Academic literature on the topic 'Dati NGS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dati NGS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dati NGS"
Doan, Tri. "Investigator-Completed NGS Data Analysis." Clinical OMICs 1, no. 10 (September 24, 2014): 22–23. http://dx.doi.org/10.1089/clinomi.01.10.08.
Full textCybin, Aleksander, Vadim Sharov, Yuliya Putintseva, Sergey Feranchuk, and Dmitry Kuzmin. "Parallel repeats filtration algorithm of NGS ILLUMINA data." Proceedings of the Russian higher school Academy of sciences, no. 4 (December 20, 2016): 99–110. http://dx.doi.org/10.17212/1727-2769-2016-4-99-110.
Full textValverde, Jose R., Jose M. Rodríguez, Alexandro Rodriguez-Rojas, Alejandro Couce, and Jesus Blazquez. "NGS data analysis: the user POV." EMBnet.journal 17, B (February 28, 2012): 15. http://dx.doi.org/10.14806/ej.17.b.263.
Full textEberhard, D. "SP008 Clinical reporting of NGS data." European Journal of Cancer 49 (November 2013): S3. http://dx.doi.org/10.1016/s0959-8049(13)70086-8.
Full textCantalupo, Paul G., and James M. Pipas. "Detecting viral sequences in NGS data." Current Opinion in Virology 39 (December 2019): 41–48. http://dx.doi.org/10.1016/j.coviro.2019.07.010.
Full textPitluk, Zachary. "NGS Big Data Issues for Biomanufacturing." Genetic Engineering & Biotechnology News 37, no. 2 (January 15, 2017): 30–31. http://dx.doi.org/10.1089/gen.37.02.16.
Full textAn, Omer, Kar-Tong Tan, Ying Li, Jia Li, Chan-Shuo Wu, Bin Zhang, Leilei Chen, and Henry Yang. "CSI NGS Portal: An Online Platform for Automated NGS Data Analysis and Sharing." International Journal of Molecular Sciences 21, no. 11 (May 28, 2020): 3828. http://dx.doi.org/10.3390/ijms21113828.
Full textBrookman-Amissah, Nicola. "Generating Robust NGS Data for Personalized Medicine." Clinical OMICs 2, no. 1 (January 2015): 24–26. http://dx.doi.org/10.1089/clinomi.02.01.09.
Full textKallio, Aleksi, Taavi Hupponen, Massimiliano Gentile, Jarno Tuimala, Kimmo Mattila, Ari-Matti Saren, Petri Klemelä, Ilari Scheinin, and Eija Korpelainen. "Biologist-friendly analysis software for NGS data." EMBnet.journal 19, A (April 8, 2013): 53. http://dx.doi.org/10.14806/ej.19.a.623.
Full textBuguliskis, Jeffrey S. "The Big Data Addiction—NGS Has It Bad." Clinical OMICs 2, no. 5 (May 2015): 12–15. http://dx.doi.org/10.1089/clinomi.02.05.06.
Full textDissertations / Theses on the topic "Dati NGS"
LAMONTANARA, ANTONELLA. "Sviluppo ed applicazione di pipilines bioinformatiche per l'analisi di dati NGS." Doctoral thesis, Università Cattolica del Sacro Cuore, 2015. http://hdl.handle.net/10280/6068.
Full textThe advance in sequencing technologies has led to the birth of sequencing platforms able to produce gigabases of sequencing data in a single run. These technologies commonly referred to as Next Generation Sequencing or NGS produce millions of short sequences called “reads” generating large and complex datasets that pose several challenges for Bioinformatics. The analysis of large omics dataset require the development of bioinformatics pipelines that are the organization of the bioinformatics tools in computational chains in which the output of one analysis is the input of the subsequent analysis. A work of scripting is needed to chain together a group of existing software tools.This thesis deals with the methodological aspect of the data analysis in NGS sequencing performed with the Illumina technology. In this thesis three bioinformatics pipelines were developed.to the following cases of study: 1) a global transcriptome profiling of “Oleaeuropeae” during cold acclimation, aimed to unravel the molecular mechanisms of cold acclimation in this species; 2) a SNPs profiling in the transcriptome of two cattle breeds aimed to produce an extensive catalogue of SNPs; 3) the genome sequencing, the assembly and annotation of the genome of a Lactobacillus plantarum strain showing probiotic properties.
Giannini, Simone. "Strumenti statistici per elaborazione dati su sequenziamenti di genoma umano." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12059/.
Full textDENTI, LUCA. "Algorithms for analyzing genetic variability from Next-Generation Sequencing data." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/263551.
Full textDNA contains the genetic information that is essential for the correct development of any organism. Being able to investigate DNA is of utmost importance for analyzing the reasons behind diseases and for improving the quality of life. Development of DNA sequencing technologies has revolutionized the way this kind of investigation is performed. Due to the huge amount of sequencing data available, nowadays computer science plays a key role in their analysis. Luckily, in many applications, the biological information contained in a DNA molecule can be represented as a string in which each character represents a nucleotide. Strings are a well-known and well-studied notion in computer science and therefore it is possible to exploit the huge literature related to storing and processing strings for improving the analysis of DNA. Within this context, this thesis focuses on two specific problems arising from the analysis of sequencing data: the study of transcript variability due to alternative splicing and the investigation of genetic variability among different individuals due to small variations such as Single Nucleotide Polymorphisms and indels. Regarding both these problems, we investigate two novel computational approaches by devising original strategies and we prove their efficacy by comparing them with the most used state-of-the-art approaches. In both these areas, our focus is on the development of bioinformatics tools that combine accurate algorithms with efficient data structures. The first problem we tackle is the detection of alternative splicing events from RNA-Seq data. Alternative splicing plays an important role in many different life aspects, from the correct evolution of an individual to the development of diseases. Differently from current techniques that rely on the reconstruction of transcripts or on the spliced alignment of RNA-Seq reads against a reference genome, we investigate an alternative algorithmic approach that exploits the novel notion of alignment against a splicing graph. We implemented such an approach in a tool, called ASGAL, that aligns a RNA-Seq sample against the splicing graph of a gene and then detects the alternative splicing events supported by the sample by comparing the alignments with the gene annotation. ASGAL is the first tool that aligns reads against a splicing graph and that is able to detect novel alternative splicing events even when only a single transcript per gene is supported by the sample. The results of our experiments show the usefulness of aligning reads against a splicing graph and prove the ability of the proposed approach in detecting alternative splicing events. The second problem we tackle is the genotyping of a set of known Single Nucleotide Polymorphisms and indels from sequencing data. An in-depth analysis of these variants allows to understand genetic variability among different individuals of a population and their genetic risks factors for diseases. Standard pipelines for variant discovery and genotyping include read alignment, a computationally expensive procedure that is too time consuming for typical clinical applications. When variant discovery is not desired, it is possible to avoid read alignment by genotyping only the set of known variants that are already established to be of medical relevance. To solve this problem, we devised a novel alignment-free algorithmic approach and we implemented it in a bioinformatic tool, called MALVA. MALVA is the first alignment-free approach that is able to genotype SNPs, indels, and multi-allelic variants. Thanks to its alignment-free strategy, MALVA requires one order of magnitude less time than alignment-based pipelines to genotype a donor individual while achieving similar accuracy. Remarkably, on indels it provides even better results than the most widely adopted approaches.
Bombonato, Juliana Rodrigues. "Dados filogenômicos para inferência de relações evolutivas entre espécies do gênero Cereus Mill. (Cactaceae, Cereeae)." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/59/59139/tde-08062018-160032/.
Full textPhylogenomics studies using Next Generation Sequencing (NGS) are becoming increasingly common. The use of Double Digest Restriction Site Associated DNA Sequencing (ddRADSeq) markers to this end is promising, at least considering its cost-effectiveness in large datasets of non-model groups as well as the genome-wide representation recovered in the data. Here we used ddRADSeq to infer the species level phylogeny of genus Cereus (Cactaceae). This genus comprises about 25 species recognized predominantly South American species distributed into four subgenera. Our sample includes representatives of Cereus, in addition to species from the closely allied genera Cipocereus and Praecereus, besides outgroups. The ddRADSeq library was prepared using EcoRI and HPAII enzymes. After the quality control (fragments size and quantification) the library was sequenced in Illumina HiSeq 2500. The bioinformatic processing on raw FASTQ files included adapter trimming, quality filtering (FastQC, MultiQC and SeqyClean softwares) and SNPs calling (iPyRAD software). Three scenarios of permissiveness to missing data were carry out in iPyRAD, recovering datasets with 333 (up tp 40% missing data), 1440 (up to 60% missing data) and 6141 (up to 80% missing data) loci. For each dataset, Maximum Likelihood (ML) trees were generated using two supermatrices: SNPs linked and Loci. In general, we observe few inconsistences between ML trees generated in distinct softwares (IQTree and RaxML) or based in distinctive matrix type (SNP linked and Loci). On the other hand, the accuracy and resolution were improved using the larger dataset (up to 80% missing data). Overall, we present a phylogeny with unprecedent resolution for genus Cereus, which was resolved as a likely monophyletic group, composed by four main clades and with high support in their internal relationships. Further, our data contributes to aggregate information on the debate about to increasing missing data to conduct phylogenetic analysis with RAD loci.
Alic, Andrei Stefan. "Improved Error Correction of NGS Data." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/67630.
Full text[ES] El trabajo realizado en el marco de esta tesis doctoral se centra en la corrección de errores en datos provenientes de técnicas NGS utilizando técnicas de computación intensiva. Debido a la reducción de costes y el incremento en las prestaciones de los secuenciadores, la cantidad de datos disponibles en NGS se ha incrementado notablemente. La utilización de computadores en el análisis de estas muestras se hace imprescindible para poder dar respuesta a la avalancha de información generada por estas técnicas. El uso de NGS transciende la investigación con numerosos ejemplos de uso clínico y agronómico, por lo que aparecen nuevas necesidades en cuanto al tiempo de proceso y la fiabilidad de los resultados. Para maximizar su aplicabilidad clínica, las técnicas de proceso de datos de NGS deben acelerarse y producir datos más precisos. En este contexto es en el que las técnicas de comptuación intensiva juegan un papel relevante. En la actualidad, es común disponer de computadores con varios núcleos de proceso e incluso utilizar múltiples computadores mediante técnicas de computación paralela distribuida. Las tendencias actuales hacia arquitecturas con un mayor número de núcleos ponen de manifiesto que es ésta una aproximación relevante. Esta tesis comienza con un análisis de los problemas fundamentales del proceso de datos en NGS de forma general y adaptado para su comprensión por una amplia audiencia, a través de una exhaustiva revisión del estado del arte en la corrección de datos de NGS. Esta revisión introduce gradualmente al lector en las técnicas de secuenciación masiva, presentando problemas y aplicaciones reales de las técnicas de NGS, destacando el impacto de esta tecnología en ciencia. De este estudio se concluyen dos ideas principales: La necesidad de analizar de forma adecuada las características de los datos de NGS, atendiendo a la enorme variedad intrínseca que tienen las diferentes técnicas de NGS; y la necesidad de disponer de una herramienta versátil, eficiente y precisa para la corrección de errores. En el contexto del análisis de datos, la tesis presenta MuffinInfo. La herramienta MuffinInfo es una aplicación software implementada mediante HTML5. MuffinInfo obtiene información relevante de datos crudos de NGS para favorecer el entendimiento de sus características y la aplicación de técnicas de corrección de errores, soportando además la extensión mediante funciones que implementen estadísticos definidos por el usuario. MuffinInfo almacena los resultados del proceso en ficheros JSON. Al usar HTML5, MuffinInfo puede funcionar en casi cualquier entorno hardware y software. La herramienta está implementada aprovechando múltiples hilos de ejecución por la gestión del interfaz. La segunda conclusión del análisis del estado del arte nos lleva a la oportunidad de aplicar de forma extensiva técnicas de computación de altas prestaciones en la corrección de errores para desarrollar una herramienta que soporte múltiples tecnologías (Illumina, Roche 454, Ion Torrent y experimentalmente PacBio). La herramienta propuesta (MuffinEC), soporta diferentes tipos de errores (sustituciones, indels y valores desconocidos). MuffinEC supera los resultados obtenidos por las herramientas existentes en este ámbito. Ofrece una mejor tasa de corrección, en un tiempo muy inferior y utilizando menos recursos, lo que facilita además su aplicación en muestras de mayor tamaño en computadores convencionales. MuffinEC utiliza una aproximación basada en etapas multiples. Primero agrupa todas las secuencias utilizando la métrica de los k-mers. En segundo lugar realiza un refinamiento de los grupos mediante el alineamiento con Smith-Waterman, generando contigs. Estos contigs resultan de la corrección por columnas de atendiendo a la frecuencia individual de cada base. La tesis se estructura por capítulos cuya base ha sido previamente publicada en revistas indexadas en posiciones dest
[CAT] El treball realitzat en el marc d'aquesta tesi doctoral se centra en la correcció d'errors en dades provinents de tècniques de NGS utilitzant tècniques de computació intensiva. A causa de la reducció de costos i l'increment en les prestacions dels seqüenciadors, la quantitat de dades disponibles a NGS s'ha incrementat notablement. La utilització de computadors en l'anàlisi d'aquestes mostres es fa imprescindible per poder donar resposta a l'allau d'informació generada per aquestes tècniques. L'ús de NGS transcendeix la investigació amb nombrosos exemples d'ús clínic i agronòmic, per la qual cosa apareixen noves necessitats quant al temps de procés i la fiabilitat dels resultats. Per a maximitzar la seua aplicabilitat clínica, les tècniques de procés de dades de NGS han d'accelerar-se i produir dades més precises. En este context és en el que les tècniques de comptuación intensiva juguen un paper rellevant. En l'actualitat, és comú disposar de computadors amb diversos nuclis de procés i inclús utilitzar múltiples computadors per mitjà de tècniques de computació paral·lela distribuïda. Les tendències actuals cap a arquitectures amb un nombre més gran de nuclis posen de manifest que és esta una aproximació rellevant. Aquesta tesi comença amb una anàlisi dels problemes fonamentals del procés de dades en NGS de forma general i adaptat per a la seua comprensió per una àmplia audiència, a través d'una exhaustiva revisió de l'estat de l'art en la correcció de dades de NGS. Esta revisió introduïx gradualment al lector en les tècniques de seqüenciació massiva, presentant problemes i aplicacions reals de les tècniques de NGS, destacant l'impacte d'esta tecnologia en ciència. D'este estudi es conclouen dos idees principals: La necessitat d'analitzar de forma adequada les característiques de les dades de NGS, atenent a l'enorme varietat intrínseca que tenen les diferents tècniques de NGS; i la necessitat de disposar d'una ferramenta versàtil, eficient i precisa per a la correcció d'errors. En el context de l'anàlisi de dades, la tesi presenta MuffinInfo. La ferramenta MuffinInfo és una aplicació programari implementada per mitjà de HTML5. MuffinInfo obté informació rellevant de dades crues de NGS per a afavorir l'enteniment de les seues característiques i l'aplicació de tècniques de correcció d'errors, suportant a més l'extensió per mitjà de funcions que implementen estadístics definits per l'usuari. MuffinInfo emmagatzema els resultats del procés en fitxers JSON. A l'usar HTML5, MuffinInfo pot funcionar en gairebé qualsevol entorn maquinari i programari. La ferramenta està implementada aprofitant múltiples fils d'execució per la gestió de l'interfície. La segona conclusió de l'anàlisi de l'estat de l'art ens porta a l'oportunitat d'aplicar de forma extensiva tècniques de computació d'altes prestacions en la correcció d'errors per a desenrotllar una ferramenta que suport múltiples tecnologies (Illumina, Roche 454, Ió Torrent i experimentalment PacBio). La ferramenta proposada (MuffinEC), suporta diferents tipus d'errors (substitucions, indels i valors desconeguts). MuffinEC supera els resultats obtinguts per les ferramentes existents en este àmbit. Oferix una millor taxa de correcció, en un temps molt inferior i utilitzant menys recursos, la qual cosa facilita a més la seua aplicació en mostres més gran en computadors convencionals. MuffinEC utilitza una aproximació basada en etapes multiples. Primer agrupa totes les seqüències utilitzant la mètrica dels k-mers. En segon lloc realitza un refinament dels grups per mitjà de l'alineament amb Smith-Waterman, generant contigs. Estos contigs resulten de la correcció per columnes d'atenent a la freqüència individual de cada base. La tesi s'estructura per capítols la base de la qual ha sigut prèviament publicada en revistes indexades en posicions destacades de l'índex del Journal of Citation Repor
Alic, AS. (2016). Improved Error Correction of NGS Data [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/67630
TESIS
Spáčil, Michael. "Zálohování dat a datová úložiště." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2021. http://www.nusl.cz/ntk/nusl-444686.
Full textHriadeľ, Ondřej. "Návrh a implementace plánu zálohování dat společnosti." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2019. http://www.nusl.cz/ntk/nusl-399540.
Full textJaníček, Libor. "Zálohování dat a datová úložiště." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2020. http://www.nusl.cz/ntk/nusl-417707.
Full textChen, Dao-Peng. "Statistical power for RNA-seq data to detect two epigenetic phenomena." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1357248975.
Full textSAGGESE, IGOR. "NGS data analysis approaches for clinical applications." Doctoral thesis, Università del Piemonte Orientale, 2017. http://hdl.handle.net/11579/86924.
Full textBooks on the topic "Dati NGS"
Sentā, Kokusai Kyōryoku NGO. NGO dēta bukku, 2011: Sūji de miru Nihon no NGO = Data book on Japanese NGOs, 2011. [Tokyo]: Gaimushō Kokusai Kyōryokukyoku Minkan Enjo Renkeishitsu Gaimushō Shusai Heisei 22-nendo NGO ni Yoru Tēma Betsu Nōryoku Kōjō Puroguramu "NGO no Soshiki, Katsudō ni Kakawaru Dēta Bukku Sakusei", 2011.
Find full textSentā, Kokusai Kyōryoku NGO. NGO dēta bukku, 2011: Sūji de miru Nihon no NGO = Data book on Japanese NGOs, 2011. [Tokyo]: Gaimushō Kokusai Kyōryokukyoku Minkan Enjo Renkeishitsu Gaimushō Shusai Heisei 22-nendo NGO ni Yoru Tēma Betsu Nōryoku Kōjō Puroguramu "NGO no Soshiki, Katsudō ni Kakawaru Dēta Bukku Sakusei", 2011.
Find full textAhmad, Rofiq. Perkebunan dari NES ke PIR. Jakarta: Puspa Swara, 1998.
Find full textMcLafferty, F. W. TheW iley/NBS registry of mass spectral data. New York: Wiley, 1989.
Find full textMcLafferty, Fred W. The Wiley/NBS registry of mass spectral data. New York: Wiley, 1989.
Find full textK, Eaton C., Young Bruce, and Research Institute for Advanced Computer Science (U.S.), eds. Data communication requirements for the advanced NAS network. Moffett Field, Calif: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1987.
Find full textR. O. van Everdingen Research Specialties Limited. Halifax International Airport, N.S.: Hydrological and geochemical data. Calgary, Alta: R.O. van Everdingen Research Specialities, 1988.
Find full textUnited States. National Aeronautics and Space Administration., ed. Materials engineering data base: [final report], NAS 8-37780. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textRockett, John A. The NBS/Harvard Mark VI multi-room fire simulation. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Find full textBuckey, Jay C. "Life sciences data archive scientific development": Contract NAS 9-19190 : final report. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textBook chapters on the topic "Dati NGS"
Kappelmann-Fenzl, Melanie. "NGS Data." In Next Generation Sequencing and Data Analysis, 79–104. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62490-3_7.
Full textEisele, Marius, and Melanie Kappelmann-Fenzl. "NGS Technologies." In Next Generation Sequencing and Data Analysis, 47–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62490-3_4.
Full textKappelmann-Fenzl, Melanie. "Library Construction for NGS." In Next Generation Sequencing and Data Analysis, 39–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62490-3_3.
Full textBenoit, Gaetan, Claire Lemaitre, Guillaume Rizk, Erwan Drezen, and Dominique Lavenier. "De Novo NGS Data Compression." In Algorithms for Next-Generation Sequencing Data, 91–115. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59826-0_4.
Full textComin, Matteo, and Michele Schimd. "Assembly-Free Techniques for NGS Data." In Algorithms for Next-Generation Sequencing Data, 327–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59826-0_14.
Full textTheodoridis, Evangelos. "Cloud Storage-Management Techniques for NGS Data." In Algorithms for Next-Generation Sequencing Data, 117–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59826-0_5.
Full textPrieto, T., J. M. Alves, and D. Posada. "NGS Analysis of Somatic Mutations in Cancer Genomes." In Big Data Analytics in Genomics, 357–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41279-5_11.
Full textBosserhoff, Anja, and Melanie Kappelmann-Fenzl. "Next Generation Sequencing (NGS): What Can Be Sequenced?" In Next Generation Sequencing and Data Analysis, 1–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62490-3_1.
Full textPeace, R. J., and James R. Green. "Computational Sequence- and NGS-Based MicroRNA Prediction." In Signal Processing and Machine Learning for Biomedical Big Data, 381–410. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351061223-19.
Full textGarg, Vanika, and Rajeev K. Varshney. "Analysis of Small RNA Sequencing Data in Plants." In Plant Bioinformatics, 497–509. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2067-0_26.
Full textConference papers on the topic "Dati NGS"
Kchouk, Mehdi, Jean-Francois Gibrat, and Mourad Elloumi. "An Error Correction Algorithm for NGS Data." In 2017 28th International Workshop on Database and Expert Systems Applications (DEXA). IEEE, 2017. http://dx.doi.org/10.1109/dexa.2017.33.
Full textBiji C.L., Achuthsankar S. Nair, Arun P.R, and Jojo George. "NGS read data compression using parallel computing algorithm." In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2015. http://dx.doi.org/10.1109/bibm.2015.7359890.
Full textКолмыков, С. К., И. С. Евшин, Ф. А. Колпаков, and М. А. Куляшов. "ANALYSIS OF NGS DATA ON THE TRANSCRIPTIONAL REGULATION." In XVII Российская конференция “Распределенные информационно-вычислительные ресурсы: Цифровые двойники и большие данные”. Crossref, 2019. http://dx.doi.org/10.25743/ict.2019.80.67.016.
Full textBraga, D., D. Calvanese, A. Campi, S. Ceri, F. Daniel, D. Martinenghi, P. Merialdo, and R. Torlone. "NGS: a framework for multi-domain query answering." In 2008 IEEE 24th International Conference on Data Engineeing workshop (ICDE Workshop 2008). IEEE, 2008. http://dx.doi.org/10.1109/icdew.2008.4498328.
Full textPan, Ren-Hao, Lin-Yu Tseng, I.-En Liao, Chien-Lung Chan, K. Robert Lai, and Kai-Biao Lin. "Design of an NGS MicroRNA predictor using multilayer hierarchical MapReduce framework." In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2015. http://dx.doi.org/10.1109/dsaa.2015.7344862.
Full textSaha, Subrata, and Sanguthevar Rajasekaran. "Efficient algorithms for error correction and compression of NGS data." In 2014 IEEE 4th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2014. http://dx.doi.org/10.1109/iccabs.2014.6863941.
Full textLawrence, Aamna, Rahul Shukla, Utkarsh Raj, and Pritish Kumar Varadwaj. "Estimating percentage epigenetic modifications in human genome using NGS data." In 2016 International Conference on Bioinformatics and Systems Biology (BSB). IEEE, 2016. http://dx.doi.org/10.1109/bsb.2016.7552141.
Full textSENGUPTA, SUBHAJIT, JIN WANG, JUHEE LEE, PETER MÜLLER, KAMALAKAR GULUKOTA, ARUNAVA BANERJEE, and YUAN JI. "BAYCLONE: BAYESIAN NONPARAMETRIC INFERENCE OF TUMOR SUBCLONES USING NGS DATA." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814644730_0044.
Full textCollet, C., T. Coupaye, L. Fayolle, and C. Roncancio. "NAGS prototype-version 2.2." In Proceedings 13th International Conference on Data Engineering. IEEE, 1997. http://dx.doi.org/10.1109/icde.1997.582035.
Full textXu, Jin, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. "NAS-BERT." In KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447548.3467262.
Full textReports on the topic "Dati NGS"
Chamberlain, C. A., and K. Lochhead. Data modeling as applied to surveying and mapping data. Natural Resources Canada/CMSS/Information Management, 1988. http://dx.doi.org/10.4095/331263.
Full textFriske, P. W. B., A. G. Pronk, M. W. McCurdy, S. J. A. Day, R J McNeil, S. Allard, and R. Boldon. National Geochemical Reconnaissance (NGR): Regional stream sediment and water geochemical data, northeastern New Brunswick (NTS 21O/9). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2004. http://dx.doi.org/10.4095/215455.
Full textFriske, P. W. B., W. Jackaman, R. E. W. Lett, and M. W. McCurdy. National Geochemical Reconnaissance (NGR): Regional stream sediment and water geochemical data, northwestern British Columbia (NTS 104A and 104H). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/220856.
Full textTalpey, T., and B. Callaghan. Network File System (NFS) Direct Data Placement. RFC Editor, January 2010. http://dx.doi.org/10.17487/rfc5667.
Full textLyles, B., and T. Mihevc. NTS groundwater recharge study, FY 1992. Data report. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/10123053.
Full textMiles, W. F., M. Pilkington, and M. D. Thomas. Aeromagnetic data interpretation, NTS 56P, Committee Bay, Nunavut, Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/213861.
Full textRead, P. B., J. F. Psutka, and J. Fillipone. Abbreviated metamorphic data for the Canadian Cordillera: arranged by NTS sheet. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/131848.
Full textFriske, P. W. B., E. H. W. Hornbrook, J. J. Lynch, M. W. McCurdy, H. Gross, A. C. Galletta, and C C Durham. Regional Lake Sediment and Water Geochemical Data, northwestern Ontario [NTS 52C]. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/131990.
Full textMcCurdy, M. W., R. J. McNeil, J. A. Percival, and R. G. Garrett. Regional lake sediment geochemical data, Nonacho Basin - East Arm of Great Slave Lake region, Northwest Territories (NTS 75-C, NTS 75-F and NTS 75-K). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/297797.
Full textRamm-Granberg, Tynan, F. Rocchio, Catharine Copass, Rachel Brunner, and Eric Nelsen. Revised vegetation classification for Mount Rainier, North Cascades, and Olympic national parks: Project summary report. National Park Service, February 2021. http://dx.doi.org/10.36967/nrr-2284511.
Full text