Journal articles on the topic 'Dataset shift'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dataset shift.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sharet, Nir, and Ilan Shimshoni. "Analyzing Data Changes using Mean Shift Clustering." International Journal of Pattern Recognition and Artificial Intelligence 30, no. 07 (May 25, 2016): 1650016. http://dx.doi.org/10.1142/s0218001416500166.
Full textAdams, Niall. "Dataset Shift in Machine Learning." Journal of the Royal Statistical Society: Series A (Statistics in Society) 173, no. 1 (January 2010): 274. http://dx.doi.org/10.1111/j.1467-985x.2009.00624_10.x.
Full textGuo, Lin Lawrence, Stephen R. Pfohl, Jason Fries, Jose Posada, Scott Lanyon Fleming, Catherine Aftandilian, Nigam Shah, and Lillian Sung. "Systematic Review of Approaches to Preserve Machine Learning Performance in the Presence of Temporal Dataset Shift in Clinical Medicine." Applied Clinical Informatics 12, no. 04 (August 2021): 808–15. http://dx.doi.org/10.1055/s-0041-1735184.
Full textHe, Zhiqiang. "ECG Heartbeat Classification Under Dataset Shift." Journal of Intelligent Medicine and Healthcare 1, no. 2 (2022): 79–89. http://dx.doi.org/10.32604/jimh.2022.036624.
Full textKim, Doyoung, Inwoong Lee, Dohyung Kim, and Sanghoon Lee. "Action Recognition Using Close-Up of Maximum Activation and ETRI-Activity3D LivingLab Dataset." Sensors 21, no. 20 (October 12, 2021): 6774. http://dx.doi.org/10.3390/s21206774.
Full textMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (April 7, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.1.
Full textMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (June 17, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.2.
Full textMcGaughey, Georgia, W. Patrick Walters, and Brian Goldman. "Understanding covariate shift in model performance." F1000Research 5 (October 17, 2016): 597. http://dx.doi.org/10.12688/f1000research.8317.3.
Full textBecker, Aneta, and Jarosław Becker. "Dataset shift assessment measures in monitoring predictive models." Procedia Computer Science 192 (2021): 3391–402. http://dx.doi.org/10.1016/j.procs.2021.09.112.
Full textFinlayson, Samuel G., Adarsh Subbaswamy, Karandeep Singh, John Bowers, Annabel Kupke, Jonathan Zittrain, Isaac S. Kohane, and Suchi Saria. "The Clinician and Dataset Shift in Artificial Intelligence." New England Journal of Medicine 385, no. 3 (July 15, 2021): 283–86. http://dx.doi.org/10.1056/nejmc2104626.
Full textMoreno-Torres, Jose G., Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. "A unifying view on dataset shift in classification." Pattern Recognition 45, no. 1 (January 2012): 521–30. http://dx.doi.org/10.1016/j.patcog.2011.06.019.
Full textSubbaswamy, Adarsh, Bryant Chen, and Suchi Saria. "A unifying causal framework for analyzing dataset shift-stable learning algorithms." Journal of Causal Inference 10, no. 1 (January 1, 2022): 64–89. http://dx.doi.org/10.1515/jci-2021-0042.
Full textXie, Y., K. Schindler, J. Tian, and X. X. Zhu. "EXPLORING CROSS-CITY SEMANTIC SEGMENTATION OF ALS POINT CLOUDS." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2021 (June 28, 2021): 247–54. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2021-247-2021.
Full textZHAO, YUZHONG, BABAK ALIPANAHI, SHUAI CHENG LI, and MING LI. "PROTEIN SECONDARY STRUCTURE PREDICTION USING NMR CHEMICAL SHIFT DATA." Journal of Bioinformatics and Computational Biology 08, no. 05 (October 2010): 867–84. http://dx.doi.org/10.1142/s0219720010004987.
Full textChakraborty, Saptarshi, Debolina Paul, and Swagatam Das. "Automated Clustering of High-dimensional Data with a Feature Weighted Mean Shift Algorithm." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (May 18, 2021): 6930–38. http://dx.doi.org/10.1609/aaai.v35i8.16854.
Full textTasche, Dirk. "Factorizable Joint Shift in Multinomial Classification." Machine Learning and Knowledge Extraction 4, no. 3 (September 10, 2022): 779–802. http://dx.doi.org/10.3390/make4030038.
Full textXue, Zhiyun, Feng Yang, Sivaramakrishnan Rajaraman, Ghada Zamzmi, and Sameer Antani. "Cross Dataset Analysis of Domain Shift in CXR Lung Region Detection." Diagnostics 13, no. 6 (March 11, 2023): 1068. http://dx.doi.org/10.3390/diagnostics13061068.
Full textSáez, José A., and José L. Romero-Béjar. "Impact of Regressand Stratification in Dataset Shift Caused by Cross-Validation." Mathematics 10, no. 14 (July 21, 2022): 2538. http://dx.doi.org/10.3390/math10142538.
Full textTurhan, Burak. "On the dataset shift problem in software engineering prediction models." Empirical Software Engineering 17, no. 1-2 (October 12, 2011): 62–74. http://dx.doi.org/10.1007/s10664-011-9182-8.
Full textBecker, Jarosław, and Aneta Becker. "Predictive Accuracy Index in evaluating the dataset shift (case study)." Procedia Computer Science 225 (2023): 3342–51. http://dx.doi.org/10.1016/j.procs.2023.10.328.
Full textAryal, Jagannath, and Bipul Neupane. "Multi-Scale Feature Map Aggregation and Supervised Domain Adaptation of Fully Convolutional Networks for Urban Building Footprint Extraction." Remote Sensing 15, no. 2 (January 13, 2023): 488. http://dx.doi.org/10.3390/rs15020488.
Full textPeng, Zhiyong, Changlin Han, Yadong Liu, and Zongtan Zhou. "Weighted Policy Constraints for Offline Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (June 26, 2023): 9435–43. http://dx.doi.org/10.1609/aaai.v37i8.26130.
Full textPhongsasiri, Siriwan, and Suwanna Rasmequan. "Outlier Detection in Wellness Data using Probabilistic Mapped Mean-Shift Algorithms." ECTI Transactions on Computer and Information Technology (ECTI-CIT) 15, no. 2 (August 11, 2021): 258–66. http://dx.doi.org/10.37936/ecti-cit.2021152.244971.
Full textRodriguez-Vazquez, Javier, Miguel Fernandez-Cortizas, David Perez-Saura, Martin Molina, and Pascual Campoy. "Overcoming Domain Shift in Neural Networks for Accurate Plant Counting in Aerial Images." Remote Sensing 15, no. 6 (March 22, 2023): 1700. http://dx.doi.org/10.3390/rs15061700.
Full textTappy, Nicolas, Anna Fontcuberta i Morral, and Christian Monachon. "Image shift correction, noise analysis, and model fitting of (cathodo-)luminescence hyperspectral maps." Review of Scientific Instruments 93, no. 5 (May 1, 2022): 053702. http://dx.doi.org/10.1063/5.0080486.
Full textWang, Li, Dong Li, Han Liu, JinZhang Peng, Lu Tian, and Yi Shan. "Cross-Dataset Collaborative Learning for Semantic Segmentation in Autonomous Driving." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 3 (June 28, 2022): 2487–94. http://dx.doi.org/10.1609/aaai.v36i3.20149.
Full textHe, Yue, Xinwei Shen, Renzhe Xu, Tong Zhang, Yong Jiang, Wenchao Zou, and Peng Cui. "Covariate-Shift Generalization via Random Sample Weighting." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (June 26, 2023): 11828–36. http://dx.doi.org/10.1609/aaai.v37i10.26396.
Full textHong, Zhiqing, Zelong Li, Shuxin Zhong, Wenjun Lyu, Haotian Wang, Yi Ding, Tian He, and Desheng Zhang. "CrossHAR: Generalizing Cross-dataset Human Activity Recognition via Hierarchical Self-Supervised Pretraining." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, no. 2 (May 13, 2024): 1–26. http://dx.doi.org/10.1145/3659597.
Full textWei, Weiwei, Yuxuan Liao, Yufei Wang, Shaoqi Wang, Wen Du, Hongmei Lu, Bo Kong, Huawu Yang, and Zhimin Zhang. "Deep Learning-Based Method for Compound Identification in NMR Spectra of Mixtures." Molecules 27, no. 12 (June 7, 2022): 3653. http://dx.doi.org/10.3390/molecules27123653.
Full textBlanza, J., X. E. Cabasal, J. B. Cipriano, G. A. Guerrero, R. Y. Pescador, and E. V. Rivera. "Indoor Wireless Multipaths Outlier Detection and Clustering." Journal of Physics: Conference Series 2356, no. 1 (October 1, 2022): 012037. http://dx.doi.org/10.1088/1742-6596/2356/1/012037.
Full textGoel, Parth, and Amit Ganatra. "Unsupervised Domain Adaptation for Image Classification and Object Detection Using Guided Transfer Learning Approach and JS Divergence." Sensors 23, no. 9 (April 30, 2023): 4436. http://dx.doi.org/10.3390/s23094436.
Full textKushol, Rafsanjany, Alan H. Wilman, Sanjay Kalra, and Yee-Hong Yang. "DSMRI: Domain Shift Analyzer for Multi-Center MRI Datasets." Diagnostics 13, no. 18 (September 14, 2023): 2947. http://dx.doi.org/10.3390/diagnostics13182947.
Full textSinha, Samarth, Homanga Bharadhwaj, Anirudh Goyal, Hugo Larochelle, Animesh Garg, and Florian Shkurti. "DIBS: Diversity Inducing Information Bottleneck in Model Ensembles." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (May 18, 2021): 9666–74. http://dx.doi.org/10.1609/aaai.v35i11.17163.
Full textHeffington, Colton, Brandon Beomseob Park, and Laron K. Williams. "The “Most Important Problem” Dataset (MIPD): a new dataset on American issue importance." Conflict Management and Peace Science 36, no. 3 (March 31, 2017): 312–35. http://dx.doi.org/10.1177/0738894217691463.
Full textGuo, Fumin, Matthew Ng, Maged Goubran, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, and Graham Wright. "Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: A continuous kernel cut approach." Medical Image Analysis 61 (April 2020): 101636. http://dx.doi.org/10.1016/j.media.2020.101636.
Full textVescovi, R. F. C., M. B. Cardoso, and E. X. Miqueles. "Radiography registration for mosaic tomography." Journal of Synchrotron Radiation 24, no. 3 (April 7, 2017): 686–94. http://dx.doi.org/10.1107/s1600577517001953.
Full textTraynor, Carlos, Tarjinder Sahota, Helen Tomkinson, Ignacio Gonzalez-Garcia, Neil Evans, and Michael Chappell. "Imputing Biomarker Status from RWE Datasets—A Comparative Study." Journal of Personalized Medicine 11, no. 12 (December 13, 2021): 1356. http://dx.doi.org/10.3390/jpm11121356.
Full textWang, Xiaoyang, Chen Li, Jianqiao Zhao, and Dong Yu. "NaturalConv: A Chinese Dialogue Dataset Towards Multi-turn Topic-driven Conversation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 16 (May 18, 2021): 14006–14. http://dx.doi.org/10.1609/aaai.v35i16.17649.
Full textHuch, Sebastian, and Markus Lienkamp. "Towards Minimizing the LiDAR Sim-to-Real Domain Shift: Object-Level Local Domain Adaptation for 3D Point Clouds of Autonomous Vehicles." Sensors 23, no. 24 (December 18, 2023): 9913. http://dx.doi.org/10.3390/s23249913.
Full textOthman, Walaa, Alexey Kashevnik, Ammar Ali, and Nikolay Shilov. "DriverMVT: In-Cabin Dataset for Driver Monitoring including Video and Vehicle Telemetry Information." Data 7, no. 5 (May 11, 2022): 62. http://dx.doi.org/10.3390/data7050062.
Full textIshihara, Kazuaki, and Koutarou Matsumoto. "Comparing the Robustness of ResNet, Swin-Transformer, and MLP-Mixer under Unique Distribution Shifts in Fundus Images." Bioengineering 10, no. 12 (December 1, 2023): 1383. http://dx.doi.org/10.3390/bioengineering10121383.
Full textTakahashi, Satoshi, Masamichi Takahashi, Manabu Kinoshita, Mototaka Miyake, Jun Sese, Kazuma Kobayashi, Koichi Ichimura, Yoshitaka Narita, Ryuji Hamamoto, and Consortium of Molecular Diagnosis of glioma. "RBIO-03. INITIAL RESULT OF DEVELOP ROBUST DEEP LEARNING MODEL FOR DETECTING GENOMIC STATUS IN GLIOMAS AGAINST IMAGE DIFFERENCES AMONG FACILITIES." Neuro-Oncology 23, Supplement_6 (November 2, 2021): vi192. http://dx.doi.org/10.1093/neuonc/noab196.760.
Full textAllen, Robert C., Mattia C. Bertazzini, and Leander Heldring. "The Economic Origins of Government." American Economic Review 113, no. 10 (October 1, 2023): 2507–45. http://dx.doi.org/10.1257/aer.20201919.
Full textWu, Teng, Bruno Vallet, Marc Pierrot-Deseilligny, and Ewelina Rupnik. "An evaluation of Deep Learning based stereo dense matching dataset shift from aerial images and a large scale stereo dataset." International Journal of Applied Earth Observation and Geoinformation 128 (April 2024): 103715. http://dx.doi.org/10.1016/j.jag.2024.103715.
Full textAsopa, U., S. Kumar, and P. K. Thakur. "PSInSAR Study of Lyngenfjord Norway, using TerraSAR-X Data." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-5 (November 15, 2018): 245–51. http://dx.doi.org/10.5194/isprs-annals-iv-5-245-2018.
Full textTang, Yansong, Xingyu Liu, Xumin Yu, Danyang Zhang, Jiwen Lu, and Jie Zhou. "Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based Action Recognition." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 2 (May 31, 2022): 1–24. http://dx.doi.org/10.1145/3472722.
Full textGuentchev, Galina, Joseph J. Barsugli, and Jon Eischeid. "Homogeneity of Gridded Precipitation Datasets for the Colorado River Basin." Journal of Applied Meteorology and Climatology 49, no. 12 (December 1, 2010): 2404–15. http://dx.doi.org/10.1175/2010jamc2484.1.
Full textSime, Louise C., Richard C. A. Hindmarsh, and Hugh Corr. "Automated processing to derive dip angles of englacial radar reflectors in ice sheets." Journal of Glaciology 57, no. 202 (2011): 260–66. http://dx.doi.org/10.3189/002214311796405870.
Full textSharif, Muhammad Imran, Muhammad Attique Khan, Abdullah Alqahtani, Muhammad Nazir, Shtwai Alsubai, Adel Binbusayyis, and Robertas Damaševičius. "Deep Learning and Kurtosis-Controlled, Entropy-Based Framework for Human Gait Recognition Using Video Sequences." Electronics 11, no. 3 (January 21, 2022): 334. http://dx.doi.org/10.3390/electronics11030334.
Full textHidalgo Davila, Mateo, Maria Baldeon-Calisto, Juan Jose Murillo, Bernardo Puente-Mejia, Danny Navarrete, Daniel Riofrío, Noel Peréz, Diego S. Benítez, and Ricardo Flores Moyano. "Analyzing the Effect of Basic Data Augmentation for COVID-19 Detection through a Fractional Factorial Experimental Design." Emerging Science Journal 7 (September 24, 2022): 1–16. http://dx.doi.org/10.28991/esj-2023-sper-01.
Full text