Academic literature on the topic 'Data processing Water'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Data processing Water.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Data processing Water"

1

Kim, Young-jun. "Long Offset Seismic Data Processing for Deep Water Hydrocarbon Survey of Ulleung Basin, East Sea, Korea." Journal of the Korean Society of Mineral and Energy Resources Engineers 50, no. 1 (2013): 1. http://dx.doi.org/10.12972/ksmer.2013.50.1.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sonnenberg, H., M. Rustler, M. Riechel, N. Caradot, P. Rouault, and A. Matzinger. "Best data handling practices in water-related research." Water Practice and Technology 8, no. 3-4 (September 1, 2013): 390–98. http://dx.doi.org/10.2166/wpt.2013.039.

Full text
Abstract:
Data play an important role in water-related research. Based on experiences in data collection and data processing in water-related research this paper proposes – both from a computer scientist's and an environmental engineer's point of view – a set of rules for data handling: Rule 1: Protect raw data; Rule 2: Save metadata; Rule 3: Use databases; Rule 4: Separate data from processing; Rule 5: Use programming; Rule 6: Avoid redundancy; Rule 7: Be transparent; Rule 8: Use standards and naming conventions. Applying these rules (i) increases the quality of data and results, (ii) allows to prepare data for long-term usage and make data accessible to different people, (iii) makes data processing transparent and results reproducible, and (iv) saves – at least in the long run – time and effort. With this contribution the authors would like to start a discussion about best data handling practices and present a first checklist of data handling and data processing for practitioners and researchers working in the water sector.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhaochunlei. "Research on big data processing of water conservancy automation." IOP Conference Series: Earth and Environmental Science 768, no. 1 (May 1, 2021): 012114. http://dx.doi.org/10.1088/1755-1315/768/1/012114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matsumoto, Yukio. "Processing, storage and use of water quality monitoring data." Japan journal of water pollution research 10, no. 5 (1987): 282–86. http://dx.doi.org/10.2965/jswe1978.10.282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Machell, J., S. R. Mounce, B. Farley, and J. B. Boxall. "Online data processing for proactive water distribution network operation." Drinking Water Engineering and Science Discussions 6, no. 2 (August 28, 2013): 261–90. http://dx.doi.org/10.5194/dwesd-6-261-2013.

Full text
Abstract:
Abstract. Operational benefits and efficiencies generated using prevalent water industry methods and techniques are becoming more difficult to achieve; as demonstrated by English and Welsh water companies' static position with regards the economic level of leakage. Water companies are often unaware of network incidents such as burst pipes or low pressure events until they are reported by customers; and therefore use reactive strategies to manage the effects of these events. It is apparent that new approaches need to be identified and applied to promote proactive network management if potential operational productivity and standards of service improvements are to be realised. This paper describes how measured flow and pressure data from instrumentation deployed in a water distribution network was automatically gathered, checked, analysed and presented using recently developed techniques to generate apposite information about network performance. The work demonstrated that these technologies can provide early warning, and hence additional time to that previously available, thereby creating opportunity to proactively manage a network; for example to minimise the negative impact on standards of customer service caused by unplanned events such as burst pipes. Each method, applied individually, demonstrated improvement on current industry processes. Combined application resulted in further improvements; including quicker and more localised burst main location. Future possibilities are explored, from which a vision of seamless integration between such technologies emerges to enable proactive management of distribution network events.
APA, Harvard, Vancouver, ISO, and other styles
6

Ai, Ping, and Zhao Xin Yue. "A Framework for Processing Water Resources Big Data and Application." Applied Mechanics and Materials 519-520 (February 2014): 3–8. http://dx.doi.org/10.4028/www.scientific.net/amm.519-520.3.

Full text
Abstract:
The development of information technology expands the spatial and temporal scale and types of elements of the water resources information, making the water resources data show the characteristics of multi-source, heterogeneous, massive, and the traditional data processing method is difficult for fine processing and dynamic analysis. Combined with the "4v" characteristics of big data, we put forward a framework for processing water resources big data, to process and analyze modern water resources data for real-time and rapid, and discuss the related application. Based on the features of modern water resources data, this paper discusses the characteristics and application technology of big data, and briefly describes a framework for processing water resources big data and application.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Zong Guo, Yin Xia Lou, and Jian Chu. "The Error Analysis and Data Processing of Leaf Water Potential." Advanced Materials Research 219-220 (March 2011): 1440–44. http://dx.doi.org/10.4028/www.scientific.net/amr.219-220.1440.

Full text
Abstract:
For the implementation of precision irrigation (PI), it is most important to measure precisely plant water potential. The traditional measuring instruments still can not meet the need for continuous automatic detection of plant water potential, and have difficulty detecting living plant water potential. Plant water potential soft- sensing is one of the ways worth exploring. The first thing we should think about is the accuracy of the data. Filter the information of plant water potential acquired by the detecting system and further analyze this information to discover the change rules on the plant water potential.
APA, Harvard, Vancouver, ISO, and other styles
8

Slijkerman, W. F. J., W. J. Looyestijn, P. Hofstra, and J. P. Hofman. "Processing of Multi-Acquisition NMR Data." SPE Reservoir Evaluation & Engineering 3, no. 06 (December 1, 2000): 492–97. http://dx.doi.org/10.2118/68408-pa.

Full text
Abstract:
Summary Crucial issues in formation evaluation are the determination of porosity, permeability, hydrocarbon volumes, and net-to-gross ratio. Nuclear magnetic resonance (NMR) logging provides measurements that are directly related to these parameters. The NMR response of fluids contained in pores is governed by their T2- and T1-relaxation times, diffusion coefficient, and whether or not they wet the rock. In the case where fluids possess a sufficiently large contrast in these properties and NMR data have been acquired with suitably chosen acquisition parameters (i.e., wait times and/or inter-echo times) a separation of water, oil, and gas NMR responses can be made. From these separate NMR responses the hydrocarbon volumes, porosity, and permeability estimates are subsequently calculated. Key in these applications is the ability to include all the acquired log NMR data into the processing towards the desired end result. Methods exist to derive hydrocarbon volumes from T2 distributions or from echo decay data. However, these are all methods in which the difference between just two acquisitions that only differ in either wait time or inter-echo time are considered. Over the past years we have developed, tested, and employed an alternative processing technique named multi-acquisition NMR (MacNMR). MacNMR takes any number of log acquisitions (wait time and/or inter-echo time variations) and simultaneously inverts them using a rigorous forward model to derive the desired water and hydrocarbon T2 distributions. In this paper, we discuss the concepts of MacNMR and demonstrate its versatility in NMR log processing. An example will illustrate its benefits. Introduction This paper discusses the method used by Shell to process multi-acquisition nuclear magnetic resonance (NMR) data. The objective of the processing is to extract fluid volumes and properties from multi-acquisition NMR data. The potential of multi-acquisition NMR logging for water, oil, and gas discrimination and volume quantification was recognized already in 1993. At that time no commercial processing of such data was available. It was decided to develop an in-house multi-acquisition processing capability. From 1993 to 1996 the development effort was focused on the evaluation of potential processing concepts and the development of the necessary mathematical algorithms. In 1996 the actual software implementation was developed, and in October 1996 first results were available and published internally. In March 1997 a company-wide beta test of the software was organized. In August 1997 the software was released company wide and has been in use since then. Multi-Acquisition Data Processing Methods As an introduction, we briefly review methods for quantitative processing of multi-acquisition NMR data that are described in the open literature. We make the distinction between methods that operate in the relaxation time domain vs. methods that operate in the acquisition time domain. Analysis in the Relaxation Time (or T2) Domain. Here, methods are discussed that operate in the T2 domain. Differential Spectrum Method. The differential spectrum method, first published by Akkurt and Vinegar1 works on dual-wait-time data. The concept is to independently T2 invert the long- and short-wait-time echo-decay vectors into a T2 spectrum. The two resulting T2 spectra are subtracted and, provided the wait times have been selected suitably,2 the difference between the two T2 spectra only arises from fluids with long T1 components (usually hydrocarbons). Volumes are quantified by integrating the difference T2 spectrum and correcting for the polarization difference between long and short wait time. Enhanced Diffusion Method. The enhanced diffusion method, recently published by Akkurt et al., 3 exploits the diffusion contrast between the diffusive brine and the less diffusive (medium-to-heavy) oil (i.e., water diffusion is faster than oil diffusion). The idea is that the inter-echo time is chosen sufficiently long such that the water and oil signals are fully separated in the T2 domain (i.e., water is at lower T2 than oil). Determining oil volumes is then just a matter of integrating over the appropriate T2 range in the T2 spectrum. Analysis in the Acquisition Time Domain. Here, methods are discussed that operate in the acquisition time domain. Time-Domain Analysis. The time-domain analysis method (TDA) operates on dual-wait-time data. This method was first published by Prammer et al.4 The concept is to subtract the measured long- and short-wait-time decay vectors into an echo difference. In case the wait times have been chosen suitably2 the difference of the two decay vectors should be arising from a long T1 component (usually a hydrocarbon). This difference echo vector is subsequently T2 inverted (using "matched filters," which basically means that a uni- or bi-exponential is fitted to the data). In that way, only the T2 component arising from the hydrocarbon is found. The hydrocarbon volume is deduced by correcting the resulting signal strength from the difference in polarization between long and short wait time. Echo Ratio Method. This method, published by Flaum et al.,5 works on dual-inter-echo-time data. The long- and short-inter-echo-time echo decays are divided and an apparent diffusion coefficient is calculated. The apparent diffusion coefficient can be used as a qualitative indicator for the presence of gas. MacNMR Method MacNMR uses a method that is radically different from the other processing schemes and is a comprehensive implementation of earlier concepts.1,6 MacNMR employs a forward model to model the measured echo-decay vectors. The starting points in the forward model are the T2 spectra for each of the fluids present (water, oil, and/or gas) that would be measured at infinite wait time and zero gradient. From these T2 spectra, echo-decay vectors are constructed by accounting for the effects of hydrogen index, polarization, and diffusion. The best-fit T2 spectra are found by inverting the forward model to the measured echo-decay vectors. All measured echo-decay vectors included in the inversion are treated on an equal statistical footing. They are weighted with their respective rms-noise values. Hence, decays with the lowest noise contribute most. In principle, any number of echo-decay vectors can be included in the inversion. The current software implementation of MacNMR accepts up to a maximum of six echo-decay vectors, totaling a maximum of 7,000 echoes. The inversion typically takes less than 1 second per depth increment. In a sense, MacNMR employs a very classical concept in that it defines unknown variables (T2 spectra for the fluids present) that are determined from the available data (i.e., all the acquired decay vectors) by error minimization. Between the unknown variables and the data is a forward model. The forward model contains the effects of inter-echo-time variation and wait-time variation. Analysis in the Relaxation Time (or T2) Domain. Here, methods are discussed that operate in the T2 domain. Differential Spectrum Method. The differential spectrum method, first published by Akkurt and Vinegar1 works on dual-wait-time data. The concept is to independently T2 invert the long- and short-wait-time echo-decay vectors into a T2 spectrum. The two resulting T2 spectra are subtracted and, provided the wait times have been selected suitably,2 the difference between the two T2 spectra only arises from fluids with long T1 components (usually hydrocarbons). Volumes are quantified by integrating the difference T2 spectrum and correcting for the polarization difference between long and short wait time. Enhanced Diffusion Method. The enhanced diffusion method, recently published by Akkurt et al.,3 exploits the diffusion contrast between the diffusive brine and the less diffusive (medium-to-heavy) oil (i.e., water diffusion is faster than oil diffusion). The idea is that the inter-echo time is chosen sufficiently long such that the water and oil signals are fully separated in the T2 domain (i.e., water is at lower T2 than oil). Determining oil volumes is then just a matter of integrating over the appropriate T2 range in the T2 spectrum. Analysis in the Acquisition Time Domain. Here, methods are discussed that operate in the acquisition time domain. Time-Domain Analysis. The time-domain analysis method (TDA) operates on dual-wait-time data. This method was first published by Prammer et al.4 The concept is to subtract the measured long- and short-wait-time decay vectors into an echo difference. In case the wait times have been chosen suitably2 the difference of the two decay vectors should be arising from a long T1 component (usually a hydrocarbon). This difference echo vector is subsequently T2 inverted (using "matched filters," which basically means that a uni- or bi-exponential is fitted to the data). In that way, only the T2 component arising from the hydrocarbon is found. The hydrocarbon volume is deduced by correcting the resulting signal strength from the difference in polarization between long and short wait time. Echo Ratio Method. This method, published by Flaum et al.,5 works on dual-inter-echo-time data. The long- and short-inter-echo-time echo decays are divided and an apparent diffusion coefficient is calculated. The apparent diffusion coefficient can be used as a qualitative indicator for the presence of gas.
APA, Harvard, Vancouver, ISO, and other styles
9

TAKIGUCHI, Hideki, Hiroshi TAKAMATSU, Shunsuke UCHIDA, Kenkichi ISHIGURE, Motonori NAKAGAMI, and Makoto MATSUI. "Water Chemistry Data Acquisition, Processing, Evaluation and Diagnostic Systems in Light Water Reactors." Journal of Nuclear Science and Technology 41, no. 2 (February 2004): 214–25. http://dx.doi.org/10.1080/18811248.2004.9715478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mali, Sheetal. "Tipping Bucket Rain Gauge Data Processing System: A Review." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 102–6. http://dx.doi.org/10.22214/ijraset.2021.37914.

Full text
Abstract:
Abstract: The tipping bucket system consists of funnel which collects the water of the rain in a container which is like a seesaw type module which tips side by side and collects the water. When the level of the water decreases below a preset level, the lever changes its side, causing the collected water to dump in a vessel and electrical signal is sent. By this system the high, medium or heavy rainfall character can be obtained. The rainfall character is calculated by the rainfall in 1 hour and corresponding number of pulses clicking in a period of 10 minutes. Various types of tipping bucket systems are reviewed by using rainfall and snow precipitation, using internet enabling, using rain drop imaging and artificial intelligence and also using wireless sensor network and GSM data transmission. Tipping Bucket is the most useful parameter for measuring the rainfall. In this way the rainfall is measured using the Tipping Bucket Rain Gauge System.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Data processing Water"

1

Hardy, Robert James John. "Problems of imaging the crust in deep water." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hartley, Joanna Katherine. "Parallel algorithms for fuzzy data processing with application to water systems." Thesis, Nottingham Trent University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nodine, Dewayne J. "Spatial decision support system for evaluation of land use plans based upon storm water runoff impacts : a theoretical framework." Virtual Press, 1996. http://liblink.bsu.edu/uhtbin/catkey/1020175.

Full text
Abstract:
All land uses affect storm water runoff However, different uses of the same site generate varying amounts of runoff Many communities have come to rely upon detention and/or retention basins for controlling the additional runoff resulting from land development. It is argued that this incremental approach to storm water management must be replaced with a more proactive long-term view.To achieve this, more user-friendly software capable of modeling the effect long-range land use plans have on the volume and behavior of storm water runoff is needed. This software, called a Spatial Decision Support System (SDSS), must be capable of guiding the user, who may not be an expert at runoff analysis, through the process and also capable of generating output in various formats understandable by lay persons. This study utilizes a systems analysis technique to develop a theoretical framework for the Storm Water SDSS.
Department of Urban Planning
APA, Harvard, Vancouver, ISO, and other styles
4

Lane, Dallas W. "Signal processing methods for airborne lidar bathymetry." Title page, table of contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09ENS/09ensl265.pdf.

Full text
Abstract:
"August 2001." Includes bibliographical references (leaves 77-80). Examines the susceptibility of existing signal processing methods to errors and identifies other possible causes of depth error not accounted for by existing signal processing methods, by analysis of the detected laser return waveform data. Methods to improve depth accuracy are investigated.
APA, Harvard, Vancouver, ISO, and other styles
5

Sousa, Sena André Luis. "Shallow Water Remote Sensing Using Sonar Improved with Geostatistics and Stochastic Resonance Data Processing." Doctoral thesis, Universitat de les Illes Balears, 2018. http://hdl.handle.net/10803/663754.

Full text
Abstract:
[eng] The main objective proposed in this doctoral thesis was focused on the study and development of a solution for the remote sensing of the submarine topographic relief, using for this, inexpensive equipment. Here we focus in three works that altogether will improve the remote sensing process for underwater medium using sonars as the main relief data acquisition system. The problem was systematically addressed since the previous work in the master thesis, constituting three stages: 1) building a prototype data extraction platform, 2) data acquisition and 3) data processing. In the first stage was developed a prototype taking as a reference the modular structure and the software design applied in AUVI project (Acosta 2008), and besides it was used the model of autonomous navigation system developed to AutoTracker project (Acosta et al., 2005), this stage and part of the following one were developed in the master thesis. In the second stage, it was done the survey planning and the acoustic data extraction including navigational data in three different places: i) On the cove “Estancia”, located in Palma, Mallorca island/Spain, where we used the prototype developed in the first stage of this work as a platform to data extraction; ii) “Alfeite Arsenal” Port, located on the Tejo River, in Almada/Portugal into the context of robotics exercises promoted by the Navy of Portugal (REX2014). In this location, it was used the robotic vehicle ZARCO from the Oceansys Lab, through cooperative work with the Oceansys Lab. research group at the University of Porto (UP)/INESC in Portugal and finally, iii) in the “Bay of All Saints”, near the city of Salvador/Brazil, where were performed some missions to collect data using hydrographic survey boats in cooperation with the Federal University of Bahia (UFBA) and Belov Engineering - Port Engineering and Hydrographic Services Company, both located in Salvador/Bahia. Finally, the third stage, that is the main body of this thesis, was characterized by the data analysis and comparison between several datasets. In this stage, studies had been conducted to verify the feasibility of the use of spatial statistical algorithms in the process of bathymetric data interpolation without any ancillary information to support the prediction. We determined an optimized procedure for estimating the unsampled points, hence it was validated using a regular cross-validation method and a comparative validation method to compare the estimated data with a second dataset acquired in the same region and acting as a Merit Figure. The average discrepancy between the estimated data and Merit Figure data value was 25 cm, it is below the acceptable error for bathymetric data at depths below 30m (IHO 2012). In addition, an algorithm based on the Stochastic Resonance (SR) theory was developed. It consists in applying white noise in an optimal intensity level to improve the contrasts of acoustic images generated by a side Sonar Scan (SSS). The SR theory also, was used as a basis for development of a weak signals detection algorithm in sensing applications. Regarding the sensors application for measure remote sensing physical variables, we could cite the magnetic field meters (magnetometers), and inertial sensors (accelerometers and gyroscopes), in this study was performed a simulation of Chua's circuit operating in a chaotic regime as a sensor, where we could determine successfully the region of system solution into the strange attractor, using, for this, the technique of residence time, which will be defined along this thesis. The entire set of modules, techniques and processes described in this work proposed one solution to the remote sensing problem applied to the underwater environment, and give the opportunity to develop in more deep way future works in sensor integration, algorithms and data acquisition platform.
[cat] L'objectiu principal proposat en aquesta tesi doctoral es va centrar en l'estudi i desenvolupament d'una solució per a la detecció remota del relleu topogràfic submarí, utilitzant per a això un equip econòmic. Aquí ens centrem en tres treballs que en total milloraran el procés de teledetecció per al medi submarí utilitzant sonars com el principal sistema d'adquisició de dades de relleu. El problema es va abordar sistemàticament des del treball anterior a la tesi de màster, que constava de tres etapes: 1) construcció d'una plataforma d'extracció de dades prototip, 2) adquisició de dades i 3) tractament de dades. En la primera etapa es va desenvolupar un prototip prenent com a referència l'estructura modular i el disseny de programari aplicat en el projecte AUVI (Acosta 2008), a més d'utilitzar el model de sistema de navegació autònom desenvolupat per al projecte AutoTracker (Acosta et al., 2005 ), aquesta etapa i una part de la següent es van desenvolupar en la tesi de màster. En la segona etapa, es va realitzar la planificació de l'enquesta i l'extracció de dades acústiques, incloses les dades de navegació en tres llocs diferents: i) A la cala "Estancia", situada a Palma, illa de Mallorca / Espanya, on utilitzem el prototip desenvolupat a la primera etapa d'aquest treball com a plataforma d'extracció de dades; ii) Port "Alfeite Arsenal", ubicat al riu Tajo, a Almada / Portugal, en el context dels exercicis de robòtica promoguts per l'Armada de Portugal (REX2014). En aquesta ubicació, es va utilitzar el vehicle robotitzat ZARCO del laboratori Oceansys, a través del treball cooperatiu amb l'Oceansys Lab. grup d'investigació de la Universitat de Porto (UP) / INESC a Portugal i, finalment, iii) a la "Badia de Tots Sants", a prop de la ciutat de Salvador / Brasil, on es van realitzar algunes missions per recollir dades utilitzant vaixells d'enquestes hidrogràfiques en cooperació amb la Universitat Federal de Bahia (UFBA) i Belov Engineering - Port Engineering and Hydrographic Services Company, ambdós ubicats a Salvador / Bahia. Finalment, la tercera etapa, que és el cos principal d'aquesta tesi, es va caracteritzar per l'anàlisi de dades i la comparació entre diversos conjunts de dades. En aquesta etapa, s'han realitzat estudis per verificar la viabilitat de l'ús d'algoritmes estadístics espacials en el procés d'interpolació de dades batimètriques sense cap tipus d'informació auxiliar per a la predicció. Es va determinar un procediment optimitzat per estimar els punts sense mostrejar, per tant, es va validar mitjançant un mètode de validació de mètodes regular i un mètode de validació comparatiu per comparar les dades estimades amb un segon conjunt de dades adquirit a la mateixa regió i actuant com a Figura de mèrit. La discrepància mitjana entre les dades estimades i el valor de dades de Merit Figure va ser de 25 cm, per sota de l'error acceptable per a dades batimètriques a profunditats inferiors a 30 m (IHO 2012). A més, es va desenvolupar un algorisme basat en la teoria de la ressonància estocàstica (SR). Consisteix en aplicar soroll blanc en un nivell d'intensitat òptima per millorar els contrastos d'imatges acústiques generades per un costat Sonar Scan (SSS). La teoria del SR també es va utilitzar com a base per al desenvolupament d'un algoritme de detecció de senyals feble en la detecció d'aplicacions. Pel que fa a l'aplicació de sensors per a la mesura de les variables físiques de control remot, podríem citar els mesuradors de camp magnètic (magnetòmetres) i els sensors inercials (acceleròmetres i giroscopis), en aquest estudi es va realitzar una simulació del circuit de Chua que funciona en un règim caòtic com a sensor, on podríem determinar amb èxit la regió de la solució del sistema en l'estrany atractor, utilitzant, per a això, la tècnica del temps de residència, que es definirà al llarg d'aquesta tesi. Tot el conjunt de mòduls, tècniques i processos descrits en aquest treball proposen una solució al problema de teledetecció aplicat a l'entorn submarí i permeten desenvolupar de manera més profunda futurs treballs en integració de sensors, algorismes i plataforma d'adquisició de dades..
[spa] El principal objetivo propuesto en esta tesis doctoral se centró en el estudio y desarrollo de una solución para la detección remota del relieve topográfico submarino, utilizando para esto, equipos de bajo costo. Aquí nos enfocamos en tres trabajos que en conjunto mejorarán el proceso de detección remota para medios subacuáticos usando sonares como el principal sistema de adquisición de datos de alivio. El problema fue abordado sistemáticamente desde el trabajo anterior en la tesis de maestría, constituyendo tres etapas: 1) construcción de una plataforma prototipo de extracción de datos, 2) adquisición de datos y 3) procesamiento de datos. En la primera etapa se desarrolló un prototipo tomando como referencia la estructura modular y el diseño de software aplicado en el proyecto AUVI (Acosta 2008), y además se utilizó el modelo de sistema de navegación autónomo desarrollado para el proyecto AutoTracker (Acosta et al., 2005 ), esta etapa y parte de la siguiente se desarrollaron en la tesis de maestría. En la segunda etapa, se realizó la planificación de la encuesta y la extracción de datos acústicos, incluyendo datos de navegación en tres lugares diferentes: i) En la cala "Estancia", ubicada en Palma, isla de Mallorca / España, donde utilizamos el prototipo desarrollado en el primera etapa de este trabajo como una plataforma para la extracción de datos; ii) Puerto "Alfeite Arsenal", ubicado en el río Tajo, en Almada / Portugal en el contexto de ejercicios de robótica promovidos por la Armada de Portugal (REX2014). En esta ubicación, se utilizó el vehículo robótico ZARCO del Laboratorio Oceansys, a través del trabajo cooperativo con el Laboratorio Oceansys. grupo de investigación en la Universidad de Oporto (UP) / INESC en Portugal y finalmente, iii) en la "Bahía de Todos los Santos", cerca de la ciudad de Salvador / Brasil, donde se realizaron algunas misiones para recopilar datos utilizando barcos hidrográficos en cooperación con la Universidad Federal de Bahía (UFBA) y Belov Engineering - Compañía de Ingeniería Portuaria y Servicios Hidrográficos, ambas ubicadas en Salvador / Bahía. Finalmente, la tercera etapa, que es el cuerpo principal de esta tesis, se caracterizó por el análisis de datos y la comparación entre varios conjuntos de datos. En esta etapa, se realizaron estudios para verificar la viabilidad del uso de algoritmos estadísticos espaciales en el proceso de interpolación de datos batimétricos sin ninguna información auxiliar para respaldar la predicción. Determinamos un procedimiento optimizado para estimar los puntos no muestreados, por lo que se validó utilizando un método de validación cruzada regular y un método de validación comparativa para comparar los datos estimados con un segundo conjunto de datos adquiridos en la misma región y actuando como una figura de mérito. La discrepancia promedio entre los datos estimados y el valor de los datos de Merit Figure fue de 25 cm, está por debajo del error aceptable para los datos batimétricos a profundidades por debajo de 30 m (OHI 2012). Además, se desarrolló un algoritmo basado en la teoría de la Resonancia Estocástica (SR). Consiste en aplicar ruido blanco en un nivel de intensidad óptimo para mejorar los contrastes de las imágenes acústicas generadas por un Sonar Scan lateral (SSS). La teoría SR también se usó como base para el desarrollo de un algoritmo de detección de señales débiles en aplicaciones de detección. En cuanto a la aplicación de sensores para medir variables físicas de teledetección, podríamos citar los medidores de campo magnético (magnetómetros) y sensores inerciales (acelerómetros y giroscopios), en este estudio se realizó una simulación del circuito de Chua operando en un régimen caótico como sensor, donde pudimos determinar con éxito la región de la solución del sistema en el atractor extraño, utilizando, para ello, la técnica del tiempo de residencia, que se definirá a lo largo de esta tesis. El conjunto completo de módulos, técnicas y procesos descritos en este trabajo propuso una solución al problema de teledetección aplicado al entorno subacuático, y brinda la oportunidad de desarrollar de manera más profunda futuros trabajos de integración de sensores, algoritmos y plataforma de adquisición de datos.
[por] O objetivo principal proposto nesta tese de doutorado foi focado no estudo e desenvolvimento de uma solução para o sensoriamento remoto do alívio topográfico submarino, usando para isso, equipamentos baratos. Aqui nos concentramos em três trabalhos que, em conjunto, melhorarão o processo de sensoriamento remoto para o meio subaquático, utilizando os sonares como o principal sistema de aquisição de dados de alívio. O problema foi sistematicamente abordado desde o trabalho anterior na tese de mestrado, constituindo três etapas: 1) construção de um protótipo de plataforma de extração de dados, 2) aquisição de dados e 3) processamento de dados. Na primeira etapa foi desenvolvido um protótipo tomando como referência a estrutura modular e o projeto de software aplicado no projeto AUVI (Acosta 2008), e além disso, utilizou-se o modelo de sistema de navegação autônomo desenvolvido para o projeto AutoTracker (Acosta et al., 2005 ), este estágio e parte do seguinte foram desenvolvidos na tese de mestrado. Na segunda etapa, foi feito o planejamento da pesquisa e a extração de dados acústicos, incluindo dados de navegação em três lugares diferentes: i) Na enseada "Estancia", localizada em Palma, Ilha de Maiorca / Espanha, onde usamos o protótipo desenvolvido no primeira etapa deste trabalho como plataforma para a extração de dados; ii) Porto do "Alfeite Arsenal", localizado no rio Tejo, em Almada / Portugal no contexto de exercícios de robótica promovidos pela Marinha de Portugal (REX2014). Nessa localização, utilizou-se o veículo robotizado ZARCO do Laboratório Oceansys, através do trabalho cooperativo com o Oceansys Lab. grupo de pesquisa na Universidade do Porto (UP) / INESC em Portugal e, finalmente, iii) na "Baía de Todos os Santos", perto da cidade de Salvador / Brasil, onde foram realizadas algumas missões para coletar dados usando embarcações hidrográficas em cooperação com a Universidade Federal da Bahia (UFBA) e a Engenharia Belov - Empresa de Engenharia de Portos e Hidrográficos, ambos localizados em Salvador / Bahia. Finalmente, o terceiro estágio, que é o corpo principal desta tese, foi caracterizado pela análise de dados e comparação entre vários conjuntos de dados. Nesta fase, foram realizados estudos para verificar a viabilidade do uso de algoritmos estatísticos espaciais no processo de interpolação de dados batimétricos sem qualquer informação auxiliar para sustentar a predição. Determinamos um procedimento otimizado para estimar os pontos não amostrados, portanto, foi validado usando um método de validação cruzada regular e um método de validação comparativa para comparar os dados estimados com um segundo conjunto de dados adquirido na mesma região e atuando como uma Figura de mérito. A discrepância média entre os dados estimados eo valor de dados da Figura de Mérito foi de 25 cm, está abaixo do erro aceitável para dados batimétricos a profundidades abaixo de 30 m (IHO 2012). Além disso, um algoritmo baseado na teoria da Ressonância Estocástica (SR) foi desenvolvido. Consiste na aplicação de ruído branco em um nível de intensidade ótimo para melhorar os contrastes de imagens acústicas geradas por um lado de Sonar Scan (SSS). A teoria SR também foi utilizada como base para o desenvolvimento de um algoritmo de detecção de sinais fracos em aplicações de detecção. Em relação ao aplicativo de sensores para medir as variáveis físicas de sensoriamento remoto, podemos citar os medidores de campo magnético (magnetômetros) e sensores inerciais (acelerômetros e giroscópios), neste estudo realizou-se uma simulação do circuito de Chua operando em regime caótico como sensor, onde podemos determinar com sucesso a região da solução do sistema no atrativo estranho, usando, para isso, a técnica de tempo de residência, que será definida ao longo desta tese. Todo o conjunto de módulos, técnicas e processos descritos neste trabalho propôs uma solução para o problema de sensoriamento remoto aplicado ao ambiente subaquático e oferece a oportunidade de desenvolver de forma mais profunda os futuros trabalhos em integração de sensores, algoritmos e plataforma de aquisição de dados.
APA, Harvard, Vancouver, ISO, and other styles
6

Byakika, Stephen Nyende. "Modelling of Pressurised Water Supply Networks that May Exhibit Transient Low Pressure - Open Channel Flow Conditions." Thesis, Vaal University of Technology, 2011. http://hdl.handle.net/10352/421.

Full text
Abstract:
D. Tech. (Department of Civil Engineering and Building, Faculty of Engineering and Technology), Vaal University of Technology
Growing demand for water due to increasing populations, industrialisation and water consuming lifestyles puts stress on existing water supply systems. To cater for the rising demand, water distribution networks are expanded beyond their design capacities and this creates transient “low-pressure-open-channel flow” (LPOCF) conditions. Current water supply models use “demand driven approach” (DDA) methodology which is not able to simulate transient LPOCF conditions, that poses an impediment to management/analysis of pressure-deficient networks. With a case study of the water supply network of Kampala City, LPOCF conditions were studied in this research. A “pressure/head driven approach” (PDA/HDA) was used in order to determine what demand is enabled by particular nodal pressures. Conversion of free surface to pressurised flow was analysed and modelled, with a view to clearly understanding occurrence of this phenomenon. The research demonstrated that if adequate pressures and flows are to be maintained, effectiveness of the water distribution network should be given as much attention as water production capacity. The research also indicated that when network pressures are low, the head-driven approach to water distribution modelling gives more accurate results than the traditional demand-driven methodology. Coexistence of free-surface and pressurised flow in networks prone to LPOCF conditions was confirmed and modelled. Results obtained highlighted the advantages of developing fully dynamic and transient models in the solution of transient LPOCF conditions in water distribution networks. Models developed allow application of PDA/HDA and DDA methodologies in systems that may exhibit LPOCF conditions thus enabling identification, understanding and analysis of the status of all sections of the network. These culminated in the development of a DSS to guide operational decisions that can be made to optimise network performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Todes, M. A. "Evaluation parameters for computer aided design of irrigation systems." Doctoral thesis, University of Cape Town, 1987. http://hdl.handle.net/11427/21140.

Full text
Abstract:
The research has entailed the formulation and coding of computer models for the design of pressurized irrigation systems. Particular emphasis has been given to the provision of routines for the evaluation of the expected performance from a designed system. Two separate sets of models have been developed, one for the block or in-field system and one for file mainline netWork. The thesis is presented in three seelions asfollows : * Basic theory, in which the general background to the research is covered. * The models, which includes detailed descriptions of both the design models and the computer programs. * Applications, in which several test casesof both sets of models are reported.
APA, Harvard, Vancouver, ISO, and other styles
8

Ogidan, Olugbenga Kayode. "Design of nonlinear networked control for wastewater distributed systems." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/1201.

Full text
Abstract:
Thesis submitted in fulfilment of the requirements for the degree Doctor of Technology: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology 2014
This thesis focuses on the design, development and real-time simulation of a robust nonlinear networked control for the dissolved oxygen concentration as part of the wastewater distributed systems. This concept differs from previous methods of wastewater control in the sense that the controller and the wastewater treatment plants are separated by a wide geographical distance and exchange data through a communication medium. The communication network introduced between the controller and the DO process creates imperfections during its operation, as time delays which are an object of investigation in the thesis. Due to the communication network imperfections, new control strategies that take cognisance of the network imperfections in the process of the controller design are needed to provide adequate robustness for the DO process control system. This thesis first investigates the effects of constant and random network induced time delays and the effects of controller parameters on the DO process behaviour with a view to using the obtained information to design an appropriate controller for the networked closed loop system. On the basis of the above information, a Smith predictor delay compensation controller is developed in the thesis to eliminate the deadtime, provide robustness and improve the performance of the DO process. Two approaches are adopted in the design of the Smith predictor compensation scheme. The first is the transfer function approach that allows a linearized model of the DO process to be described in the frequency domain. The second one is the nonlinear linearising approach in the time domain. Simulation results reveal that the developed Smith predictor controllers out-performed the nonlinear linearising controller designed for the DO process without time delays by compensating for the network imperfections and maintaining the DO concentration within a desired acceptable level. The transfer function approach of designing the Smith predictor is found to perform better under small time delays but the performance deteriorates under large time delays and disturbances. It is also found to respond faster than the nonlinear approach. The nonlinear feedback linearisig approach is slower in response time but out-performs the transfer function approach in providing robustness and performance for the DO process under large time delays and disturbances. The developed Smith predictor compensation schemes were later simulated in a real-time platform using LabVIEW. The Smith predictor controllers developed in this thesis can be applied to other process control plants apart from the wastewater plants, where distributed control is required. It can also be applied in the nuclear reactor plants where remote control is required in hazardous conditions. The developed LabVIEW real-time simulation environment would be a valuable tool for researchers and students in the field of control system engineering. Lastly, this thesis would form the basis for further research in the field of distributed wastewater control.
APA, Harvard, Vancouver, ISO, and other styles
9

Shi, Wei. "Web-based geographic information system for the archives of the Water Resources Institute." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3312.

Full text
Abstract:
This project is focused on the goal of improving access to the Water Resources Institute (WRI) archives using a web-based GIS architecture. This project uses the newest version of ArcGIS Server as a method to support an internet-based map search environment, improved information management and data sharing.
APA, Harvard, Vancouver, ISO, and other styles
10

Ayala, Cabrera David. "Characterization of components of water supply systems from GPR images and tools of intelligent data analysis." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/59235.

Full text
Abstract:
[EN] Over time, due to multiple operational and maintenance activities, the networks of water supply systems (WSSs) undergo interventions, modifications or even are closed. In many cases, these activities are not properly registered. Knowledge of the paths and characteristics (status and age, etc.) of the WSS pipes is obviously necessary for efficient and dynamic management of such systems. This problem is greatly augmented by considering the detection and control of leaks. Access to reliable leakage information is a complex task. In many cases, leaks are detected when the damage is already considerable, which brings high social and economic costs. In this sense, non-destructive methods (e.g., ground penetrating radar - GPR) may be a constructive response to these problems, since they allow, as evidenced in this thesis, to ascertain paths of pipes, identify component characteristics, and detect primordial water leaks. Selection of GPR in this work is justified by its characteristics as non-destructive technique that allows studying both metallic and non-metallic objects. Although the capture of information with GPR is usually successful, such aspects as the capture settings, the large volume of generated information, and the use and interpretation of such information require high level of skill and experience. This dissertation may be seen as a step forward towards the development of tools able to tackle the problem of lack of knowledge on the WSS buried assets. The main objective of this doctoral work is thus to generate tools and assess their feasibility of application to the characterization of components of WSSs from GPR images. In this work we have carried out laboratory tests specifically designed to propose, develop and evaluate methods for the characterization of the WSS buried components. Additionally, we have conducted field tests, which have enabled us to determine the feasibility of implementing such methodologies under uncontrolled conditions. The methodologies developed are based on techniques of intelligent data analysis. The basic principle of this work has involved the processing of data obtained through the GPR to look for useful information about WSS components, with special emphasis on the pipes. After performing numerous activities, one can conclude that, using GPR images, it is feasible to obtain more information than the typical identification of hyperbolae currently performed. In addition, this information can be observed directly, e.g. more simply, using the methodologies proposed in this doctoral work. These methodologies also prove that it is feasible to identify patterns (especially with the preprocessing algorithm termed Agent race) that provide fairly good approximation of the location of leaks in WSSs. Also, in the case of pipes, one can obtain such other characteristics as diameter and material. The main outcomes of this thesis consist in a series of tools we have developed to locate, identify and visualize WSS components from GPR images. Most interestingly, the data are synthesized and reduced so that the characteristics of the different components of the images recorded in GPR are preserved. The ultimate goal is that the developed tools facilitate decision-making in the technical management of WSSs, and that such tools can even be operated by personnel with limited experience in handling non-destructive methodologies, specifically GPR.
[ES] Con el paso del tiempo, y debido a múltiples actividades operacionales y de mantenimiento, las redes de los sistemas de abastecimiento de agua (SAAs) sufren intervenciones, modificaciones o incluso, son clausuradas, sin que, en muchos casos, estas actividades sean correctamente registradas. El conocimiento de los trazados y características (estado y edad, entre otros) de las tuberías en los SAAs es obviamente necesario para una gestión eficiente y dinámica de tales sistemas. A esta problemática se suma la detección y el control de las fugas de agua. El acceso a información fiable sobre las fugas es una tarea compleja. En muchos casos, las fugas son detectadas cuando los daños en la red son ya considerables, lo que trae consigo altos costes sociales y económicos. En este sentido, los métodos no destructivos (por ejemplo, ground penetrating radar - GPR), pueden ser una respuesta a estas problemáticas, ya que permiten, como se pone de manifiesto en esta tesis, localizar los trazados de las tuberías, identificar características de los componentes y detectar las fugas de agua cuando aún no son significativas. La selección del GPR, en este trabajo se justifica por sus características como técnica no destructiva, que permite estudiar tanto objetos metálicos como no metálicos. Aunque la captura de información con GPR suele ser exitosa, la configuración de la captura, el gran volumen de información, y el uso y la interpretación de la información requieren de alto nivel de habilidad y experiencia por parte del personal. Esta tesis doctoral se plantea como un avance hacia el desarrollo de herramientas que permitan responder a la problemática del desconocimiento de los activos enterrados de los SAAs. El objetivo principal de este trabajo doctoral es, pues, generar herramientas y evaluar la viabilidad de su aplicación en la caracterización de componentes de un SAA, a partir de imágenes GPR. En este trabajo hemos realizado ensayos de laboratorio específicamente diseñados para plantear, elaborar y evaluar metodologías para la caracterización de los componentes enterrados de los SAAs. Adicionalmente, hemos realizado ensayos de campo, que han permitido determinar la viabilidad de aplicación de tales metodologías bajo condiciones no controladas. Las metodologías elaboradas están basadas en técnicas de análisis inteligentes de datos. El principio básico de este trabajo ha consistido en el tratamiento adecuado de los datos obtenidos mediante el GPR, a fin de buscar información de utilidad para los SAAs respecto a sus componentes, con especial énfasis en las tuberías. Tras la realización de múltiples actividades, se puede concluir que es viable obtener más información de las imágenes de GPR que la que actualmente se obtiene con la típica identificación de hipérbolas. Esta información, además, puede ser observada directamente, de manera más sencilla, mediante las metodologías planteadas en este trabajo doctoral. Con estas metodologías se ha probado que también es viable la identificación de patrones (especialmente el pre-procesado con el algoritmo Agent race) que proporcionan aproximación bastante acertada de la localización de las fugas de agua en los SAAs. También, en el caso de las tuberías, se puede obtener otro tipo de características tales como el diámetro y el material. Como resultado de esta tesis se han desarrollado una serie de herramientas que permiten visualizar, identificar y localizar componentes de los SAAs a partir de imágenes de GPR. El resultado más interesante es que los resultados obtenidos son sintetizados y reducidos de manera que preservan las características de los diferentes componentes registrados en las imágenes de GPR. El objetivo último es que las herramientas desarrolladas faciliten la toma de decisiones en la gestión técnica de los SAAs y que tales herramientas puedan ser operadas incluso por personal con una experiencia limitada en el manejo
[CAT] Amb el temps, a causa de les múltiples activitats d'operació i manteniment, les xarxes de sistemes d'abastament d'aigua (SAAs) se sotmeten a intervencions, modificacions o fins i tot estan tancades. En molts casos, aquestes activitats no estan degudament registrats. El coneixement dels camins i característiques (estat i edat, etc.) de les canonades d'aigua i sanejament fa evident la necessitat d'una gestió eficient i dinàmica d'aquests sistemes. Aquest problema es veu augmentat en gran mesura tenint en compte la detecció i control de fuites. L'accés a informació fiable sobre les fuites és una tasca complexa. En molts casos, les fugues es detecten quan el dany ja és considerable, el que porta costos socials i econòmics. En aquest sentit, els mètodes no destructius (per exemple, ground penetrating radar - GPR) poden ser una resposta constructiva a aquests problemes, ja que permeten, com s'evidencia en aquesta tesi, per determinar rutes de canonades, identificar les característiques dels components, i detectar les fuites d'aigua quan encara no són significatives. La selecció del GPR en aquest treball es justifica per les seves característiques com a tècnica no destructiva que permet estudiar tant objectes metàl·lics i no metàl·lics. Tot i que la captura d'informació amb GPR sol ser reeixida, aspectes com ara la configuració de captura, el gran volum d'informació que es genera, i l'ús i la interpretació d'aquesta informació requereix alt nivell d'habilitat i experiència. Aquesta tesi pot ser vista com un pas endavant cap al desenvolupament d'eines capaces d'abordar el problema de la manca de coneixement sobre els actius d'aigua i sanejament enterrat. L'objectiu principal d'aquest treball doctoral és, doncs, generar eines i avaluar la seva factibilitat d'aplicació a la caracterització dels components de los SAAs, a partir d'imatges GPR. En aquest treball s'han dut a terme proves de laboratori específicament dissenyats per proposar, desenvolupar i avaluar mètodes per a la caracterització dels components d'aigua i sanejament soterrat. A més, hem dut a terme proves de camp, que ens han permès determinar la viabilitat de la implementació d'aquestes metodologies en condicions no controlades. Les metodologies desenvolupades es basen en tècniques d'anàlisi intel·ligent de dades. El principi bàsic d'aquest treball ha consistit en el tractament de dades obtingudes a través del GPR per buscar informació útil sobre els components d'SAA, amb especial èmfasi en la canonades. Després de realitzar nombroses activitats, es pot concloure que, amb l'ús d'imatges de GPR, és factible obtenir més informació que la identificació típica d'hipèrboles realitzat actualment. A més, aquesta informació pot ser observada directament, per exemple, més simplement, utilitzant les metodologies proposades en aquest treball doctoral. Aquestes metodologies també demostren que és factible per identificar patrons (especialment el pre-processat amb l'algoritme Agent race) que proporcionen bastant bona aproximació de la localització de fuites en SAAs. També, en el cas de tubs, es pot obtenir altres característiques com ara el diàmetre i el material. Els principals resultats d'aquesta tesi consisteixen en una sèrie d'eines que hem desenvolupat per localitzar, identificar i visualitzar els components dels SAAS a partir d'imatges GPR. El resultat més interessant és que els resultats obtinguts són sintetitzats i reduïts de manera que preserven les característiques dels diferents components registrats en les imatges de GPR. L'objectiu final és que les eines desenvolupades faciliten la presa de decisions en la gestió tècnica de SAA, i que tals eines poden fins i tot ser operades per personal amb poca experiència en el maneig de metodologies no destructives, específicament GPR.
Ayala Cabrera, D. (2015). Characterization of components of water supply systems from GPR images and tools of intelligent data analysis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59235
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Data processing Water"

1

Cesario, Lee. Microcomputers for water utilities. Denver, CO: American Water Works Association, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

O'Halloran, Roger. Data processing and analysis for online distribution system monitoring. Denver, CO: Awwa Research Foundation, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1956-, Peters A., and International Conference on Computational Methods in Water Resources (10th : 1994 : Universität Heidelberg), eds. Computational methods in water resources X. Dordrecht: Kluwer Academic, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International Conference on Computational Methods in Water Resources (11th 1996 Cancún, Mexico). Computational methods in water resources XI. Edited by Aldama A. A. 1954-. Southampton: Computational Mechanics Publications, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kite, G. W. Hydrologic applications: Computer programs for water resources engineering. Littleton, Colo., U.S.A: Water Resources Publications, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Costello, Thomas R. Water data management (WDM) system: User guide. [Washington, D.C.?]: U.S. Dept. of the Interior, Bureau of Land Management, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1931-, Coulbeck Bryan, ed. Integrated computer applications in water supply. Taunton, Somerset, England: Research Studies Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hromadka, Theodore V. Computer methods in water resources. Mission Viejo, CA: Lighthouse Publications, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Microcomputer applications in water resources. Englewood Cliffs, N.J: Prentice Hall, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mason, Robert R. Programs for generating data tables for the annual water-resources data report of the U.S. Geological Survey. Denver, Colo: U.S. Dept. of the Interior, Geological Survey, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Data processing Water"

1

Dorschel, B., A. J. Wheeler, X. Monteys, and K. Verbruggen. "INSS Data Processing." In Atlas of the Deep-Water Seabed, 17–20. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9376-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chakraborty, Debesh, and Kakali Mukhopadhyay. "Data Sources and Processing." In Water Pollution and Abatement Policy in India, 53–99. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8929-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ojha, Chandra S. P., A. K. Lohani, Adebayo J. Adeloye, Sanjay Kumar Jain, and Rabee Rustum. "Surface Water Data Collection and Processing." In Sustainable Water Resources Management, 15–50. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784414767.ch02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sellschopp, J. "The Influence of Random Thermocline Displacements on Shallow Water Transmission Loss." In Underwater Acoustic Data Processing, 155–60. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huu, Phat Nguyen, Quang Tran Minh, and Quang Tran Minh. "Designing Water Environment Monitoring Equipment for Aquaculture in Vietnam." In Artificial Intelligence in Data and Big Data Processing, 579–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97610-1_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Glattetre, John. "Some Aspects of Sound Propagation in Shallow Water: Estimation of Source- and Sound Chanel Parameters." In Underwater Acoustic Data Processing, 125–40. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jensen, J. R. "Processing Remotely Sensed Data: Hardware and Software Considerations." In Remote Sensing in Hydrology and Water Management, 41–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59583-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Coning, Arno, and Francois Mouton. "Data Processing Automation for Bulk Water Supply Monitoring." In Human-Centric Computing in a Data-Driven Society, 193–202. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62803-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Jian. "Water Level Measurement Device." In Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2019), 9–14. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1468-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmed, Fizar. "An IoT-Big Data Based Machine Learning Technique for Forecasting Water Requirement in Irrigation Field." In Lecture Notes in Business Information Processing, 67–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94845-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Data processing Water"

1

Gidiow, P. M. "Deep Water Seismic Data Processing." In 6th SAGA Biennial Conference and Exhibition. European Association of Geoscientists & Engineers, 1999. http://dx.doi.org/10.3997/2214-4609-pdb.221.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De Keukelaere, Liesbeth, Robrecht Moelans, and Els Knaeps. "Mapeo-Water: Drone Data Processing into Water Quality Products." In IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021. http://dx.doi.org/10.1109/igarss47720.2021.9555081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pokrajac, Dragoljub, Natasa Reljin, Michael Reiter, Stephanie Stotts, Robert Scarborough, and Jelena Nikolic. "Adaptive Filters for Water Level Data Processing." In 2007 8th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services. IEEE, 2007. http://dx.doi.org/10.1109/telsks.2007.4376002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kristiansen, P., A. Ogunsakin, M. Esotu, B. Hootman, O. Zdraveva, and E. Quadt. "Deep Water OBN - Exploiting the Data Processing Possibilities." In 76th EAGE Conference and Exhibition 2014. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20141116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Monnier, S., S. Halliday, J. Zaske, and H. Roende. "Broadband Signal Processing for Shallow-water OBN Data." In Land and Ocean Bottom; Broadband Full Azimuth Seismic Surveys Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20140391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baltas, E. A., A. M. Gkikas, and M. A. Mimikou. "An Integrated System for Management and Processing of Hydrogeological Data." In World Water and Environmental Resources Congress 2003. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40685(2003)20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Doosun, and Kevin Lansey. "Bad Data Processing for Water Distribution System Demand Estimation." In 12th Annual Conference on Water Distribution Systems Analysis (WDSA). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41203(425)112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mentes, Alexandros, Dimitrios Spyrou, Panagiota Stournara, and Panagiota Galiatsatou. "Smart-Water project: Software Design for processing and managing water metering data." In Proceedings of the 39th IAHR World Congress From Snow to Sea. Spain: International Association for Hydro-Environment Engineering and Research (IAHR), 2022. http://dx.doi.org/10.3850/iahr-39wc252171192022184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Zhennan, and Weimin Chen. "Water Turbidity Detection System Design and Its Data Processing." In 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ameii-16.2016.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Yonghu. "A Practical Data Processing Analysis for Water Impact Problem." In 2015 4th International Conference on Sustainable Energy and Environmental Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icseee-15.2016.42.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Data processing Water"

1

Hodgkiss, W. S. Shallow Water Adaptive Array Processing and Data Analysis. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada306525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Notarianni, Kathy, and William Rinkinen. Protection of data processing equipment with fine water sprays. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Linard, Joshua, and Sam Campbell. Data Validation Package - April and July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1345982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nguyen, Jason, and Fred Smith. Data Validation Package October 2015 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January 2016. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1351635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tyrrell, Evan, and Angelita Denny. Data Validation Package, December 2015, Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1347614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Traub, David, and Jason Nguyen. Data Validation Package September 2016 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2017. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1360967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen, Jason, and Fred Smith. Data Validation Package April 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites August 2016. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1345397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Linard, Joshua, and Sam Campbell. Data Validation Package, April and June 2016 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site, October 2016. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1345837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen, Jason, and Fred Smith. Data Validation Package October 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites January 2017. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1348904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bush, Richard, and Peter Lemke. Data Validation Package June 2016 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites September 2016. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1348893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography