux de croyance profonds en tant que modèle génératifpour simuler l'environnement dans l'architecture Dyna, ainsi que des résultats empiriquesprometteurs.
Kaabi, Rabeb. "Apprentissage profond et traitement d'images pour la détection de fumée." Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0017.
Full textThis thesis deals with the problem of forest fire detection using image processing and machine learning tools. A forest fire is a fire that spreads over a wooded area. It can be of natural origin (due to lightning or a volcanic eruption) or human. Around the world, the impact of forest fires on many aspects of our daily lives is becoming more and more apparent on the entire ecosystem.Many methods have been shown to be effective in detecting forest fires. The originality of the present work lies in the early detection of fires through the detection of forest smoke and the classification of smoky and non-smoky regions using deep learning and image processing tools. A set of pre-processing techniques helped us to have an important database which allowed us afterwards to test the robustness of the model based on deep belief network we proposed and to evaluate the performance by calculating the following metrics (IoU, Accuracy, Recall, F1 score). Finally, the proposed algorithm is tested on several images in order to validate its efficiency. The simulations of our algorithm have been compared with those processed in the state of the art (Deep CNN, SVM...) and have provided very good results. The results of the proposed methods gave an average classification accuracy of about 96.5% for the early detection of smoke
Bosello, Michael. "Integrating BDI and Reinforcement Learning: the Case Study of Autonomous Driving." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21467/.
Full textde, Giorgio Andrea. "A study on the similarities of Deep Belief Networks and Stacked Autoencoders." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174341.
Full textLarsson, Marcus, and Christoffer Möckelind. "The effects of Deep Belief Network pre-training of a Multilayered perceptron under varied labeled data conditions." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187374.
Full textMärkt data kan ibland vara svårt att hitta för maskininlärningsuppgifter. Detta är ett problem för modeller som bygger på övervakad inlärning, exem- pelvis Multilayerd Perceptron(MLP). Ett Discriminative Deep Belief Network (DDBN) är en semi-övervakad modell som kan använda både märkt och omärkt data. Denna forskning syftar till att närma sig en tumregel om när det är för- delaktigt att använda en DDBN i stället för en MLP, vid olika proportioner av märkt och omärkt data. Flera försök med olika mängd märkt data, från MNIST och Rectangle-Images datamängderna, genomfördes för att jämföra de två mo- dellerna. Det konstaterades att för dessa datamängder hade DDBNerna bättre precision när ett fåtal märkt data fanns tillgängligt. När 50% eller mer av datan var märkt, hade DDBNerna och MLPerna jämförbar noggrannhet. Slutsatsen är att en tumregel att använda en DDBN när mindre än 50% av av träningsdatan är märkt, skulle vara i linje med resultaten. Det behövs dock mer forskning för att göra några generella slutsatser.
Sadli, Rahmad. "Étude et développement d'un dispositif routier d'anticollision basé sur un radar ultra large bande pour la détection et l'identification notamment des usagers vulnérables." Thesis, Valenciennes, 2019. http://www.theses.fr/2019VALE0005.
Full textIn this thesis work, we focused on the study and development of a system identification using UWB-Ultra-Wide-Band short range radar to detect the objects and particularly the vulnerable road users (VRUs) that have low RCS-Radar Cross Section- such as cyclist and pedestrian. This work is composed of two stages i.e. detection and recognition. In the first approach of detection stage, we have proposed and studied a robust UWB radar detector that works on one dimension 1-D radar data ( A-scan). It relies on a combination of Higher Order Statistics (HOS) and the well-known CA-CFAR (Cell-Averaging Constant False Alarm Rate) detector. This combination is performed by firstly applying the HOS to the received radar signal in order to suppress the noise. After eliminating the noise of the received radar signal, we apply the CA-CFAR detector. By doing this combination, we finally have an UWB radar detector which is robust against the noise and works with the adaptive threshold. In order to enhance the detection performance, we have evaluated the approach of using two dimensions 2-D (B-Scan) radar data. In this 2-D radar approach, we proposed a new method of noise suppression, which works on this B-Scan data. The proposed method is a combination of WSD (Wavelet Shrinkage Denoising) and HOS. To evaluate the performance of this method, we performed a comparative study with the other noise removal methods in literature including Principal Component Analysis (PCA), Singular Value Decomposition (SVD), WSD and HOS. The Signal-to-Noise Ratio (SNR) of the final result has been computed to compare the effectiveness of individual noise removal techniques. It is observed that a combination of WSD and HOS has better capability to remove the noise compared to that of the other applied techniques in the literature; especially it is found that it allows to distinguish efficiency the pedestrian and cyclist over the noise and clutters whereas other techniques are not showing significant result. In the recognition phase, we have exploited the data from the two approaches 1-D and 2-D, obtained from the detection method. In the first 1-D approach, Support Vector Machines (SVM) and Deep Belief Networks (DBN) have been used and evaluated to identify the target based on the radar signature. The results show that the SVM gives good performances for the proposed system where the total recognition accuracy rate could achieve up to 96,24%. In the second approach of this 1-D radar data, the performance of several DBN architectures compose of different layers have been evaluated and compared. We realised that the DBN architecture with four hidden layers performs better than those of with two or three hidden layers. The results show also that this architecture achieves up to 97.80% of accuracy. This result also proves that the performance of DBN is better than that of SVM (96.24%) in the case of UWB radar target recognition system using 1-D radar signature. In the 2-D approach, the Convolutional Neural Network (CNN) has been exploited and evaluated. In this work, we have proposed and investigated three CNN architectures. The first architecture is the modified of Alexnet model, the second is an architecture with three convolutional layers and one fully connected layer, and the third is an architecture with five convolutional layers and two fully connected layers. The performance of these proposed architectures have been evaluated and compared. We found that the third architecture has a good performance where it achieves up to 99.59% of accuracy. Finally, we compared the performances obtained using CNN, DBN and SVM. The results show that CNN gives a better result in terms of accuracy compared to that of DBN and SVM. It allows to classify correctly the UWB radar targets like cyclist and pedestrian
Tong, Zheng. "Evidential deep neural network in the framework of Dempster-Shafer theory." Thesis, Compiègne, 2022. http://www.theses.fr/2022COMP2661.
Full textDeep neural networks (DNNs) have achieved remarkable success on many realworld applications (e.g., pattern recognition and semantic segmentation) but still face the problem of managing uncertainty. Dempster-Shafer theory (DST) provides a wellfounded and elegant framework to represent and reason with uncertain information. In this thesis, we have proposed a new framework using DST and DNNs to solve the problems of uncertainty. In the proposed framework, we first hybridize DST and DNNs by plugging a DSTbased neural-network layer followed by a utility layer at the output of a convolutional neural network for set-valued classification. We also extend the idea to semantic segmentation by combining fully convolutional networks and DST. The proposed approach enhances the performance of DNN models by assigning ambiguous patterns with high uncertainty, as well as outliers, to multi-class sets. The learning strategy using soft labels further improves the performance of the DNNs by converting imprecise and unreliable label data into belief functions. We have also proposed a modular fusion strategy using this proposed framework, in which a fusion module aggregates the belief-function outputs of evidential DNNs by Dempster’s rule. We use this strategy to combine DNNs trained from heterogeneous datasets with different sets of classes while keeping at least as good performance as those of the individual networks on their respective datasets. Further, we apply the strategy to combine several shallow networks and achieve a similar performance of an advanced DNN for a complicated task
Pasa, Luca. "Linear Models and Deep Learning: Learning in Sequential Domains." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3425865.
Full textCon la diffusione di dispositivi a basso costo, e reti di sensori (come ad esempio l'Internet of Things), nonché lo sviluppo di interfacce di interazione uomo-macchina a basso costo, la capacità di processare dati sequenziali in maniera veloce, e assicurando un basso consumo di risorse, è diventato sempre più importante. Molti sono i compiti che trarrebbero beneficio da un avanzamento in questo ambito, dal monitoraggio e classificazione di comportamenti umani fino alla predizioni di eventi futuri. Molti dei task citati richiedono l'uso di tecniche di pattern recognition e di abilità correlate con metodi tipici dell’apprendimento automatico. Molti sono gli approcci per eseguire apprendimento su domini sequenziali proposti nel recente passato, e molti sono basati su tecniche tipiche dell'ambito del Deep Learning. I metodi di Deep Learning sono tipicamente basati su sistemi fortemente non lineari, capaci di ottenere ottimi risultati in problemi di predizione/classificazione, ma che risultano anche essere molto costosi dal punto di vista computazionale. Quando si cerca di eseguire un compito di apprendimento su domini sequenziali, e più in generale su dati strutturati, tipicamente si ricorre all'utilizzo di sistemi non lineari. Non è però sempre vero che i task considerati richiedono modelli non lineari. Quindi il rischio è di andare ad utilizzare metodi troppo complessi, e computazionalmente costosi, per poi ottenere alla fine soluzioni che migliorano di un’epsilon (o anche no migliorano) i risultati ottenibili tramite l'utilizzo di sistemi lineari dinamici, che risultano essere molto meno costosi dal punto di vista dell'apprendimento, e del costo computazionale. L'obiettivo di questa tesi è di discutere del ruolo che i sistemi lineari dinamici possono avere nelle esecuzioni di compiti di apprendimento su dati strutturati. In questa tesi vogliamo mettere in luce le capacità dei sistemi lineari dinamici (LDS) di ottenere soluzioni molto buone ad un costo computazionale relativamente basso. Inoltre risulta interessante vedere come, nel caso in cui un sistema lineare non sia sufficiente per ottenere il risultato sperato, esso possa essere usato come base per costruire modelli più complessi, oppure possa essere utilizzato per eseguire la fase di pre-training per un modello non lineare, come ad esempio Echo State Networks (ESNs) e Recurrent Neural Networks (RNNs). Nello specifico in questa tesi è stato considerato un task di predizione dell'evento successivo, data una sequenza di eventi. I dataset usati per testare i vari modelli proposti nella tesi, contengono sequenze di musica polifonica, che risultano essere particolarmente lunghe e complesse. Nella prima parte della tesi viene proposto l'utilizzo del semplice modello LDS per affrontare il compito considerato. In particolare vengono considerati tre approcci diversi per eseguire l'apprendimento con questo modello. Viene poi introdotti nuovi modelli, ispirati al modello LDS, che hanno l'obiettivo di migliorare le prestazioni di quest'ultimo nei compiti di predizione/classificazione. Vengono poi considerati i più comuni modelli non lineari, in particolare il modello RNN il quale risulta essere significativamente più complesso e computazionalmente costoso da utilizzare. Viene quindi empiricamente dimostrato che, almeno per quanto riguarda il compito di predizione e i dataset considerati, l'introduzione di una fase di pre-training basati su sistemi lineari porta ad un significativo miglioramento delle prestazioni e della accuratezza nell'eseguire la predizione. In particolare 2 metodi di pre-training vengono proposti, il primo chiamato pre-training via Linear Autoencoder, ed il secondo basato su Hidden Markov Models (HMMs). I risultati sperimentali suggeriscono che i sistemi lineari possono giocare un ruolo importante per quanto riguarda il compito di apprendimento in domini sequenziali, sia che siano direttamente usati oppure siano usati indirettamente (come base per eseguire la fase di pre-training): infatti, usandoli direttamente, essi hanno permesso di raggiungere risultati che rappresentano lo stato dell'arte, andando però a richiedere uno sforzo computazionale molto limitato se confrontato con i più comuni modelli non lineari. Inoltre, anche quando le performance ottenute sono risultate non soddisfacenti, si è dimostrato che è possibile utilizzarli con successo per eseguire la fase di pre-training di sistemi non lineari.
Nassar, Alaa S. N. "A Hybrid Multibiometric System for Personal Identification Based on Face and Iris Traits. The Development of an automated computer system for the identification of humans by integrating facial and iris features using Localization, Feature Extraction, Handcrafted and Deep learning Techniques." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/16917.
Full textHigher Committee for Education Development in Iraq
Nguyen, Tien Dung. "Multimodal emotion recognition using deep learning techniques." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/180753/1/Tien%20Dung_Nguyen_Thesis.pdf.
Full textJosefsson, Alexandra. "Modeling an Embedded Climate System Using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290676.
Full textMånga applikationer har förbättras genom användningen av maskininlärning. Maskininlärning för reglersystem föreslogs redan på 1990-talet och har nu börjat tillämpas, eftersom processorkraft, lagringsmöjligheter och tillgänglighet till rådata ökat. I detta examensarbete användes ett inbäddat klimatsystem, som är en typ av reglersystem. Maskininlärningsmodellen Deep Belief Network användes för att undersöka hur delar av klimatsystemet skulle kunna återskapas. Först återskapades funktionaliteten hos en PID-regulator och sedan funktionaliteten av en mer komplex del av reglersystemet Prestandan hos nätverken utvärderades i jämförelse med prestandan i de ursprungliga kontrolldelarna och hårdvaran. Det visade sig att Deep Belief Network utmärkt kunde replikera PID-regulatorns beteende, medan prestandan var lägre för den komplexa delen av reglersystemet. Användningen av fördröjningar i indata till nätverken gav bättre resultat än utan. Ett klimatsystem med ett Deep Belief Network laddades också över på hårdvaran. Minimikrav för minnesanvändning och CPU- användning var uppfyllda, men CPU- användningen påverkades kraftigt. Detta gör, att om maskininlärning ska kunna användas i verkligheten, bör CPU-användningen minskas.
Yogeswaran, Arjun. "Self-Organizing Neural Visual Models to Learn Feature Detectors and Motion Tracking Behaviour by Exposure to Real-World Data." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37096.
Full textLam, Michael. "Retinotopic Preservation in Deep Belief Network Visual Learning." Thesis, 2011. http://hdl.handle.net/10012/5894.
Full textŠvaralová, Monika. "DRESS & GO: Deep belief networks and Rule Extraction Supported by Simple Genetic Optimization." Master's thesis, 2018. http://www.nusl.cz/ntk/nusl-383249.
Full textGolovizin, Andrey. "Deep neural networks and their application for image data processing." Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-346753.
Full textHSIEH, CHEN-EN, and 謝承恩. "Hardware Implementation of Deep Belief Network with Stochastic Computing." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/tjsjw4.
Full text國立高雄科技大學
電子工程系
107
The deep belief network (DBN) is a classic and representative neural network designed to solve classification problems. Stochastic computing (SC) is a highly efficient and attractive paradigm with low-cost hardware, the computation operation can be implemented by simple logic gates. The range of the conventional SC in the bipolar format is limited in the interval of [-1, 1], while the integral stochastic computing (ISC) expands the range to [-m, m], where m is the number of input streams. The new integral stochastic computing (NISC) has recently been introduced to improve hardware cost of ISC by reducing the number of states in the finite state machine (FSM). In this thesis, we propose a novel NISC-DBN architecture to improve hardware cost of the conventional ISC-DBN framework. The four-layer DBN structure 784-100-200-10 is considered. Simulation results reveal NISC-DBN outperform ISC-DBN in terms of the mean-square error (MSE). The classification accuracy of the NISC-DBN is also superior to that of ISC-DBN by applying the modified national institute of standards and technology (MNIST) dataset. The proposed NISC-DBN only increases the hardware cost by 1.6% over ISC-DBN in implementation the stochastic neuron of the first layer.
CHU, JUNG-HUI, and 朱容慧. "Applying Deep Belief Network to Forecast Air Pollution Concentration." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/67wf7m.
Full text龍華科技大學
資訊管理系碩士班
106
The issue of air pollution is more and more important because influence of air pollution is also increasing in the world. The environment is affected by air pollution which makes the plant is slowly grow, genetic mutations, or diseases in humans. This study proposed a suitable prediction models for air pollutants in various regions, and the prediction model can obtain better performance. When anomalies are predicted, early warning can be provided to increase the time for prevention. This study collected data on air pollutants from four monitoring stations which are respectively Linkou Station in the New Taipei City, Erlin Station in the Changlin County, Hualien Station in Hualien County, and Nanxun Station in the Kaohsiung City. The air quality monitoring stations of the Environmental Protection Agency collected SO2, CO, O3, PM10, NOx, NO, and NO2. This study used the DBN, SDBN, ARIMA, and SARIMA models to predict air pollution concentration. This study can provide suitable prediction model for air pollutants in various areas.
Ruiz, Vito Manuel. "Adaptation in a deep network." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-05-3156.
Full texttext
Chen, Yi-Ting, and 陳奕廷. "Application of Deep Belief Network on Binaural Speech Separation and Dereverberation." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/34100240484476159416.
Full text國立交通大學
電信工程研究所
103
Binaural speech separation and de-reverberation are popular research topics and we have developed an unsupervised clustering method for these purposes. In this thesis, we adopt a supervised classification method for binaural speech separation and de-reverberation using the ideal binary mask (IBM) as the training target and a deep belief network (DBN) as the classifier. We extract the interaural time difference (ITD) and the interaural level difference (ILD) of each T-F unit as the binaural features. To boost the performance of de-reverberation, the interaural coherence (IC) is considered when building the target IBM. We propose three different DBN architectures, the side-by-side training (monaural training), the joint training (binaural training) and the multitask learning, and compare their binaural de-reverberation performance with the performance of our previously developed unsupervised clustering method in terms of many objective criteria.
Lin, Yu-Jie, and 林鈺傑. "The Use of Deep Belief Network Technology to Predict the Stock Price Changes." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/tkqgpw.
Full text元智大學
資訊工程學系
106
Compared to the past, people pay more and more attention to investment, how to make better use of limited funds to become the important of thinking. Certificate of exchange in the Taiwan 104 years the latest statistics of the cumulative number of shares of more than 17 million households, we can see that stock trading in Taiwan has become an indispensable investment pipeline. Stock price data provide a successful example in the stock forecast market where artificial intelligence (AI) techniques such as the Neuron Network have been widely used to predict stock prices and assist in investment strategies. However, the traditional neural network has been rapidly developed by the deep belief network (DBN) in image processing and semantic identification and other areas beyond, because the deep belief network has developed a number of skilled technology can be applied, will be more complex price information to do subtle and high-level abstract features of the expression, you can use the recent popular deep belief network to achieve. The purpose of this paper is to use deep belief network and TensorFlow system for rapid modeling and training to help investors can quickly digest and learn these stock information into a useful strategy for investors. We mainly use the machine learning model is deep belief network can achieve high-dimensional data feature expression, and the use of restricted Boltzmann machine from the non-marked data to learn the non-linear representation, which is the future deep learning Trends. the ease of use of data, and the amount of data can make us predict that the data will be more complex and full of noise, and expensive manual tagging data will become increasingly scarce, how to train from the unmarked data with high accuracy The system is still in the study, but the system of this paper in the use of a smaller amount of marker data to predict the stock when the ups and downs have a certain accuracy of the ability to predict, and the efficient establishment and training deep belief network model.
Yu-PeiHuang and 黃裕培. "Devising a Model to Predict Financial Distress Based on the Deep Belief Network Algorithm." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/27zz3p.
Full text國立成功大學
高階管理碩士在職專班(EMBA)
105
The use of new artificial intelligent (AI) techniques, such as machine learning (ML) in the accounting domains, have unleashed great potential for researchers to improve accounting information systems (AIS). An automatic AIS reports financial statements from the supporting documents. The basic four financial statements provide information about the results of operations and financial position of an enterprise. As a result, those financial statements could be used to establish a diagnosis model for financial distress prediction (FDP). This study proposes an FDP model based on two ML approaches. Sixteen selected financial variables are calculated from financial statements to establish an FDP model using the deep belief network (DBN) algorithm coupled with the support vector machine (SVM) algorithm. Thrity-two distressed and thirty-two non-distressed companies (as matching samples) companies are selected from the Taiwan Economic Journal (TEJ) database, spanning the 2010-to-2016 sample period, to construct the FDP model. Three latent features of the financial data are extracted from 16 selected ratios by DBN and then divided into validation and training sets for SVM classification model construction. The constructed model is further used for prediction and evaluated by cross-validation. Our empirical results demonstrate that the proposed model could accurately predict the financial distress of a company. When using the previous two consecutive quarters of financial data before any event of distress, the prediction accuracy of the model could reach around 89% with the type I error of 4.7% and the type II error of 6.2%.
Wheng, Ko-Cheng, and 翁恪誠. "Multi-Task Learning based Deep Belief Network for Speech Emotion Recognition using Spectro-Temporal Modulations." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/dbfe9d.
Full text國立交通大學
電信工程研究所
103
Speech emotion recognition is a popular research topic from the last decade. Meanwhile, since the revival of deep learning in 2007, it has been adopted in various research fields. In this thesis, we use a deep belief network (DBN) as the classifier and examine its performance in detecting emotion states of noisy speech signals using rate-scale features (RS features) extracted from an auditory model. The noisy speech is derived by adding white and babble noises to clean utterances from the Berlin Emotional Speech database under various SNR levels. Afterward, the official feature set (Inter384) used in INTERSPEECH 2009 Emotion Challenge and a conventional support vector machine (SVM) classifier are considered for comparisons with the RS feature set and the DBN classifier, respectively. Furthermore, we propose an extended architecture of DBN based on the concept of multi-task learning (MTL) by adding a task of recognizing a different language (eNTERFACE 2005 Emotional Database) into the system. We postulate that one task could help speech emotion recognition performance of the other task. Simulation results demonstrate that (1) RS features yield higher recognition rates than Inter384 features; (2) DBN outperforms SVM using the RS features; (3) MTL-based DBN produces higher recognition rates than the original DBN.
Brocardo, Marcelo Luiz. "Continuous Authentication using Stylometry." Thesis, 2015. http://hdl.handle.net/1828/6098.
Full textGraduate
Chen, Ying-Tsen, and 陳映岑. "Applying the Method of Deep Belief Network Pre-trained by Restricted Boltzmann Machines on High Confused Mandarin Vowel Recognition." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/8pukp3.
Full text國立中興大學
統計學研究所
106
This thesis mainly uses deep belief network (DBN) pre-trained by restricted Boltzmann machine (RBM) to recognize high confused mandarin vowels such as ㄢ, ㄤ>, ㄛ , ㄨㄛ>, ㄥ, ㄣ>, etc. First, we would record the phonetic data of 20 speakers, and then perform a series of pre-processing such as digital sampling, endpoint detection, frame cutting, and windowing. Then take Mel-frequency cepstral coefficients (MFCC) as the features of the phonetic data, and use these features as the input to train the model. Different from multilayer perceptron (MLP) which uses random initial weights and biases, DBN uses RBM to pre-train the initial parameters in order to get a set of better initial parameters. After pre-training, take these initial parameters as the initial weights and biases of MLP, and then fine-tune these parameters by method of gradient descent. Since DBN obtains better initial parameters by pre-training, in the stage of using MLP to fine-tune parameters, the model converges faster than general MLP, and the recognition result is better, too. This research uses vowel data, each vowel has 25 frames, each frame has 39 features, and the model is DBN pre-trained by RBM which has one or two hidden layers. The identification rate of this method is at least 0.67% higher than that of MLP, and can increase by 9.61% at most. On average, DBN pre-trained by RBM has 4.59% higher identification rate than MLP.
Susskind, Joshua Matthew. "Interpreting Faces with Neurally Inspired Generative Models." Thesis, 2011. http://hdl.handle.net/1807/29884.
Full textAl-Waisy, Alaa S., Rami S. R. Qahwaji, Stanley S. Ipson, and Shumoos Al-Fahdawi. "A multimodal deep learning framework using local feature representations for face recognition." 2017. http://hdl.handle.net/10454/13122.
Full textThe most recent face recognition systems are mainly dependent on feature representations obtained using either local handcrafted-descriptors, such as local binary patterns (LBP), or use a deep learning approach, such as deep belief network (DBN). However, the former usually suffers from the wide variations in face images, while the latter usually discards the local facial features, which are proven to be important for face recognition. In this paper, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the DBN is proposed to address the face recognition problem in unconstrained conditions. Firstly, a novel multimodal local feature extraction approach based on merging the advantages of the Curvelet transform with Fractal dimension is proposed and termed the Curvelet–Fractal approach. The main motivation of this approach is that theCurvelet transform, a newanisotropic and multidirectional transform, can efficiently represent themain structure of the face (e.g., edges and curves), while the Fractal dimension is one of the most powerful texture descriptors for face images. Secondly, a novel framework is proposed, termed the multimodal deep face recognition (MDFR)framework, to add feature representations by training aDBNon top of the local feature representations instead of the pixel intensity representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary to those acquired by the Curvelet–Fractal approach. Finally, the performance of the proposed approaches has been evaluated by conducting a number of extensive experiments on four large-scale face datasets: the SDUMLA-HMT, FERET, CAS-PEAL-R1, and LFW databases. The results obtained from the proposed approaches outperform other state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by achieving new state-of-the-art results on all the employed datasets.
Cummer, Jason. "Methodology and Techniques for Building Modular Brain-Computer Interfaces." Thesis, 2014. http://hdl.handle.net/1828/5837.
Full textGraduate
0317
0984
jasoncummer@gmail.com